完善api.py对于v4模型的兼容

完善api.py对于v4模型的兼容。
This commit is contained in:
Karasukaigan 2025-05-09 20:14:28 +08:00
parent fa971a4e09
commit ffb520ee54

92
api.py
View File

@ -163,7 +163,7 @@ from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
from feature_extractor import cnhubert
from io import BytesIO
from module.models import SynthesizerTrn, SynthesizerTrnV3
from module.models import SynthesizerTrn, SynthesizerTrnV3, Generator
from peft import LoraConfig, get_peft_model
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from text import cleaned_text_to_sequence
@ -214,6 +214,38 @@ def init_bigvgan():
else:
bigvgan_model = bigvgan_model.to(device)
def init_vocoder(version: str):
global bigvgan_model
from BigVGAN import bigvgan
if version == "v3":
bigvgan_model = bigvgan.BigVGAN.from_pretrained(
"%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,),
use_cuda_kernel=False,
) # if True, RuntimeError: Ninja is required to load C++ extensions
# remove weight norm in the model and set to eval mode
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval()
elif version == "v4":
bigvgan_model = Generator(
initial_channel=100,
resblock="1",
resblock_kernel_sizes=[3, 7, 11],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
upsample_rates=[10, 6, 2, 2, 2],
upsample_initial_channel=512,
upsample_kernel_sizes=[20, 12, 4, 4, 4],
gin_channels=0, is_bias=True
)
bigvgan_model.remove_weight_norm()
state_dict_g = torch.load("%s/GPT_SoVITS/pretrained_models/gsv-v4-pretrained/vocoder.pth" % (now_dir,), map_location="cpu")
bigvgan_model.load_state_dict(state_dict_g)
if is_half == True:
bigvgan_model = bigvgan_model.half().to(device)
else:
bigvgan_model = bigvgan_model.to(device)
resample_transform_dict = {}
@ -253,6 +285,20 @@ mel_fn = lambda x: mel_spectrogram_torch(
},
)
mel_fn_v4 = lambda x: mel_spectrogram_torch(
x,
**{
"n_fft": 1280,
"win_size": 1280,
"hop_size": 320,
"num_mels": 100,
"sampling_rate": 32000,
"fmin": 0,
"fmax": None,
"center": False,
},
)
sr_model = None
@ -297,10 +343,8 @@ def get_sovits_weights(sovits_path):
path_sovits_v4 = "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth"
version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path)
if if_lora_v3 == True and not os.path.exists(path_sovits_v3):
logger.info("SoVITS V3 底模缺失,无法加载相应 LoRA 权重")
if model_version == "v4" and not os.path.exists(path_sovits_v4):
logger.info("SoVITS V4 底模缺失,无法加载相应 LoRA 权重")
if (if_lora_v3 == True and not os.path.exists(path_sovits_v3)) or (model_version == "v4" and not os.path.exists(path_sovits_v4)):
logger.info(f"SoVITS {model_version.upper()} 底模缺失,无法加载相应 LoRA 权重")
dict_s2 = load_sovits_new(sovits_path)
hps = dict_s2["config"]
@ -312,13 +356,9 @@ def get_sovits_weights(sovits_path):
hps.model.version = "v1"
else:
hps.model.version = "v2"
if model_version == "v3":
hps.model.version = "v3"
if model_version == "v4":
hps.model.version = "v4"
model_params_dict = vars(hps.model)
if model_version != "v3" and model_version != "v4":
if model_version not in {"v3", "v4"}:
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
@ -326,14 +366,16 @@ def get_sovits_weights(sovits_path):
**model_params_dict,
)
else:
model_params_dict["version"]=model_version
vq_model = SynthesizerTrnV3(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**model_params_dict,
)
init_bigvgan()
model_version = hps.model.version
# init_bigvgan()
init_vocoder(model_version)
logger.info(f"模型版本: {model_version}")
if "pretrained" not in sovits_path:
try:
@ -345,7 +387,7 @@ def get_sovits_weights(sovits_path):
else:
vq_model = vq_model.to(device)
vq_model.eval()
if if_lora_v3 == False or model_version != "v4":
if model_version not in {"v3", "v4"}:
vq_model.load_state_dict(dict_s2["weight"], strict=False)
else:
if model_version == "v4":
@ -763,7 +805,7 @@ def get_tts_wav(
prompt_semantic = codes[0, 0]
prompt = prompt_semantic.unsqueeze(0).to(device)
if version != "v3" and version != "v4":
if version not in {"v3", "v4"}:
refers = []
if inp_refs:
for path in inp_refs:
@ -814,8 +856,7 @@ def get_tts_wav(
)
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
t3 = ttime()
if version != "v3" and version != "v4":
if version not in {"v3", "v4"}:
audio = (
vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers, speed=speed)
.detach()
@ -834,16 +875,18 @@ def get_tts_wav(
if sr != 24000:
ref_audio = resample(ref_audio, sr)
# print("ref_audio",ref_audio.abs().mean())
mel2 = mel_fn(ref_audio)
mel2 = mel_fn_v4(ref_audio) if version == "v4" else mel_fn(ref_audio)
mel2 = norm_spec(mel2)
T_min = min(mel2.shape[2], fea_ref.shape[2])
mel2 = mel2[:, :, :T_min]
fea_ref = fea_ref[:, :, :T_min]
if T_min > 468:
mel2 = mel2[:, :, -468:]
fea_ref = fea_ref[:, :, -468:]
T_min = 468
chunk_len = 934 - T_min
T_ref = 500 if version == "v4" else 468
T_chunk = 1000 if version == "v4" else 934
if T_min > T_ref:
mel2 = mel2[:, :, -T_ref:]
fea_ref = fea_ref[:, :, -T_ref:]
T_min = T_ref
chunk_len = T_chunk - T_min
# print("fea_ref",fea_ref,fea_ref.shape)
# print("mel2",mel2)
mel2 = mel2.to(dtype)
@ -871,7 +914,8 @@ def get_tts_wav(
cmf_res = torch.cat(cfm_resss, 2)
cmf_res = denorm_spec(cmf_res)
if bigvgan_model == None:
init_bigvgan()
# init_bigvgan()
init_vocoder(version)
with torch.inference_mode():
wav_gen = bigvgan_model(cmf_res)
audio = wav_gen[0][0].cpu().detach().numpy()
@ -905,7 +949,7 @@ def get_tts_wav(
if not stream_mode == "normal":
if media_type == "wav":
sr = 48000 if if_sr else 24000
sr = hps.data.sampling_rate if version != "v3" and version != "v4" else sr
sr = hps.data.sampling_rate if version != "v3" else sr
audio_bytes = pack_wav(audio_bytes, sr)
yield audio_bytes.getvalue()