Integrate Fish-Audio's audio preprocess into

GPT-SoVits, adding loudness normalization and maximum
audio length control.
This commit is contained in:
XXXXRT666 2024-04-08 00:46:43 +01:00
parent 8582131bd8
commit ffc2c2acf3
5 changed files with 688 additions and 344 deletions

View File

@ -26,3 +26,4 @@ jieba
LangSegment>=0.2.0
Faster_Whisper
wordsegment
pyloudnorm

132
tools/loudness_norm.py Normal file
View File

@ -0,0 +1,132 @@
# modifiled from https://github.com/fishaudio/audio-preprocess/blob/main/fish_audio_preprocess/cli/loudness_norm.py
from pathlib import Path
from typing import Union
import numpy as np
import pyloudnorm as pyln
import soundfile as sf
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, as_completed
import argparse
import os
def loudness_norm_(
input_dir: str,
peak: float,
loudness: float,
block_size: float,
num_workers: int,
):
"""Perform loudness normalization (ITU-R BS.1770-4) on audio files."""
if isinstance(input_dir, str):
path = Path(input_dir)
input_dir, output_dir = Path(input_dir), Path(input_dir)
if not path.exists():
raise FileNotFoundError(f"Directory {path} does not exist.")
files = (
[f for f in path.glob("*") if f.is_file() and f.suffix == ".wav"]
)
print(f"Found {len(files)} files, normalizing loudness")
with ProcessPoolExecutor(max_workers=num_workers) as executor:
tasks = []
for file in tqdm(files, desc="Preparing tasks"):
# Get relative path to input_dir
relative_path = file.relative_to(input_dir)
new_file = output_dir / relative_path
if new_file.parent.exists() is False:
new_file.parent.mkdir(parents=True)
tasks.append(
executor.submit(
loudness_norm_file, file, new_file, peak, loudness, block_size
)
)
for i in tqdm(as_completed(tasks), total=len(tasks), desc="Processing"):
assert i.exception() is None, i.exception()
print("Done!")
def loudness_norm_file(
input_file: Union[str, Path],
output_file: Union[str, Path],
peak=-1.0,
loudness=-23.0,
block_size=0.400,
) -> None:
"""
Perform loudness normalization (ITU-R BS.1770-4) on audio files.
Args:
input_file: input audio file
output_file: output audio file
peak: peak normalize audio to N dB. Defaults to -1.0.
loudness: loudness normalize audio to N dB LUFS. Defaults to -23.0.
block_size: block size for loudness measurement. Defaults to 0.400. (400 ms)
"""
# Thanks to .against's feedback
# https://github.com/librosa/librosa/issues/1236
input_file, output_file = str(input_file), str(output_file)
audio, rate = sf.read(input_file)
audio = loudness_norm(audio, rate, peak, loudness, block_size)
sf.write(output_file, audio, rate)
def loudness_norm(
audio: np.ndarray, rate: int, peak=-1.0, loudness=-23.0, block_size=0.400
) -> np.ndarray:
"""
Perform loudness normalization (ITU-R BS.1770-4) on audio files.
Args:
audio: audio data
rate: sample rate
peak: peak normalize audio to N dB. Defaults to -1.0.
loudness: loudness normalize audio to N dB LUFS. Defaults to -23.0.
