# -*- coding: utf-8 -*- import os inp_text= os.environ.get("inp_text") inp_wav_dir= os.environ.get("inp_wav_dir") exp_name= os.environ.get("exp_name") i_part= os.environ.get("i_part") all_parts= os.environ.get("all_parts") os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES") opt_dir= os.environ.get("opt_dir") bert_pretrained_dir= os.environ.get("bert_pretrained_dir") is_half=eval(os.environ.get("is_half","True")) import sys,numpy as np,traceback,pdb import os.path from glob import glob from tqdm import tqdm from text.cleaner import clean_text import torch from transformers import AutoModelForMaskedLM, AutoTokenizer import numpy as np # inp_text=sys.argv[1] # inp_wav_dir=sys.argv[2] # exp_name=sys.argv[3] # i_part=sys.argv[4] # all_parts=sys.argv[5] # os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[6]#i_gpu # opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name # bert_pretrained_dir="/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large" from time import time as ttime import shutil def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path dir=os.path.dirname(path) name=os.path.basename(path) tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part) torch.save(fea,tmp_path) shutil.move(tmp_path,"%s/%s"%(dir,name)) txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part) if(os.path.exists(txt_path)==False): bert_dir="%s/3-bert"%(opt_dir) os.makedirs(opt_dir,exist_ok=True) os.makedirs(bert_dir,exist_ok=True) device="cuda:0" tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir) bert_model=AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir) if (is_half == True): bert_model = bert_model.half().to(device) else: bert_model = bert_model.to(device) def get_bert_feature(text, word2ph): with torch.no_grad(): inputs = tokenizer(text, return_tensors="pt") for i in inputs: inputs[i] = inputs[i].to(device) res = bert_model(**inputs, output_hidden_states=True) res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] assert len(word2ph) == len(text) phone_level_feature = [] for i in range(len(word2ph)): repeat_feature = res[i].repeat(word2ph[i], 1) phone_level_feature.append(repeat_feature) phone_level_feature = torch.cat(phone_level_feature, dim=0) return phone_level_feature.T def process(data,res): for name,text,lan in data: try: name=os.path.basename(name) phones, word2ph, norm_text=clean_text(text.replace("%", '-').replace('¥', ','),lan) path_bert="%s/%s.pt"%(bert_dir,name) if (os.path.exists(path_bert) == False and lan == "zh"): bert_feature = get_bert_feature(norm_text, word2ph) assert bert_feature.shape[-1] == len(phones) # torch.save(bert_feature, path_bert) my_save(bert_feature, path_bert) phones = " ".join(phones) # res.append([name,phones]) res.append([name,phones, word2ph, norm_text]) except: print(name, text, traceback.format_exc()) todo=[] res=[] with open(inp_text,"r",encoding="utf8")as f: lines=f.read().strip("\n").split("\n") language_v1_to_language_v2={ "ZH":"zh", "zh":"zh", "JP":"ja", "jp":"ja", "JA":"ja", "ja":"ja", "EN":"en", "en":"en", "En":"en", } for line in lines[int(i_part)::int(all_parts)]: try: wav_name,spk_name,language,text=line.split("|") # todo.append([name,text,"zh"]) todo.append([wav_name,text,language_v1_to_language_v2.get(language,language)]) except: print(line,traceback.format_exc()) process(todo,res) opt=[] for name,phones, word2ph, norm_text in res: opt.append("%s\t%s\t%s\t%s"%(name,phones, word2ph, norm_text)) with open(txt_path,"w",encoding="utf8")as f: f.write("\n".join(opt)+"\n")