Compare commits

...

6 Commits

Author SHA1 Message Date
wzy3650
6bb625cfe4
Merge 0cc6b8aaef4c637c674f8a6660ce8f59124a240e into ee4a466f79b4f643251aa2f873f541f85df11d91 2025-03-27 00:18:24 +09:00
RVC-Boss
ee4a466f79
Update patched_mha_with_cache.py 2025-03-26 17:39:19 +08:00
C3EZ
b65ea9181e
更新对amd显卡的支持 (#2076)
* Added the instruction for AMD GPU in English

* Added the instruction for AMD GPU in Chinese

* Update install.sh, now it will check wether user are using cuda or rocm

* 恢复原来的readme,已经更新了install.sh

* 恢复中文readme

* 将n卡的判断条件由nvcc改成nvidia-smi
2025-03-26 16:04:13 +08:00
RVC-Boss
c0ce55a132
Update my_utils.py 2025-03-26 15:32:43 +08:00
RVC-Boss
13573a1b06
fix torch.load 2025-03-26 15:22:01 +08:00
wangzeyuan
0cc6b8aaef refine get-text.py 2025-02-18 18:09:38 +08:00
5 changed files with 171 additions and 33 deletions

View File

@ -12,33 +12,33 @@ import torch
def multi_head_attention_forward_patched(
query: Tensor,
key: Tensor,
value: Tensor,
embed_dim_to_check: int,
num_heads: int,
in_proj_weight: Optional[Tensor],
in_proj_bias: Optional[Tensor],
bias_k: Optional[Tensor],
bias_v: Optional[Tensor],
add_zero_attn: bool,
query,
key,
value,
embed_dim_to_check,
num_heads,
in_proj_weight,
in_proj_bias,
bias_k,
bias_v,
add_zero_attn,
dropout_p: float,
out_proj_weight: Tensor,
out_proj_bias: Optional[Tensor],
training: bool = True,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
use_separate_proj_weight: bool = False,
q_proj_weight: Optional[Tensor] = None,
k_proj_weight: Optional[Tensor] = None,
v_proj_weight: Optional[Tensor] = None,
static_k: Optional[Tensor] = None,
static_v: Optional[Tensor] = None,
average_attn_weights: bool = True,
is_causal: bool = False,
out_proj_weight,
out_proj_bias,
training = True,
key_padding_mask = None,
need_weights = True,
attn_mask = None,
use_separate_proj_weight = False,
q_proj_weight = None,
k_proj_weight = None,
v_proj_weight = None,
static_k = None,
static_v = None,
average_attn_weights = True,
is_causal = False,
cache=None,
) -> Tuple[Tensor, Optional[Tensor]]:
):
r"""
Args:
query, key, value: map a query and a set of key-value pairs to an output.

View File

@ -1,6 +1,9 @@
# -*- coding: utf-8 -*-
import os
import re
import LangSegment
from text import chinese
inp_text = os.environ.get("inp_text")
inp_wav_dir = os.environ.get("inp_wav_dir")
@ -83,24 +86,104 @@ if os.path.exists(txt_path) == False:
return phone_level_feature.T
def get_bert_inf(phones:list, word2ph:list, norm_text:str, language:str):
language=language.replace("all_","")
if language == "zh":
feature = get_bert_feature(norm_text, word2ph).to(device)
else:
feature = torch.zeros(
(1024, len(phones)),
dtype=torch.float32,
).to(device)
return feature
def get_phones_and_bert(text:str, language:str, version:str, final:bool=False):
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
language = language.replace("all_","")
if language == "en":
LangSegment.setfilters(["en"])
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
else:
# 因无法区别中日韩文汉字,以用户输入为准
formattext = text
while " " in formattext:
formattext = formattext.replace(" ", " ")
if language == "zh":
if re.search(r'[A-Za-z]', formattext):
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
formattext = chinese.mix_text_normalize(formattext)
return get_phones_and_bert(formattext,"zh",version)
else:
phones, word2ph, norm_text = clean_text(formattext, language, version)
bert = get_bert_feature(norm_text, word2ph).to(device)
elif language == "yue" and re.search(r'[A-Za-z]', formattext):
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
formattext = chinese.mix_text_normalize(formattext)
return get_phones_and_bert(formattext,"yue",version)
else:
phones, word2ph, norm_text = clean_text(formattext, language, version)
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float32,
).to(device)
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
textlist=[]
langlist=[]
LangSegment.setfilters(["zh","ja","en","ko"])
if language == "auto":
for tmp in LangSegment.getTexts(text):
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
elif language == "auto_yue":
for tmp in LangSegment.getTexts(text):
if tmp["lang"] == "zh":
tmp["lang"] = "yue"
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
else:
for tmp in LangSegment.getTexts(text):
if tmp["lang"] == "en":
langlist.append(tmp["lang"])
else:
# 因无法区别中日韩文汉字,以用户输入为准
langlist.append(language)
textlist.append(tmp["text"])
# print(textlist)
# print(langlist)
phones_list = []
bert_list = []
norm_text_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = clean_text(textlist[i], lang, version)
bert = get_bert_inf(phones, word2ph, norm_text, lang)
phones_list.append(phones)
norm_text_list.append(norm_text)
bert_list.append(bert)
bert = torch.cat(bert_list, dim=1)
phones = sum(phones_list, [])
norm_text = ''.join(norm_text_list)
return phones, bert, norm_text
def process(data, res):
for name, text, lan in data:
try:
name=clean_path(name)
name = os.path.basename(name)
print(name)
phones, word2ph, norm_text = clean_text(
text.replace("%", "-").replace("", ","), lan, version
phones, bert_feature, norm_text = get_phones_and_bert(
text.replace("%", "-").replace("", ","), lan, 'v2'
)
path_bert = "%s/%s.pt" % (bert_dir, name)
if os.path.exists(path_bert) == False and lan == "zh":
bert_feature = get_bert_feature(norm_text, word2ph)
assert bert_feature.shape[-1] == len(phones)
# torch.save(bert_feature, path_bert)
my_save(bert_feature, path_bert)
phones = " ".join(phones)
# res.append([name,phones])
res.append([name, phones, word2ph, norm_text])
res.append([name, phones, None, norm_text])
except:
print(name, text, traceback.format_exc())