block_size: block size for loudness measurement. Defaults to 0.400. (400 ms)
Returns:
loudness normalized audio
"""
# peak normalize audio to [peak] dB
audio = pyln.normalize.peak(audio, peak)
# measure the loudness first
meter = pyln.Meter(rate, block_size=block_size) # create BS.1770 meter
_loudness = meter.integrated_loudness(audio)
return pyln.normalize.loudness(audio, _loudness, loudness)
parser = argparse.ArgumentParser()
parser.add_argument("-i","--input_dir",help="匹配响度输入文件夹")
parser.add_argument("-l","--loudness",help="响度")
parser.add_argument("-p","--peak",help="响度峰值")
parser.add_argument("-n","--num_worker")
args = parser.parse_args()
input_dir = args.input_dir
loudness = float(args.loudness)
peak = float(args.peak)
num_worker = int(args.num_worker)
if __name__ == "__main__":
loudness_norm_(input_dir=input_dir,peak=peak,loudness=loudness,block_size=0.4,num_workers=num_worker)

View File

@ -1,48 +1,478 @@
import os,sys,numpy as np
import traceback
from scipy.io import wavfile
# parent_directory = os.path.dirname(os.path.abspath(__file__))
# sys.path.append(parent_directory)
# modified from https://github.com/fishaudio/audio-preprocess/blob/main/fish_audio_preprocess/cli/slice_audio.py
from pathlib import Path
from typing import Union, Iterable
from concurrent.futures import ProcessPoolExecutor, as_completed
from tqdm import tqdm
import librosa
import numpy as np
import soundfile as sf
import math
from my_utils import load_audio
from slicer2 import Slicer
import argparse
import os
def slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,i_part,all_part):
os.makedirs(opt_root,exist_ok=True)
if os.path.isfile(inp):
input=[inp]
elif os.path.isdir(inp):
input=[os.path.join(inp, name) for name in sorted(list(os.listdir(inp)))]
AUDIO_EXTENSIONS = {
".mp3",
".wav",
".flac",
".ogg",
".m4a",
".wma",
".aac",
".aiff",
".aif",
".aifc",
}
def list_files(
path: Union[Path, str],
extensions: set[str] = None,
sort: bool = True,
) -> list[Path]:
"""List files in a directory.
Args:
path (Path): Path to the directory.
extensions (set, optional): Extensions to filter. Defaults to None.
sort (bool, optional): Whether to sort the files. Defaults to True.
Returns:
list: List of files.
"""
if isinstance(path, str):
path = Path(path)
if not path.exists():
raise FileNotFoundError(f"Directory {path} does not exist.")
files = [f for f in path.glob("*") if f.is_file()]
if extensions is not None:
files = [f for f in files if f.suffix in extensions]
if sort:
files = sorted(files)
return files
def make_dirs(path: Union[Path, str]):
"""Make directories.
Args:
path (Union[Path, str]): Path to the directory.
"""
if isinstance(path, str):
path = Path(path)
if path.exists():
print(f"Output directory already exists: {path}")
path.mkdir(parents=True, exist_ok=True)
def slice_audio_v2_(
input_path: str,
output_dir: str,
num_workers: int,
min_duration: float,
max_duration: float,
min_silence_duration: float,
top_db: int,
hop_length: int,
max_silence_kept: float,
merge_short:bool
):
"""(OpenVPI version) Slice audio files into smaller chunks by silence."""
input_path_, output_dir_ = Path(input_path), Path(output_dir)
if not input_path_.exists():
raise RuntimeError("You input a wrong audio path that does not exists, please fix it!")
make_dirs(output_dir_)
if input_path_.is_dir():
files = list_files(input_path_, extensions=AUDIO_EXTENSIONS)
elif input_path_.is_file() and input_path_.suffix in AUDIO_EXTENSIONS:
files = [input_path_]
input_path_ = input_path_.parent
else:
return "输入路径存在但既不是文件也不是文件夹"
slicer = Slicer(
sr=32000, # 长音频采样率
threshold= int(threshold), # 音量小于这个值视作静音的备选切割点
min_length= int(min_length), # 每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值
min_interval= int(min_interval), # 最短切割间隔
hop_size= int(hop_size), # 怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)
max_sil_kept= int(max_sil_kept), # 切完后静音最多留多长
)
_max=float(_max)
alpha=float(alpha)
for inp_path in input[int(i_part)::int(all_part)]:
# print(inp_path)
try:
name = os.path.basename(inp_path)
audio = load_audio(inp_path, 32000)
# print(audio.shape)
for chunk, start, end in slicer.slice(audio): # start和end是帧数
tmp_max = np.abs(chunk).max()
if(tmp_max>1):chunk/=tmp_max
chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk
wavfile.write(
"%s/%s_%010d_%010d.wav" % (opt_root, name, start, end),
32000,
# chunk.astype(np.float32),
(chunk * 32767).astype(np.int16),
raise RuntimeError("The input path is not file or dir, please fixes it")
print(f"Found {len(files)} files, processing...")
