import torch import torch.nn.functional as F import torchaudio from AR.models.t2s_lightning_module_onnx import Text2SemanticLightningModule from feature_extractor import cnhubert from module.models_onnx import SynthesizerTrn, symbols_v1, symbols_v2 from torch import nn from sv import SV import onnx cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base" from transformers import HubertModel, HubertConfig import json import os import soundfile from tqdm import tqdm from text import cleaned_text_to_sequence def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): hann_window = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) y = torch.nn.functional.pad( y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect", ) y = y.squeeze(1) spec = torch.stft( y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window, center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=False, ) spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) return spec def resample_audio(audio: torch.Tensor, orig_sr: int, target_sr: int) -> torch.Tensor: """ Resample audio from orig_sr to target_sr using linear interpolation. audio: (batch, channels, samples) or (channels, samples) or (samples,) """ if audio.dim() == 1: audio = audio.unsqueeze(0).unsqueeze(0) elif audio.dim() == 2: audio = audio.unsqueeze(0) # audio shape: (batch, channels, samples) batch, channels, samples = audio.shape # Reshape to combine batch and channels for interpolation audio = audio.reshape(batch * channels, 1, samples) # Use scale_factor instead of a computed size for ONNX export compatibility resampled = F.interpolate(audio, scale_factor=target_sr / orig_sr, mode='linear', align_corners=False) new_samples = resampled.shape[-1] resampled = resampled.reshape(batch, channels, new_samples) resampled = resampled.squeeze(0).squeeze(0) return resampled class DictToAttrRecursive(dict): def __init__(self, input_dict): super().__init__(input_dict) for key, value in input_dict.items(): if isinstance(value, dict): value = DictToAttrRecursive(value) self[key] = value setattr(self, key, value) def __getattr__(self, item): try: return self[item] except KeyError: raise AttributeError(f"Attribute {item} not found") def __setattr__(self, key, value): if isinstance(value, dict): value = DictToAttrRecursive(value) super(DictToAttrRecursive, self).__setitem__(key, value) super().__setattr__(key, value) def __delattr__(self, item): try: del self[item] except KeyError: raise AttributeError(f"Attribute {item} not found") class T2SInitStep(nn.Module): def __init__(self, t2s, vits): super().__init__() self.encoder = t2s.onnx_encoder self.fsdc = t2s.first_stage_decoder self.vits = vits def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content): codes = self.vits.extract_latent(ssl_content) prompt_semantic = codes[0, 0] bert = torch.cat([ref_bert.transpose(0, 1), text_bert.transpose(0, 1)], 1) all_phoneme_ids = torch.cat([ref_seq, text_seq], 1) bert = bert.unsqueeze(0) prompt = prompt_semantic.unsqueeze(0) [y, k, v, y_emb, x_example] = self.fsdc(self.encoder(all_phoneme_ids, bert), prompt) fake_logits = torch.randn((1, 1025)) # Dummy logits for ONNX export fake_samples = torch.randn((1, 1)) # Dummy samples for ONNX export return y, k, v, y_emb, x_example, fake_logits, fake_samples class T2SStageStep(nn.Module): def __init__(self, stage_decoder): super().__init__() self.stage_decoder = stage_decoder def forward(self, iy, ik, iv, iy_emb, ix_example): [y, k, v, y_emb, logits, samples] = self.stage_decoder(iy, ik, iv, iy_emb, ix_example) fake_x_example = torch.randn((1, 512)) # Dummy x_example for ONNX export return y, k, v, y_emb, fake_x_example, logits, samples class T2SModel(nn.Module): def __init__(self, t2s_path, vits_model): super().