# -*- coding:utf-8 -*- from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks import sys,os,traceback dir=sys.argv[1] # opt_name=dir.split("\\")[-1].split("/")[-1] opt_name=os.path.basename(dir) inference_pipeline = pipeline( task=Tasks.auto_speech_recognition, model='tools/damo_asr/models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch', vad_model='tools/damo_asr/models/speech_fsmn_vad_zh-cn-16k-common-pytorch', punc_model='tools/damo_asr/models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch', ) opt=[] for name in os.listdir(dir): try: text = inference_pipeline(audio_in="%s/%s"%(dir,name))["text"] opt.append("%s/%s|%s|ZH|%s"%(dir,name,opt_name,text)) except: print(traceback.format_exc()) opt_dir="output/asr_opt" os.makedirs(opt_dir,exist_ok=True) with open("%s/%s.list"%(opt_dir,opt_name),"w",encoding="utf-8")as f:f.write("\n".join(opt))