with ProcessPoolExecutor(max_workers=num_workers) as executor:
tasks = []
for file in tqdm(files, desc="Preparing tasks"):
# Get relative path to input_dir
relative_path = file.relative_to(input_path_)
save_path = output_dir_ / relative_path.parent / relative_path.stem
tasks.append(
executor.submit(
slice_audio_file_v2,
input_file=str(file),
output_dir=save_path,
min_duration=min_duration,
max_duration=max_duration,
min_silence_duration=min_silence_duration,
top_db=top_db,
hop_length=hop_length,
max_silence_kept=max_silence_kept,
merge_short=merge_short
)
except:
print(inp_path,"->fail->",traceback.format_exc())
return "执行完毕,请检查输出文件"
)
print(slice(*sys.argv[1:]))
for i in tqdm(as_completed(tasks), total=len(tasks), desc="Processing"):
assert i.exception() is None, i.exception()
print("Done!")
print(f"Total: {len(files)}")
print(f"Output directory: {output_dir}")
def slice_audio_file_v2(
input_file: Union[str, Path],
output_dir: Union[str, Path],
min_duration: float = 4.0,
max_duration: float = 12.0,
min_silence_duration: float = 0.3,
top_db: int = -40,
hop_length: int = 10,
max_silence_kept: float = 0.4,
merge_short: bool = False
) -> None:
"""
Slice audio by silence and save to output folder
Args:
input_file: input audio file
output_dir: output folder
min_duration: minimum duration of each slice
max_duration: maximum duration of each slice
min_silence_duration: minimum duration of silence
top_db: threshold to detect silence
hop_length: hop length to detect silence
max_silence_kept: maximum duration of silence to be kept
"""
output_dir = Path(output_dir)
audio = load_audio(str(input_file),32000)
rate = 32000
for idx, sliced in enumerate(
slice_audio_v2(
audio,
rate,
min_duration=min_duration,
max_duration=max_duration,
min_silence_duration=min_silence_duration,
top_db=top_db,
hop_length=hop_length,
max_silence_kept=max_silence_kept,
merge_short=merge_short
)
):
if len(sliced) <= 3*rate: continue
max_audio=np.abs(sliced).max()#防止爆音,懒得搞混合了,后面有响度匹配
if max_audio>1:
sliced/=max_audio
sf.write(str(output_dir) + f"_{idx:04d}.wav", sliced, rate)
def slice_audio_v2(
audio: np.ndarray,
rate: int,
min_duration: float = 4.0,
max_duration: float = 12.0,
min_silence_duration: float = 0.3,
top_db: int = -40,
hop_length: int = 10,
max_silence_kept: float = 0.5,
merge_short: bool = False
) -> Iterable[np.ndarray]:
"""Slice audio by silence
Args:
audio: audio data, in shape (samples, channels)
rate: sample rate
min_duration: minimum duration of each slice
max_duration: maximum duration of each slice
min_silence_duration: minimum duration of silence
top_db: threshold to detect silence
hop_length: hop length to detect silence
max_silence_kept: maximum duration of silence to be kept
merge_short: merge short slices automatically
Returns:
Iterable of sliced audio
"""
if len(audio) / rate < min_duration:
sliced_by_max_duration_chunk = slice_by_max_duration(audio, max_duration, rate)
yield from merge_short_chunks(
sliced_by_max_duration_chunk, max_duration, rate
) if merge_short else sliced_by_max_duration_chunk
return
slicer = Slicer(
sr=rate,
threshold=top_db,
min_length=min_duration * 1000,
min_interval=min_silence_duration * 1000,
hop_size=hop_length,
max_sil_kept=max_silence_kept * 1000,
)
sliced_audio = slicer.slice(audio)
if merge_short:
sliced_audio = merge_short_chunks(sliced_audio, max_duration, rate)
for chunk in sliced_audio:
sliced_by_max_duration_chunk = slice_by_max_duration(chunk, max_duration, rate)
yield from sliced_by_max_duration_chunk
def slice_by_max_duration(
gen: np.ndarray, slice_max_duration: float, rate: int
) -> Iterable[np.ndarray]:
"""Slice audio by max duration
Args:
gen: audio data, in shape (samples, channels)
slice_max_duration: maximum duration of each slice
