import time import os import requests import itertools import multiprocessing from concurrent.futures import ProcessPoolExecutor import numpy as np import Ref_Audio_Selector.config_param.config_params as params from urllib.parse import urlparse, parse_qs, urlencode, urlunparse, quote from Ref_Audio_Selector.config_param.log_config import logger, p_logger class SetModelURLComposer: def __init__(self, type, base_url, gpt_param_name, sovits_param_name): self.type = type self.base_url = base_url self.gpt_param_name = gpt_param_name self.sovits_param_name = sovits_param_name def is_valid(self): if self.base_url is None or self.base_url == '': raise Exception("请求地址不能为空") if self.type in ['gpt', 'all']: if self.gpt_param_name is None or self.gpt_param_name == '': raise Exception("GPT参数名不能为空") if self.type in ['sovits', 'all']: if self.sovits_param_name is None or self.sovits_param_name == '': raise Exception("Sovits参数名不能为空") def build_get_url(self, value_array, need_url_encode=True): params = {} if self.type == 'gpt': params[self.gpt_param_name] = value_array[0] if self.type == 'sovits': params[self.sovits_param_name] = value_array[0] if self.type == 'all': params[self.gpt_param_name] = value_array[0] params[self.sovits_param_name] = value_array[1] return append_params_to_url(self.base_url, params, need_url_encode) def build_post_url(self, value_array, need_url_encode=True): url = append_params_to_url(self.base_url, {}, need_url_encode) params = {} if self.type == 'gpt': params[self.gpt_param_name] = value_array[0] if self.type == 'sovits': params[self.sovits_param_name] = value_array[0] if self.type == 'all': params[self.gpt_param_name] = value_array[0] params[self.sovits_param_name] = value_array[1] return url, params class TTSURLComposer: def __init__(self, base_url, refer_type_param, emotion_param_name, text_param_name, ref_path_param_name, ref_text_param_name): self.base_url = base_url # 角色情绪 or 参考音频 self.refer_type_param = refer_type_param self.emotion_param_name = emotion_param_name self.text_param_name = text_param_name self.ref_path_param_name = ref_path_param_name self.ref_text_param_name = ref_text_param_name def is_valid(self): if self.base_url is None or self.base_url == '': raise ValueError("请输入url") if self.text_param_name is None or self.text_param_name == '': raise ValueError("请输入text参数名") if self.emotion_param_name is None and self.ref_path_param_name is None and self.ref_text_param_name is None: raise ValueError("请输入至少一个参考or情绪的参数") def is_emotion(self): return self.refer_type_param == '角色情绪' def build_url_with_emotion(self, text_value, emotion_value, need_url_encode=True): params = { self.text_param_name: text_value, self.emotion_param_name: emotion_value, } return append_params_to_url(self.base_url, params, need_url_encode) def build_url_with_ref(self, text_value, ref_path_value, ref_text_value, need_url_encode=True): params = { self.text_param_name: text_value, self.ref_path_param_name: ref_path_value, self.ref_text_param_name: ref_text_value, } return append_params_to_url(self.base_url, params, need_url_encode) def append_params_to_url(url_with_params, params, need_url_encode): if params: query_params = '&'.join([f"{k}={v}" for k, v in params.items()]) url_with_params += '?' + query_params if '?' not in url_with_params else '&' + query_params return url_with_params if not need_url_encode else safe_encode_query_params(url_with_params) def safe_encode_query_params(original_url): # 分析URL以获取查询字符串部分 parsed_url = urlparse(original_url) query_params = parse_qs(parsed_url.query) # 将查询参数转换为编码过的字典(键值对会被转码) encoded_params = {k: quote(v[0]) for k, v in query_params.items()} # 重新编码查询字符串 new_query_string = urlencode(encoded_params, doseq=False) # 重建完整的URL new_parsed_url = parsed_url._replace(query=new_query_string) encoded_url = urlunparse(new_parsed_url) logger.info(encoded_url) return encoded_url def generate_audio_files_parallel(url_composer, text_list, emotion_list, output_dir_path, num_processes=1): # 将emotion_list均匀分成num_processes个子集 emotion_groups = np.array_split(emotion_list, num_processes) with ProcessPoolExecutor(max_workers=num_processes) as executor: futures = [ executor.submit(generate_audio_files_for_emotion_group, url_composer, text_list, group, output_dir_path) for group in emotion_groups] for future in futures: future.result() # 等待所有进程完成 def generate_audio_files_for_emotion_group(url_composer, text_list, emotion_list, output_dir_path): start_time = time.perf_counter() # 使用 perf_counter 获取高精度计时起点 # Ensure the output directory exists output_dir = os.path.abspath(output_dir_path) os.makedirs(output_dir, exist_ok=True) # Create subdirectories for text and emotion categories text_subdir = os.path.join(output_dir, params.inference_audio_text_aggregation_dir) os.makedirs(text_subdir, exist_ok=True) emotion_subdir = os.path.join(output_dir, params.inference_audio_emotion_aggregation_dir) os.makedirs(emotion_subdir, exist_ok=True) all_count = len(text_list) * len(emotion_list) has_generated_count = 0 all_text_count = sum(len(item) for item in text_list) # 计算笛卡尔积 cartesian_product = list(itertools.product(text_list, emotion_list)) for text, emotion in cartesian_product: # Generate audio byte stream using the create_audio function emotion_name = emotion['emotion'] text_subdir_text = os.path.join(text_subdir, text) os.makedirs(text_subdir_text, exist_ok=True) text_subdir_text_file_path = os.path.join(text_subdir_text, emotion_name + '.wav') emotion_subdir_emotion = os.path.join(emotion_subdir, emotion_name) os.makedirs(emotion_subdir_emotion, exist_ok=True) emotion_subdir_emotion_file_path = os.path.join(emotion_subdir_emotion, text + '.wav') # 检查是否已经存在对应的音频文件,如果存在则跳过 if os.path.exists(text_subdir_text_file_path) and os.path.exists(emotion_subdir_emotion_file_path): has_generated_count += 1 logger.info(f"进程ID: {os.getpid()}, 进度: {has_generated_count}/{all_count}") continue if url_composer.is_emotion(): real_url = url_composer.build_url_with_emotion(text, emotion['emotion'], False) else: real_url = url_composer.build_url_with_ref(text, emotion['ref_path'], emotion['ref_text'], False) audio_bytes = inference_audio_from_api(real_url) # Write audio bytes to the respective files with open(text_subdir_text_file_path, 'wb') as f: f.write(audio_bytes) with open(emotion_subdir_emotion_file_path, 'wb') as f: f.write(audio_bytes) has_generated_count += 1 logger.info(f"进程ID: {os.getpid()}, 进度: {has_generated_count}/{all_count}") end_time = time.perf_counter() # 获取计时终点 elapsed_time = end_time - start_time # 计算执行耗时 # 记录日志内容 log_message = f"进程ID: {os.getpid()}, generate_audio_files_for_emotion_group 执行耗时: {elapsed_time:.6f} 秒;推理数量: {has_generated_count}; 字符总数:{all_text_count};每秒推理字符数:{all_text_count*len(emotion_list) / elapsed_time:.3f};" p_logger.info(log_message) logger.info(log_message) def inference_audio_from_api(url): logger.info(f'inference_audio_from_api url: {url}') # 发起GET请求 response = requests.get(url, stream=True) # 检查响应状态码是否正常(例如200表示成功) if response.status_code == 200: # 返回音频数据的字节流 return response.content else: raise Exception(f"Failed to fetch audio from API. Server responded with status code {response.status_code}.message: {response.json()}") def start_api_set_model(set_model_url_composer, gpt_models, sovits_models): url, post_body = set_model_url_composer.build_post_url([gpt_models, sovits_models], True) logger.info(f'set_model_url_composer url: {set_model_url_composer}') logger.info(f'start_api_set_model url: {url}') logger.info(f'start_api_set_model post_body: {post_body}') response = requests.post(url, json=post_body) if response.status_code == 200: result = response.text return result else: return f'请求失败,状态码:{response.status_code}' def start_api_v2_set_gpt_model(set_model_url_composer, gpt_models): url = set_model_url_composer.build_get_url([gpt_models], False) logger.info(f'start_api_v2_set_gpt_model url: {url}') response = requests.get(url) if response.status_code == 200: result = response.text return result else: return f'请求失败,状态码:{response.status_code}' def start_api_v2_set_sovits_model(set_model_url_composer, sovits_models): url = set_model_url_composer.build_get_url([sovits_models], False) logger.info(f'start_api_v2_set_sovits_model url: {url}') response = requests.get(url) if response.status_code == 200: result = response.text return result else: return f'请求失败,状态码:{response.status_code}'