View File

@ -81,7 +81,7 @@ if os.path.exists(semantic_path) == False:
# utils.load_checkpoint(pretrained_s2G, vq_model, None, True)
print(
vq_model.load_state_dict(
torch.load(pretrained_s2G, map_location="cpu")["weight"], strict=False
torch.load(pretrained_s2G, map_location="cpu", weights_only=False)["weight"], strict=False
)
)

View File

@ -2,8 +2,13 @@
# 安装构建工具
# Install build tools
echo "Installing GCC..."
conda install -c conda-forge gcc=14
echo "Installing G++..."
conda install -c conda-forge gxx
echo "Installing ffmpeg and cmake..."
conda install ffmpeg cmake
# 设置编译环境
@ -12,10 +17,60 @@ export CMAKE_MAKE_PROGRAM="$CONDA_PREFIX/bin/cmake"
export CC="$CONDA_PREFIX/bin/gcc"
export CXX="$CONDA_PREFIX/bin/g++"
conda install pytorch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 pytorch-cuda=11.8 -c pytorch -c nvidia
echo "Checking for CUDA installation..."
if command -v nvidia-smi &> /dev/null; then
USE_CUDA=true
echo "CUDA found."
else
echo "CUDA not found."
USE_CUDA=false
fi
if [ "$USE_CUDA" = false ]; then
echo "Checking for ROCm installation..."
if [ -d "/opt/rocm" ]; then
USE_ROCM=true
echo "ROCm found."
if grep -qi "microsoft" /proc/version; then
echo "You are running WSL."
IS_WSL=true
else
echo "You are NOT running WSL."
IS_WSL=false
fi
else
echo "ROCm not found."
USE_ROCM=false
fi
fi
if [ "$USE_CUDA" = true ]; then
echo "Installing PyTorch with CUDA support..."
conda install pytorch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 pytorch-cuda=11.8 -c pytorch -c nvidia
elif [ "$USE_ROCM" = true ] ; then
echo "Installing PyTorch with ROCm support..."
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/rocm6.2
else
echo "Installing PyTorch for CPU..."
conda install pytorch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 cpuonly -c pytorch
fi
echo "Installing Python dependencies from requirements.txt..."
# 刷新环境
# Refresh environment
hash -r
pip install -r requirements.txt
if [ "$USE_ROCM" = true ] && [ "$IS_WSL" = true ] ; then
echo "Update to WSL compatible runtime lib..."
location=`pip show torch | grep Location | awk -F ": " '{print $2}'`
cd ${location}/torch/lib/
rm libhsa-runtime64.so*
cp /opt/rocm/lib/libhsa-runtime64.so.1.2 libhsa-runtime64.so
fi
echo "Installation completed successfully!"
pip install -r requirements.txt

View File

@ -32,7 +32,7 @@ def clean_path(path_str:str):
if path_str.endswith(('\\','/')):
return clean_path(path_str[0:-1])
path_str = path_str.replace('/', os.sep).replace('\\', os.sep)
return path_str.strip(" ").strip('\'').strip("\n").strip('"').strip(" ").strip("\u202a")
return path_str.strip(" \'\n\"\u202a")#path_str.strip(" ").strip('\'').strip("\n").strip('"').strip(" ").strip("\u202a")
def check_for_existance(file_list:list=None,is_train=False,is_dataset_processing=False):