rate: sample rate
Returns:
generator of sliced audio data
"""
if len(gen) > slice_max_duration * rate:
# Evenly split _gen into multiple slices
n_chunks = math.ceil(len(gen) / (slice_max_duration * rate))
chunk_size = math.ceil(len(gen) / n_chunks)
for i in range(0, len(gen), chunk_size):
yield gen[i : i + chunk_size]
else:
yield gen
class Slicer:
def __init__(
self,
sr: int,
threshold: float = -40.0,
min_length: int = 4000,
min_interval: int = 300,
hop_size: int = 10,
max_sil_kept: int = 5000,
):
if not min_length >= min_interval >= hop_size:
raise ValueError(
"The following condition must be satisfied: min_length >= min_interval >= hop_size"
)
if not max_sil_kept >= hop_size:
raise ValueError(
"The following condition must be satisfied: max_sil_kept >= hop_size"
)
min_interval = sr * min_interval / 1000
self.threshold = 10 ** (threshold / 20.0)
self.hop_size = round(sr * hop_size / 1000)
self.win_size = min(round(min_interval), 4 * self.hop_size)
self.min_length = round(sr * min_length / 1000 / self.hop_size)
self.min_interval = round(min_interval / self.hop_size)
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
def _apply_slice(self, waveform, begin, end):
if len(waveform.shape) > 1:
return waveform[
:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)
]
else:
return waveform[
begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)
]
def slice(self, waveform):
if len(waveform.shape) > 1:
samples = waveform.mean(axis=0)
else:
samples = waveform
if samples.shape[0] <= self.min_length:
return [waveform]
rms_list = librosa.feature.rms(
y=samples, frame_length=self.win_size, hop_length=self.hop_size
).squeeze(0)
sil_tags = []
silence_start = None
clip_start = 0
for i, rms in enumerate(rms_list):
# Keep looping while frame is silent.
if rms < self.threshold:
# Record start of silent frames.
if silence_start is None:
silence_start = i
continue
# Keep looping while frame is not silent and silence start has not been recorded.
if silence_start is None:
continue
# Clear recorded silence start if interval is not enough or clip is too short
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
need_slice_middle = (
i - silence_start >= self.min_interval
and i - clip_start >= self.min_length
)
if not is_leading_silence and not need_slice_middle:
silence_start = None
continue
# Need slicing. Record the range of silent frames to be removed.
if i - silence_start <= self.max_sil_kept:
pos = rms_list[silence_start : i + 1].argmin() + silence_start
if silence_start == 0:
sil_tags.append((0, pos))
else:
sil_tags.append((pos, pos))
clip_start = pos
elif i - silence_start <= self.max_sil_kept * 2:
pos = rms_list[
i - self.max_sil_kept : silence_start + self.max_sil_kept + 1
].argmin()
pos += i - self.max_sil_kept
pos_l = (
rms_list[
silence_start : silence_start + self.max_sil_kept + 1
].argmin()
+ silence_start
)
pos_r = (
rms_list[i - self.max_sil_kept : i + 1].argmin()
+ i
- self.max_sil_kept
)
if silence_start == 0:
sil_tags.append((0, pos_r))
clip_start = pos_r
else:
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
clip_start = max(pos_r, pos)
else:
pos_l = (
rms_list[
silence_start : silence_start + self.max_sil_kept + 1
].argmin()
+ silence_start
)
pos_r = (
rms_list[i - self.max_sil_kept : i + 1].argmin()
+ i
- self.max_sil_kept
)
if silence_start == 0:
sil_tags.append((0, pos_r))
else:
sil_tags.append((pos_l, pos_r))
clip_start = pos_r
silence_start = None
# Deal with trailing silence.
total_frames = rms_list.shape[0]
if (
silence_start is not None
and total_frames - silence_start >= self.min_interval
):
silence_end = min(total_frames, silence_start + self.max_sil_kept)
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
sil_tags.append((pos, total_frames + 1))
