import os import random import torch import torchaudio import torch.utils.data import torchaudio.functional as aF def amp_pha_stft(audio, n_fft, hop_size, win_size, center=True): hann_window = torch.hann_window(win_size).to(audio.device) stft_spec = torch.stft(audio, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window, center=center, pad_mode='reflect', normalized=False, return_complex=True) log_amp = torch.log(torch.abs(stft_spec)+1e-4) pha = torch.angle(stft_spec) com = torch.stack((torch.exp(log_amp)*torch.cos(pha), torch.exp(log_amp)*torch.sin(pha)), dim=-1) return log_amp, pha, com def amp_pha_istft(log_amp, pha, n_fft, hop_size, win_size, center=True): amp = torch.exp(log_amp) com = torch.complex(amp*torch.cos(pha), amp*torch.sin(pha)) hann_window = torch.hann_window(win_size).to(com.device) audio = torch.istft(com, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window, center=center) return audio def get_dataset_filelist(a): with open(a.input_training_file, 'r', encoding='utf-8') as fi: training_indexes = [x.split('|')[0] for x in fi.read().split('\n') if len(x) > 0] with open(a.input_validation_file, 'r', encoding='utf-8') as fi: validation_indexes = [x.split('|')[0] for x in fi.read().split('\n') if len(x) > 0] return training_indexes, validation_indexes class Dataset(torch.utils.data.Dataset): def __init__(self, training_indexes, wavs_dir, segment_size, hr_sampling_rate, lr_sampling_rate, split=True, shuffle=True, n_cache_reuse=1, device=None): self.audio_indexes = training_indexes random.seed(1234) if shuffle: random.shuffle(self.audio_indexes) self.wavs_dir = wavs_dir self.segment_size = segment_size self.hr_sampling_rate = hr_sampling_rate self.lr_sampling_rate = lr_sampling_rate self.split = split self.cached_wav = None self.n_cache_reuse = n_cache_reuse self._cache_ref_count = 0 self.device = device def __getitem__(self, index): filename = self.audio_indexes[index] if self._cache_ref_count == 0: audio, orig_sampling_rate = torchaudio.load(os.path.join(self.wavs_dir, filename + '.wav')) self.cached_wav = audio self._cache_ref_count = self.n_cache_reuse else: audio = self.cached_wav self._cache_ref_count -= 1 if orig_sampling_rate == self.hr_sampling_rate: audio_hr = audio else: audio_hr = aF.resample(audio, orig_freq=orig_sampling_rate, new_freq=self.hr_sampling_rate) audio_lr = aF.resample(audio, orig_freq=orig_sampling_rate, new_freq=self.lr_sampling_rate) audio_lr = aF.resample(audio_lr, orig_freq=self.lr_sampling_rate, new_freq=self.hr_sampling_rate) audio_lr = audio_lr[:, : audio_hr.size(1)] if self.split: if audio_hr.size(1) >= self.segment_size: max_audio_start = audio_hr.size(1) - self.segment_size audio_start = random.randint(0, max_audio_start) audio_hr = audio_hr[:, audio_start: audio_start+self.segment_size] audio_lr = audio_lr[:, audio_start: audio_start+self.segment_size] else: audio_hr = torch.nn.functional.pad(audio_hr, (0, self.segment_size - audio_hr.size(1)), 'constant') audio_lr = torch.nn.functional.pad(audio_lr, (0, self.segment_size - audio_lr.size(1)), 'constant') return (audio_hr.squeeze(), audio_lr.squeeze()) def __len__(self): return len(self.audio_indexes)