__init__() dict_s1 = torch.load(t2s_path, map_location="cpu") self.config = dict_s1["config"] self.t2s_model = Text2SemanticLightningModule(self.config, "ojbk", is_train=False) self.t2s_model.load_state_dict(dict_s1["weight"]) self.t2s_model.eval() self.vits_model = vits_model.vq_model self.hz = 50 self.max_sec = self.config["data"]["max_sec"] self.t2s_model.model.top_k = torch.LongTensor([self.config["inference"]["top_k"]]) self.t2s_model.model.early_stop_num = torch.LongTensor([self.hz * self.max_sec]) self.t2s_model = self.t2s_model.model self.t2s_model.init_onnx() self.init_step = T2SInitStep(self.t2s_model, self.vits_model) self.first_stage_decoder = self.t2s_model.first_stage_decoder self.stage_decoder = self.t2s_model.stage_decoder # self.t2s_model = torch.jit.script(self.t2s_model) def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content): early_stop_num = self.t2s_model.early_stop_num # [1,N] [1,N] [N, 1024] [N, 1024] [1, 768, N] y, k, v, y_emb, x_example, fake_logits, fake_samples = self.init_step(ref_seq, text_seq, ref_bert, text_bert, ssl_content) for idx in tqdm(range(1, 20)): # This is a fake one! do take this as reference # [1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N] enco = self.stage_decoder(y, k, v, y_emb, x_example) y, k, v, y_emb, logits, samples = enco print(logits.shape, samples.shape) if torch.argmax(logits, dim=-1)[0] == self.t2s_model.EOS or samples[0, 0] == self.t2s_model.EOS: break y[0, -1] = 0 return y[:, -idx:].unsqueeze(0) def export(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name, dynamo=False): # self.init_step = torch.jit.script(self.init_step) if dynamo: export_options = torch.onnx.ExportOptions(dynamic_shapes=True) init_step_export_output = torch.onnx.dynamo_export( self.init_step, (ref_seq, text_seq, ref_bert, text_bert, ssl_content), export_options=export_options ) init_step_export_output.save(f"onnx/{project_name}/{project_name}_t2s_init_step.onnx") return torch.onnx.export( self.init_step, (ref_seq, text_seq, ref_bert, text_bert, ssl_content), f"onnx/{project_name}/{project_name}_t2s_init_step.onnx", input_names=["ref_text_phones", "input_text_phones", "ref_text_bert", "input_text_bert", "hubert_ssl_content"], output_names=["y", "k", "v", "y_emb", "x_example", 'logits', 'samples'], dynamic_axes={ "ref_text_phones": {1: "ref_length"}, "input_text_phones": {1: "text_length"}, "ref_text_bert": {0: "ref_length"}, "input_text_bert": {0: "text_length"}, "hubert_ssl_content": {2: "ssl_length"}, }, opset_version=16, ) y, k, v, y_emb, x_example, fake_logits, fake_samples = self.init_step(ref_seq, text_seq, ref_bert, text_bert, ssl_content) stage_step = T2SStageStep(self.stage_decoder) torch.onnx.export( stage_step, (y, k, v, y_emb, x_example), f"onnx/{project_name}/{project_name}_t2s_sdec.onnx", input_names=["iy", "ik", "iv", "iy_emb", "ix_example"], output_names=["y", "k", "v", "y_emb","x_example", "logits", "samples"], dynamic_axes={ "iy": {1: "iy_length"}, "ik": {1: "ik_length"}, "iv": {1: "iv_length"}, "iy_emb": {1: "iy_emb_length"}, "ix_example": {1: "ix_example_length"}, "x_example": {1: "x_example_length"} }, verbose=False, opset_version=16, ) class VitsModel(nn.Module): def __init__(self, vits_path, version:str = 'v2'): super().__init__() dict_s2 = torch.load(vits_path, map_location="cpu", weights_only=False) self.hps = dict_s2["config"] if dict_s2["weight"]["enc_p.text_embedding.weight"].shape[0] == 322: self.hps["model"]["version"] = "v1" else: self.hps["model"]["version"] = version self.is_v2p = version.lower() in ['v2pro', 'v2proplus'] self.hps = DictToAttrRecursive(self.hps) self.hps.model.semantic_frame_rate = "25hz" self.vq_model = SynthesizerTrn( self.hps.data.filter_length // 2 + 1, self.hps.train.segment_size // self.hps.data.hop_length, n_speakers=self.hps.data.n_speakers, **self.hps.model, ) self.vq_model.eval() self.vq_model.load_state_dict(dict_s2["weight"], strict=False) # print(f"filter_length:{self.hps.data.filter_length} sampling_rate:{self.hps.data.sampling_rate} hop_length:{self.hps.data.hop_length} win_length:{self.hps.data.win_length}") #v2 filter_length: 2048 sampling_rate: 32000 hop_length: 640 win_length: 2048 def forward(self, text_seq, pred_semantic, spectrum, sv_emb): if self.is_v2p: return self.vq_model(pred_semantic, text_seq, spectrum, sv_emb=sv_emb)[0, 0] else: return self.vq_model(pred_semantic, text_seq, spectrum)[0, 0] class GptSoVits(nn.Module): def __init__(self, vits, t2s): super().__init__() self.vits = vits self.t2s = t2s def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, spectrum, sv_emb): pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content) audio = self.vits(text_seq, pred_semantic, spectrum, sv_emb) return audio def export(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, spectrum, sv_emb, project_name): self.t2s.export(ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name) pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content) torch.onnx.export( self.vits, (text_seq, pred_semantic, spectrum, sv_emb), f"onnx/{project_name}/{project_name}_vits.onnx", input_names=["input_text_phones", "pred_semantic", "spectrum", "sv_emb"], output_names=["audio"], dynamic_axes={ "input_text_phones": {1: "text_length"}, "pred_semantic": {2: "pred_length"}, "spectrum": {2: "spectrum_length"}, }, opset_version=17, verbose=False, ) class AudioPreprocess(nn.Module): def __init__(self): super().