# Apply and return slices.
if len(sil_tags) == 0:
return [waveform]
else:
chunks = []
if sil_tags[0][0] > 0:
chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
for i in range(len(sil_tags) - 1):
chunks.append(
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0])
)
if sil_tags[-1][1] < total_frames:
chunks.append(
self._apply_slice(waveform, sil_tags[-1][1], total_frames)
)
return chunks
def merge_short_chunks(chunks, max_duration, rate):
merged_chunks = []
buffer, length = [], 0
for chunk in chunks:
if length + len(chunk) > max_duration * rate and len(buffer) > 0:
merged_chunks.append(np.concatenate(buffer))
buffer, length = [], 0
else:
buffer.append(chunk)
length += len(chunk)
if len(buffer) > 0:
merged_chunks.append(np.concatenate(buffer))
return merged_chunks
parser = argparse.ArgumentParser()
parser.add_argument("-i","--input_dir",help="切割输入文件夹")
parser.add_argument("-o","--output_dir",help="切割输入文件夹")
parser.add_argument("--threshold",default=-40,help="音量小于这个值视作静音的备选切割点")
parser.add_argument("--min_duration",default=4,help="每段最短多长,如果第一段太短一直和后面段连起来直到超过这个值")
parser.add_argument("--max_duration",default=12,help="每段最长多长")
parser.add_argument("--min_interval",default=0.3,help="最短切割间隔")
parser.add_argument("--hop_size",default=10,help="怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)")
parser.add_argument("--max_sil_kept",default=0.4,help="切完后静音最多留多长")
parser.add_argument("--num_worker",default=os.cpu_count(),help="切使用的进程数")
parser.add_argument("--merge_short",default="False",help="响割使用的进程数")
args = parser.parse_args()
input_path = args.input_dir
output_dir = args.output_dir
threshold = float(args.threshold)
min_duration = float(args.min_duration)
max_duration = float(args.max_duration)
min_interval = float(args.min_interval)
hop_size = float(args.hop_size)
max_sil_kept = float(args.max_sil_kept)
num_worker = int(args.num_worker)
merge_short = bool(args.merge_short)
if __name__ == "__main__":
slice_audio_v2_(input_path, output_dir, num_worker, min_duration, max_duration, min_interval, threshold, hop_size, max_sil_kept,merge_short)

View File

@ -1,261 +0,0 @@
import numpy as np
# This function is obtained from librosa.
def get_rms(
y,
frame_length=2048,
hop_length=512,
pad_mode="constant",
):
padding = (int(frame_length // 2), int(frame_length // 2))
y = np.pad(y, padding, mode=pad_mode)
axis = -1
# put our new within-frame axis at the end for now
out_strides = y.strides + tuple([y.strides[axis]])
# Reduce the shape on the framing axis
x_shape_trimmed = list(y.shape)
x_shape_trimmed[axis] -= frame_length - 1
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
if axis < 0:
target_axis = axis - 1
else:
target_axis = axis + 1
xw = np.moveaxis(xw, -1, target_axis)
# Downsample along the target axis
slices = [slice(None)] * xw.ndim
slices[axis] = slice(0, None, hop_length)
x = xw[tuple(slices)]
# Calculate power
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
return np.sqrt(power)
class Slicer:
def __init__(
self,
sr: int,
threshold: float = -40.0,
min_length: int = 5000,
min_interval: int = 300,
hop_size: int = 20,
max_sil_kept: int = 5000,
):
if not min_length >= min_interval >= hop_size:
raise ValueError(
"The following condition must be satisfied: min_length >= min_interval >= hop_size"
)
if not max_sil_kept >= hop_size:
raise ValueError(
"The following condition must be satisfied: max_sil_kept >= hop_size"
)
min_interval = sr * min_interval / 1000
self.threshold = 10 ** (threshold / 20.0)
self.hop_size = round(sr * hop_size / 1000)
self.win_size = min(round(min_interval), 4 * self.hop_size)
self.min_length = round(sr * min_length / 1000 / self.hop_size)
self.min_interval = round(min_interval / self.hop_size)
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
def _apply_slice(self, waveform, begin, end):
if len(waveform.shape) > 1:
return waveform[
:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)
]
else:
return waveform[
begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)
]
# @timeit
def slice(self, waveform):
if len(waveform.shape) > 1:
samples = waveform.mean(axis=0)
else:
samples = waveform
if samples.shape[0] <= self.min_length:
return [waveform]
rms_list = get_rms(
y=samples, frame_length=self.win_size, hop_length=self.hop_size
).squeeze(0)
sil_tags = []
silence_start = None
clip_start = 0
for i, rms in enumerate(rms_list):
# Keep looping while frame is silent.
if rms < self.threshold:
# Record start of silent frames.
if silence_start is None:
