import sys import os import torch,re from tools.i18n.i18n import I18nAuto, scan_language_list i18n = I18nAuto(language=os.environ["language"]) pretrained_sovits_name = { "v1":"GPT_SoVITS/pretrained_models/s2G488k.pth", "v2":"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", "v3":"GPT_SoVITS/pretrained_models/s2Gv3.pth",###v3v4还要检查vocoder,算了。。。 "v4":"GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth", "v2Pro":"GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth", "v2ProPlus":"GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth", } pretrained_gpt_name = { "v1":"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", "v2":"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "v3":"GPT_SoVITS/pretrained_models/s1v3.ckpt", "v4":"GPT_SoVITS/pretrained_models/s1v3.ckpt", "v2Pro":"GPT_SoVITS/pretrained_models/s1v3.ckpt", "v2ProPlus":"GPT_SoVITS/pretrained_models/s1v3.ckpt", } name2sovits_path={ # i18n("不训练直接推v1底模!"): "GPT_SoVITS/pretrained_models/s2G488k.pth", i18n("不训练直接推v2底模!"): "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", # i18n("不训练直接推v3底模!"): "GPT_SoVITS/pretrained_models/s2Gv3.pth", # i18n("不训练直接推v4底模!"): "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth", i18n("不训练直接推v2Pro底模!"): "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth", i18n("不训练直接推v2ProPlus底模!"): "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth", } name2gpt_path={ # i18n("不训练直接推v1底模!"):"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", i18n("不训练直接推v2底模!"):"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", i18n("不训练直接推v3底模!"):"GPT_SoVITS/pretrained_models/s1v3.ckpt", } SoVITS_weight_root = ["SoVITS_weights", "SoVITS_weights_v2", "SoVITS_weights_v3", "SoVITS_weights_v4", "SoVITS_weights_v2Pro", "SoVITS_weights_v2ProPlus"] GPT_weight_root = ["GPT_weights", "GPT_weights_v2", "GPT_weights_v3", "GPT_weights_v4", "GPT_weights_v2Pro", "GPT_weights_v2ProPlus"] SoVITS_weight_version2root={ "v1":"SoVITS_weights", "v2":"SoVITS_weights_v2", "v3":"SoVITS_weights_v3", "v4":"SoVITS_weights_v4", "v2Pro":"SoVITS_weights_v2Pro", "v2ProPlus":"SoVITS_weights_v2ProPlus", } GPT_weight_version2root={ "v1":"GPT_weights", "v2":"GPT_weights_v2", "v3":"GPT_weights_v3", "v4":"GPT_weights_v4", "v2Pro":"GPT_weights_v2Pro", "v2ProPlus":"GPT_weights_v2ProPlus", } def custom_sort_key(s): # 使用正则表达式提取字符串中的数字部分和非数字部分 parts = re.split("(\d+)", s) # 将数字部分转换为整数,非数字部分保持不变 parts = [int(part) if part.isdigit() else part for part in parts] return parts def get_weights_names(): SoVITS_names = [] for key in name2sovits_path: if os.path.exists(name2sovits_path[key]):SoVITS_names.append(key) for path in SoVITS_weight_root: for name in os.listdir(path): if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (path, name)) GPT_names = [] for key in name2gpt_path: if os.path.exists(name2gpt_path[key]):GPT_names.append(key) for path in GPT_weight_root: for name in os.listdir(path): if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (path, name)) SoVITS_names=sorted(SoVITS_names, key=custom_sort_key) GPT_names=sorted(GPT_names, key=custom_sort_key) return SoVITS_names, GPT_names def change_choices(): SoVITS_names, GPT_names = get_weights_names() return {"choices": SoVITS_names, "__type__": "update"}, { "choices": GPT_names, "__type__": "update", } # 推理用的指定模型 sovits_path = "" gpt_path = "" is_half_str = os.environ.get("is_half", "True") is_half = True if is_half_str.lower() == "true" else False is_share_str = os.environ.get("is_share", "False") is_share = True if is_share_str.lower() == "true" else False cnhubert_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base" bert_path = "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" pretrained_sovits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth" pretrained_gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" exp_root = "logs" python_exec = sys.executable or "python" if torch.cuda.is_available(): infer_device = "cuda" else: infer_device = "cpu" webui_port_main = 9874 webui_port_uvr5 = 9873 webui_port_infer_tts = 9872 webui_port_subfix = 9871 api_port = 9880 if infer_device == "cuda": gpu_name = torch.cuda.get_device_name(0) if ( ("16" in gpu_name and "V100" not in gpu_name.upper()) or "P40" in gpu_name.upper() or "P10" in gpu_name.upper() or "1060" in gpu_name or "1070" in gpu_name or "1080" in gpu_name ): is_half = False if infer_device == "cpu": is_half = False class Config: def __init__(self): self.sovits_path = sovits_path self.gpt_path = gpt_path self.is_half = is_half self.cnhubert_path = cnhubert_path self.bert_path = bert_path self.pretrained_sovits_path = pretrained_sovits_path self.pretrained_gpt_path = pretrained_gpt_path self.exp_root = exp_root self.python_exec = python_exec self.infer_device = infer_device self.webui_port_main = webui_port_main self.webui_port_uvr5 = webui_port_uvr5 self.webui_port_infer_tts = webui_port_infer_tts self.webui_port_subfix = webui_port_subfix self.api_port = api_port