__init__() self.config = HubertConfig.from_pretrained(cnhubert_base_path) self.config._attn_implementation = "eager" # Use standard attention self.config.apply_spec_augment = False # Disable masking for inference self.config.layerdrop = 0.0 # Disable layer dropout # Load the model self.model = HubertModel.from_pretrained( cnhubert_base_path, config=self.config, local_files_only=True ) self.model.eval() self.sv_model = SV("cpu", False) def forward(self, ref_audio_32k): spectrum = spectrogram_torch( ref_audio_32k, 2048, 32000, 640, 2048, center=False, ) ref_audio_16k = resample_audio(ref_audio_32k, 32000, 16000) sv_emb = self.sv_model.compute_embedding3_onnx(ref_audio_16k) zero_tensor = torch.zeros((1, 4800), dtype=torch.float32) ref_audio_16k = ref_audio_16k.unsqueeze(0) # concate zero_tensor with waveform ref_audio_16k = torch.cat([ref_audio_16k, zero_tensor], dim=1) ssl_content = self.model(ref_audio_16k)["last_hidden_state"].transpose(1, 2) return ssl_content, spectrum, sv_emb # def combineInitStepAndStageStep(init_step_onnx_path, stage_step_onnx_path): # init_step_model = onnx.load(init_step_onnx_path) # stage_step_model = onnx.load(stage_step_onnx_path) # # Combine the models (this is a simplified example; actual combination logic may vary) # combined_graph = helper.make_graph( # nodes=init_step_model.graph.node + stage_step_model.graph.node, # name="combined_graph", # inputs=init_step_model.graph.input, # outputs=stage_step_model.graph.output # ) # combined_model = helper.make_model(combined_graph, producer_name='onnx-combiner') # onnx.save(combined_model, f"onnx/{project_name}/{project_name}_combined.onnx") def export(vits_path, gpt_path, project_name, voice_model_version="v2"): vits = VitsModel(vits_path, version=voice_model_version) gpt = T2SModel(gpt_path, vits) gpt_sovits = GptSoVits(vits, gpt) preprocessor = AudioPreprocess() ref_seq = torch.LongTensor( [ cleaned_text_to_sequence( [ "n", "i2", "h", "ao3", ",", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4", ], version='v2', ) ] ) text_seq = torch.LongTensor( [ cleaned_text_to_sequence( [ "w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4", ], version='v2', ) ] ) ref_bert = torch.randn((ref_seq.shape[1], 1024)).float() text_bert = torch.randn((text_seq.shape[1], 1024)).float() ref_audio32k = torch.randn((1, 32000 * 5)).float() - 0.5 os.makedirs(f"onnx/{project_name}", exist_ok=True) [ssl_content, spectrum, sv_emb] = preprocessor(ref_audio32k) gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ssl_content.float(), spectrum.float(), sv_emb.float()) # exit() gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ssl_content.float(), spectrum.float(), sv_emb.float(), project_name) torch.onnx.export(preprocessor, (ref_audio32k,), f"onnx/{project_name}/{project_name}_audio_preprocess.onnx", input_names=["audio32k"], output_names=["hubert_ssl_output", "spectrum", "sv_emb"], dynamic_axes={ "audio32k": {1: "sequence_length"}, "hubert_ssl_output": {2: "hubert_length"}, "spectrum": {2: "spectrum_length"} }) if __name__ == "__main__": try: os.mkdir("onnx") except: pass # gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" # vits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth" # exp_path = "v1_export" # version = "v1" # export(vits_path, gpt_path, exp_path, version) # gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt" # vits_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth" # exp_path = "v2_export" # version = "v2" # export(vits_path, gpt_path, exp_path, version) # gpt_path = "GPT_SoVITS/pretrained_models/s1v3.ckpt" # vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth" # exp_path = "v2pro_export" # version = "v2Pro" # export(vits_path, gpt_path, exp_path, version) gpt_path = "GPT_SoVITS/pretrained_models/s1v3.ckpt" vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth" exp_path = "v2proplus_export" version = "v2ProPlus" export(vits_path, gpt_path, exp_path, version)