silence_start = i
continue
# Keep looping while frame is not silent and silence start has not been recorded.
if silence_start is None:
continue
# Clear recorded silence start if interval is not enough or clip is too short
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
need_slice_middle = (
i - silence_start >= self.min_interval
and i - clip_start >= self.min_length
)
if not is_leading_silence and not need_slice_middle:
silence_start = None
continue
# Need slicing. Record the range of silent frames to be removed.
if i - silence_start <= self.max_sil_kept:
pos = rms_list[silence_start : i + 1].argmin() + silence_start
if silence_start == 0:
sil_tags.append((0, pos))
else:
sil_tags.append((pos, pos))
clip_start = pos
elif i - silence_start <= self.max_sil_kept * 2:
pos = rms_list[
i - self.max_sil_kept : silence_start + self.max_sil_kept + 1
].argmin()
pos += i - self.max_sil_kept
pos_l = (
rms_list[
silence_start : silence_start + self.max_sil_kept + 1
].argmin()
+ silence_start
)
pos_r = (
rms_list[i - self.max_sil_kept : i + 1].argmin()
+ i
- self.max_sil_kept
)
if silence_start == 0:
sil_tags.append((0, pos_r))
clip_start = pos_r
else:
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
clip_start = max(pos_r, pos)
else:
pos_l = (
rms_list[
silence_start : silence_start + self.max_sil_kept + 1
].argmin()
+ silence_start
)
pos_r = (
rms_list[i - self.max_sil_kept : i + 1].argmin()
+ i
- self.max_sil_kept
)
if silence_start == 0:
sil_tags.append((0, pos_r))
else:
sil_tags.append((pos_l, pos_r))
clip_start = pos_r
silence_start = None
# Deal with trailing silence.
total_frames = rms_list.shape[0]
if (
silence_start is not None
and total_frames - silence_start >= self.min_interval
):
silence_end = min(total_frames, silence_start + self.max_sil_kept)
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
sil_tags.append((pos, total_frames + 1))
# Apply and return slices.
####音频+起始时间+终止时间
if len(sil_tags) == 0:
return [[waveform,0,int(total_frames*self.hop_size)]]
else:
chunks = []
if sil_tags[0][0] > 0:
chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]),0,int(sil_tags[0][0]*self.hop_size)])
for i in range(len(sil_tags) - 1):
chunks.append(
[self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]),int(sil_tags[i][1]*self.hop_size),int(sil_tags[i + 1][0]*self.hop_size)]
)
if sil_tags[-1][1] < total_frames:
chunks.append(
[self._apply_slice(waveform, sil_tags[-1][1], total_frames),int(sil_tags[-1][1]*self.hop_size),int(total_frames*self.hop_size)]
)
return chunks
def main():
import os.path
from argparse import ArgumentParser
import librosa
import soundfile
parser = ArgumentParser()
parser.add_argument("audio", type=str, help="The audio to be sliced")
parser.add_argument(
"--out", type=str, help="Output directory of the sliced audio clips"
)
parser.add_argument(
"--db_thresh",
type=float,
required=False,
default=-40,
help="The dB threshold for silence detection",
)
parser.add_argument(
"--min_length",
type=int,
required=False,
default=5000,
help="The minimum milliseconds required for each sliced audio clip",
)
parser.add_argument(
"--min_interval",
type=int,
required=False,
default=300,
help="The minimum milliseconds for a silence part to be sliced",
)
parser.add_argument(
"--hop_size",
type=int,
required=False,
default=10,
help="Frame length in milliseconds",
)
parser.add_argument(
"--max_sil_kept",
type=int,
required=False,
default=500,
help="The maximum silence length kept around the sliced clip, presented in milliseconds",
)
args = parser.parse_args()
out = args.out
if out is None:
out = os.path.dirname(os.path.abspath(args.audio))
audio, sr = librosa.load(args.audio, sr=None, mono=False)
slicer = Slicer(
sr=sr,
threshold=args.db_thresh,
min_length=args.min_length,
min_interval=args.min_interval,
hop_size=args.hop_size,
max_sil_kept=args.max_sil_kept,
)
chunks = slicer.slice(audio)
if not os.path.exists(out):
os.makedirs(out)
