from __future__ import absolute_import, division, print_function, unicode_literals import sys,os import traceback AP_BWE_main_dir_path=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'AP_BWE_main') sys.path.append(AP_BWE_main_dir_path) import glob import argparse import json from re import S import torch import numpy as np import torchaudio import time import torchaudio.functional as aF # from attrdict import AttrDict####will be bug in py3.10 from datasets1.dataset import amp_pha_stft, amp_pha_istft from models.model import APNet_BWE_Model import soundfile as sf import matplotlib.pyplot as plt from rich.progress import track class AP_BWE(): def __init__(self,device,DictToAttrRecursive,checkpoint_file=None): if checkpoint_file==None: checkpoint_file="%s/24kto48k/g_24kto48k.zip"%(AP_BWE_main_dir_path) if os.path.exists(checkpoint_file)==False: raise FileNotFoundError config_file = os.path.join(os.path.split(checkpoint_file)[0], 'config.json') with open(config_file) as f:data = f.read() json_config = json.loads(data) # h = AttrDict(json_config) h = DictToAttrRecursive(json_config) model = APNet_BWE_Model(h).to(device) state_dict = torch.load(checkpoint_file,map_location="cpu",weights_only=False) model.load_state_dict(state_dict['generator']) model.eval() self.device=device self.model=model self.h=h def to(self, *arg, **kwargs): self.model.to(*arg, **kwargs) self.device = self.model.conv_pre_mag.weight.device return self def __call__(self, audio,orig_sampling_rate): with torch.no_grad(): # audio, orig_sampling_rate = torchaudio.load(inp_path) # audio = audio.to(self.device) audio = aF.resample(audio, orig_freq=orig_sampling_rate, new_freq=self.h.hr_sampling_rate) amp_nb, pha_nb, com_nb = amp_pha_stft(audio, self.h.n_fft, self.h.hop_size, self.h.win_size) amp_wb_g, pha_wb_g, com_wb_g = self.model(amp_nb, pha_nb) audio_hr_g = amp_pha_istft(amp_wb_g, pha_wb_g, self.h.n_fft, self.h.hop_size, self.h.win_size) # sf.write(opt_path, audio_hr_g.squeeze().cpu().numpy(), self.h.hr_sampling_rate, 'PCM_16') return audio_hr_g.squeeze().cpu().numpy(),self.h.hr_sampling_rate