GPT-SoVITS-WebUI

A Powerful Few-shot Voice Conversion and Text-to-Speech WebUI.

[![madewithlove](https://img.shields.io/badge/made_with-%E2%9D%A4-red?style=for-the-badge&labelColor=orange )](https://github.com/RVC-Boss/GPT-SoVITS)
[![Licence](https://img.shields.io/badge/LICENSE-MIT-green.svg?style=for-the-badge)](https://github.com/RVC-Boss/GPT-SoVITS/blob/main/LICENSE) [![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/GPT-SoVITS/tree/main) [**English**](./README.md) | [**中文简体**](./docs/cn/README.md)
------ > Check out our [demo video](https://www.bilibili.com/video/BV12g4y1m7Uw) here! https://github.com/RVC-Boss/GPT-SoVITS/assets/129054828/05bee1fa-bdd8-4d85-9350-80c060ab47fb ## Features: 1. **Zero-shot TTS:** Input a 5-second vocal sample and experience instant text-to-speech conversion. 2. **Few-shot TTS:** Fine-tune the model with just 1 minute of training data for improved voice similarity and realism. 3. **Cross-lingual Support:** Inference in languages different from the training dataset, currently supporting English, Japanese, and Chinese. 4. **WebUI Tools:** Integrated tools include voice accompaniment separation, automatic training set segmentation, Chinese ASR, and text labeling, assisting beginners in creating training datasets and GPT/SoVITS models. ## Environment Preparation If you are a Windows user (tested with win>=10) you can install directly via the prezip. Just download the [prezip](https://huggingface.co/lj1995/GPT-SoVITS-windows-package/resolve/main/GPT-SoVITS-beta.7z?download=true), unzip it and double-click go-webui.bat to start GPT-SoVITS-WebUI. ### Tested Environments - Python 3.9, PyTorch 2.0.1, CUDA 11 - Python 3.10.13, PyTorch 2.1.2, CUDA 12.3 _Note: numba==0.56.4 require py<3.11_ ### Quick Install with Conda ```bash conda create -n GPTSoVits python=3.9 conda activate GPTSoVits bash install.sh ``` ### Install Manually #### Pip Packages ```bash pip install torch numpy scipy tensorboard librosa==0.9.2 numba==0.56.4 pytorch-lightning gradio==3.14.0 ffmpeg-python onnxruntime tqdm cn2an pypinyin pyopenjtalk g2p_en chardet ``` #### Additional Requirements If you need Chinese ASR (supported by FunASR), install: ```bash pip install modelscope torchaudio sentencepiece funasr ``` #### FFmpeg ##### Conda Users ```bash conda install ffmpeg ``` ##### Ubuntu/Debian Users ```bash sudo apt install ffmpeg sudo apt install libsox-dev conda install -c conda-forge 'ffmpeg<7' ``` ##### MacOS Users ```bash brew install ffmpeg ``` ##### Windows Users Download and place [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe) and [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe) in the GPT-SoVITS root. ### Pretrained Models Download pretrained models from [GPT-SoVITS Models](https://huggingface.co/lj1995/GPT-SoVITS) and place them in `GPT_SoVITS/pretrained_models`. For Chinese ASR (additionally), download models from [Damo ASR Model](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/files), [Damo VAD Model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/files), and [Damo Punc Model](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/files) and place them in `tools/damo_asr/models`. For UVR5 (Vocals/Accompaniment Separation & Reverberation Removal, additionally), download models from [UVR5 Weights](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/uvr5_weights) and place them in `tools/uvr5/uvr5_weights`. ## Dataset Format The TTS annotation .list file format: ``` vocal_path|speaker_name|language|text ``` Language dictionary: - 'zh': Chinese - 'ja': Japanese - 'en': English Example: ``` D:\GPT-SoVITS\xxx/xxx.wav|xxx|en|I like playing Genshin. ``` ## Todo List - [ ] **High Priority:** - [ ] Localization in Japanese and English. - [ ] User guide. - [ ] Japanese and English dataset fine tune training. - [ ] **Features:** - [ ] Zero-shot voice conversion (5s) / few-shot voice conversion (1min). - [ ] TTS speaking speed control. - [ ] Enhanced TTS emotion control. - [ ] Experiment with changing SoVITS token inputs to probability distribution of vocabs. - [ ] Improve English and Japanese text frontend. - [ ] Develop tiny and larger-sized TTS models. - [ ] Colab scripts. - [ ] Expand training dataset (2k -> 10k). - [ ] better sovits base model (enhanced audio quality) - [ ] model mix ## Credits Special thanks to the following projects and contributors: - [ar-vits](https://github.com/innnky/ar-vits) - [SoundStorm](https://github.com/yangdongchao/SoundStorm/tree/master/soundstorm/s1/AR) - [vits](https://github.com/jaywalnut310/vits) - [TransferTTS](https://github.com/hcy71o/TransferTTS/blob/master/models.py#L556) - [Chinese Speech Pretrain](https://github.com/TencentGameMate/chinese_speech_pretrain) - [contentvec](https://github.com/auspicious3000/contentvec/) - [hifi-gan](https://github.com/jik876/hifi-gan) - [Chinese-Roberta-WWM-Ext-Large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) - [fish-speech](https://github.com/fishaudio/fish-speech/blob/main/tools/llama/generate.py#L41) - [ultimatevocalremovergui](https://github.com/Anjok07/ultimatevocalremovergui) - [audio-slicer](https://github.com/openvpi/audio-slicer) - [SubFix](https://github.com/cronrpc/SubFix) - [FFmpeg](https://github.com/FFmpeg/FFmpeg) - [gradio](https://github.com/gradio-app/gradio) ## Thanks to all contributors for their efforts