for i, chunk in enumerate(chunks):
if len(chunk.shape) > 1:
chunk = chunk.T
soundfile.write(
os.path.join(
out,
f"%s_%d.wav"
% (os.path.basename(args.audio).rsplit(".", maxsplit=1)[0], i),
),
chunk,
sr,
)
if __name__ == "__main__":
main()

110
webui.py
View File

@ -119,6 +119,7 @@ p_label=None
p_uvr5=None
p_asr=None
p_denoise=None
p_loudness_norm=None
p_tts_inference=None
def kill_proc_tree(pid, including_parent=True):
@ -246,6 +247,31 @@ def close_denoise():
p_denoise=None
return "已终止语音降噪进程",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
def open_loudness_norm(loudness_norm_inp_dir,loudness,peak,num_worker):
global p_loudness_norm
if(p_loudness_norm == None):
loudness_norm_inp_dir=my_utils.clean_path(loudness_norm_inp_dir)
cmd = '"%s" tools/loudness_norm.py -i "%s" -l "%s" -p "%s" -n "%s"'%(python_exec,loudness_norm_inp_dir,loudness,peak,num_worker)
yield "响度匹配任务开启:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
print(cmd)
p_loudness_morm = Popen(cmd, shell=True)
p_loudness_morm.wait()
p_loudness_morm=None
yield f"响度匹配任务完成, 查看终端进行下一步",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
else:
yield "已有正在进行的响度匹配任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
def close_loudness_norm():
global p_loudness_norm
if(p_loudness_norm!=None):
try:
kill_process(p_loudness_norm.pid)
except:
traceback.print_exc()
return "已终止响度匹配进程",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
p_train_SoVITS=None
def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D):
global p_train_SoVITS
@ -337,42 +363,56 @@ def close1Bb():
p_train_GPT=None
return "已终止GPT训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
ps_slice=[]
def open_slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_parts):
global ps_slice
inp = my_utils.clean_path(inp)
opt_root = my_utils.clean_path(opt_root)
if(os.path.exists(inp)==False):
p_slice=None
def open_slice(input_path, output_dir, num_worker, min_duration, max_duration, min_interval, threshold, hop_size, max_sil_kept, merge_short, loudness_norm,loudness, peak):
global p_slice
input_path = my_utils.clean_path(input_path)
output_dir = my_utils.clean_path(output_dir)
if(os.path.exists(input_path)==False):
yield "输入路径不存在",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
return
if os.path.isfile(inp):n_parts=1
elif os.path.isdir(inp):pass
if os.path.isfile(input_path):num_worker=1
elif os.path.isdir(input_path):pass
else:
yield "输入路径存在但既不是文件也不是文件夹",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
return
if (ps_slice == []):
for i_part in range(n_parts):
cmd = '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s''' % (python_exec,inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, i_part, n_parts)
print(cmd)
p = Popen(cmd, shell=True)
ps_slice.append(p)
if (p_slice == None):
cmd = f'"{python_exec}" tools/slice_audio.py -i "{input_path}" -o "{output_dir}" --threshold {threshold} --min_duration {min_duration} --max_duration {max_duration} --min_interval {min_interval} --hop_size {hop_size} --max_sil_kept {max_sil_kept} --num_worker {num_worker} --merge_short {merge_short}'''
print(cmd)
p_slice = Popen(cmd, shell=True)
yield "切割执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
for p in ps_slice:
p.wait()
ps_slice=[]
p_slice.wait()
p_slice=None
if loudness_norm:
loudness_norm_inp_dir = output_dir
global p_loudness_norm
if(p_loudness_norm == None):
loudness_norm_inp_dir=my_utils.clean_path(loudness_norm_inp_dir)
cmd = '"%s" tools/loudness_norm.py -i "%s" -l "%s" -p "%s" -n "%s"'%(python_exec,loudness_norm_inp_dir,loudness,peak,num_worker)
print("响度匹配任务开启")
print(cmd)
p_loudness_morm = Popen(cmd, shell=True)
p_loudness_morm.wait()
p_loudness_morm=None
print("响度匹配任务完成, 查看终端进行下一步")
yield "切割结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
else:
yield "已有正在进行的切割任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
def close_slice():
global ps_slice
if (ps_slice != []):
for p_slice in ps_slice:
