# Download moda ASR related models from modelscope import snapshot_download model_dir = snapshot_download('damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',revision="v2.0.4") model_dir = snapshot_download('damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',revision="v2.0.4") model_dir = snapshot_download('damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',revision="v2.0.4") import nltk nltk.download('averaged_perceptron_tagger_eng') # Download https://paddlespeech.bj.bcebos.com/Parakeet/released_models/g2p/G2PWModel_1.1.zip unzip and rename to G2PWModel, and then place them in GPT_SoVITS/text. import os import zipfile import shutil import requests # 获取当前文件的路径 current_file_path = os.path.abspath(__file__) current_dir = os.path.dirname(current_file_path) # 定义下载链接和目标路径 url = 'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/g2p/G2PWModel_1.1.zip' download_path = os.path.join(current_dir, 'G2PWModel_1.1.zip') target_dir = os.path.join(current_dir, '../GPT_SoVITS/text/') # 下载文件 response = requests.get(url) with open(download_path, 'wb') as file: file.write(response.content) # 解压文件 with zipfile.ZipFile(download_path, 'r') as zip_ref: zip_ref.extractall(current_dir) # 重命名解压后的文件夹 os.rename(os.path.join(current_dir, 'G2PWModel_1.1'), os.path.join(current_dir, 'G2PWModel')) # 移动文件夹到目标目录 if not os.path.exists(target_dir): os.makedirs(target_dir) shutil.move(os.path.join(current_dir, 'G2PWModel'), target_dir) # 清理临时文件 os.remove(download_path) print("Download G2PWModel successfully")