try:
kill_process(p_slice.pid)
except:
traceback.print_exc()
ps_slice=[]
global p_slice
if (p_slice != None):
try:
kill_process(p_slice.pid)
except:
traceback.print_exc()
p_slice=None
if (p_loudness_norm != None):
global p_denoise
if(p_denoise!=None):
kill_process(p_denoise.pid)
p_denoise=None
return "已终止所有切割进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
ps1a=[]
@ -692,16 +732,19 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
slice_inp_path=gr.Textbox(label=i18n("音频自动切分输入路径,可文件可文件夹"),value="")
slice_opt_root=gr.Textbox(label=i18n("切分后的子音频的输出根目录"),value="output/slicer_opt")
threshold=gr.Textbox(label=i18n("threshold:音量小于这个值视作静音的备选切割点"),value="-34")
min_length=gr.Textbox(label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"),value="4000")
min_interval=gr.Textbox(label=i18n("min_interval:最短切割间隔"),value="300")
min_duration=gr.Textbox(label=i18n("min_duration:每段最短多长,如果第一段太短一直和后面段连起来直到超过这个值"),value="4.0")
max_duration=gr.Textbox(label=i18n("max_duration:每段最长多长"),value="10.0")
min_interval=gr.Textbox(label=i18n("min_interval:最短切割间隔"),value="0.3")
max_sil_kept=gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"),value="0.5")
hop_size=gr.Textbox(label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"),value="10")
max_sil_kept=gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"),value="500")
if_merge_short = gr.Checkbox(label=i18n("对于过短音频的处理方法,勾选则合并,不勾选则抛弃"),show_label=True)
with gr.Row():
loudness=gr.Textbox(label=i18n("目标响度"),value="-23")
peak=gr.Textbox(label=i18n("峰值响度"),value="-1")
if_loudness_norm = gr.Checkbox(label=i18n("是否匹配响度"),show_label=True,value=True)
num_worker=gr.Slider(minimum=1,maximum=n_cpu,step=1,label=i18n("切割使用的进程数"),value=4,interactive=True)
open_slicer_button=gr.Button(i18n("开启语音切割"), variant="primary",visible=True)
close_slicer_button=gr.Button(i18n("终止语音切割"), variant="primary",visible=False)
_max=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("max:归一化后最大值多少"),value=0.9,interactive=True)
alpha=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("alpha_mix:混多少比例归一化后音频进来"),value=0.25,interactive=True)
n_process=gr.Slider(minimum=1,maximum=n_cpu,step=1,label=i18n("切割使用的进程数"),value=4,interactive=True)
slicer_info = gr.Textbox(label=i18n("语音切割进程输出信息"))
gr.Markdown(value=i18n("0bb-语音降噪工具"))
with gr.Row():
@ -770,8 +813,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
if_uvr5.change(change_uvr5, [if_uvr5], [uvr5_info])
open_asr_button.click(open_asr, [asr_inp_dir, asr_opt_dir, asr_model, asr_size, asr_lang], [asr_info,open_asr_button,close_asr_button])
close_asr_button.click(close_asr, [], [asr_info,open_asr_button,close_asr_button])
open_slicer_button.click(open_slice, [slice_inp_path,slice_opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_process], [slicer_info,open_slicer_button,close_slicer_button])
close_slicer_button.click(close_slice, [], [slicer_info,open_slicer_button,close_slicer_button])
open_slicer_button.click(open_slice, [slice_inp_path, slice_opt_root, num_worker, min_duration, max_duration, min_interval, threshold, hop_size, max_sil_kept,if_merge_short, if_loudness_norm, loudness, peak], [slicer_info,open_slicer_button,close_slicer_button])
open_denoise_button.click(open_denoise, [denoise_input_dir,denoise_output_dir], [denoise_info,open_denoise_button,close_denoise_button])
close_denoise_button.click(close_denoise, [], [denoise_info,open_denoise_button,close_denoise_button])
@ -785,7 +827,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
with gr.TabItem(i18n("1A-训练集格式化工具")):
gr.Markdown(value=i18n("输出logs/实验名目录下应有23456开头的文件和文件夹"))
with gr.Row():
inp_text = gr.Textbox(label=i18n("*文本标注文件"),value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list",interactive=True)
inp_text = gr.Textbox(label=i18n("*文本标注文件"),value=r"output/asr_opt/slicer_opt.list",interactive=True)
inp_wav_dir = gr.Textbox(
label=i18n("*训练集音频文件目录"),
# value=r"D:\RVC1006\GPT-SoVITS\raw\xxx",