mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 12:38:35 +08:00
API for V3 (#2154)
This commit is contained in:
parent
6dd2f72090
commit
fe2f04bdb8
@ -1162,6 +1162,7 @@ class SynthesizerTrnV3(nn.Module):
|
|||||||
use_sdp=True,
|
use_sdp=True,
|
||||||
semantic_frame_rate=None,
|
semantic_frame_rate=None,
|
||||||
freeze_quantizer=None,
|
freeze_quantizer=None,
|
||||||
|
version="v3",
|
||||||
**kwargs):
|
**kwargs):
|
||||||
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -1182,6 +1183,7 @@ class SynthesizerTrnV3(nn.Module):
|
|||||||
self.segment_size = segment_size
|
self.segment_size = segment_size
|
||||||
self.n_speakers = n_speakers
|
self.n_speakers = n_speakers
|
||||||
self.gin_channels = gin_channels
|
self.gin_channels = gin_channels
|
||||||
|
self.version = version
|
||||||
|
|
||||||
self.model_dim=512
|
self.model_dim=512
|
||||||
self.use_sdp = use_sdp
|
self.use_sdp = use_sdp
|
||||||
|
@ -17,6 +17,8 @@ pinyin_to_symbol_map = {
|
|||||||
for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines()
|
for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
import jieba_fast, logging
|
||||||
|
jieba_fast.setLogLevel(logging.CRITICAL)
|
||||||
import jieba_fast.posseg as psg
|
import jieba_fast.posseg as psg
|
||||||
|
|
||||||
|
|
||||||
|
@ -18,13 +18,15 @@ pinyin_to_symbol_map = {
|
|||||||
for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines()
|
for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
import jieba_fast, logging
|
||||||
|
jieba_fast.setLogLevel(logging.CRITICAL)
|
||||||
import jieba_fast.posseg as psg
|
import jieba_fast.posseg as psg
|
||||||
|
|
||||||
# is_g2pw_str = os.environ.get("is_g2pw", "True")##默认开启
|
# is_g2pw_str = os.environ.get("is_g2pw", "True")##默认开启
|
||||||
# is_g2pw = False#True if is_g2pw_str.lower() == 'true' else False
|
# is_g2pw = False#True if is_g2pw_str.lower() == 'true' else False
|
||||||
is_g2pw = True#True if is_g2pw_str.lower() == 'true' else False
|
is_g2pw = True#True if is_g2pw_str.lower() == 'true' else False
|
||||||
if is_g2pw:
|
if is_g2pw:
|
||||||
print("当前使用g2pw进行拼音推理")
|
# print("当前使用g2pw进行拼音推理")
|
||||||
from text.g2pw import G2PWPinyin, correct_pronunciation
|
from text.g2pw import G2PWPinyin, correct_pronunciation
|
||||||
parent_directory = os.path.dirname(current_file_path)
|
parent_directory = os.path.dirname(current_file_path)
|
||||||
g2pw = G2PWPinyin(model_dir="GPT_SoVITS/text/G2PWModel",model_source=os.environ.get("bert_path","GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"),v_to_u=False, neutral_tone_with_five=True)
|
g2pw = G2PWPinyin(model_dir="GPT_SoVITS/text/G2PWModel",model_source=os.environ.get("bert_path","GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"),v_to_u=False, neutral_tone_with_five=True)
|
||||||
|
227
api.py
227
api.py
@ -150,9 +150,9 @@ sys.path.append(now_dir)
|
|||||||
sys.path.append("%s/GPT_SoVITS" % (now_dir))
|
sys.path.append("%s/GPT_SoVITS" % (now_dir))
|
||||||
|
|
||||||
import signal
|
import signal
|
||||||
import LangSegment
|
from text.LangSegmenter import LangSegmenter
|
||||||
from time import time as ttime
|
from time import time as ttime
|
||||||
import torch
|
import torch, torchaudio
|
||||||
import librosa
|
import librosa
|
||||||
import soundfile as sf
|
import soundfile as sf
|
||||||
from fastapi import FastAPI, Request, Query, HTTPException
|
from fastapi import FastAPI, Request, Query, HTTPException
|
||||||
@ -162,7 +162,8 @@ from transformers import AutoModelForMaskedLM, AutoTokenizer
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from feature_extractor import cnhubert
|
from feature_extractor import cnhubert
|
||||||
from io import BytesIO
|
from io import BytesIO
|
||||||
from module.models import SynthesizerTrn
|
from module.models import SynthesizerTrn, SynthesizerTrnV3
|
||||||
|
from peft import LoraConfig, PeftModel, get_peft_model
|
||||||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||||
from text import cleaned_text_to_sequence
|
from text import cleaned_text_to_sequence
|
||||||
from text.cleaner import clean_text
|
from text.cleaner import clean_text
|
||||||
@ -197,6 +198,61 @@ def is_full(*items): # 任意一项为空返回False
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def init_bigvgan():
|
||||||
|
global bigvgan_model
|
||||||
|
from BigVGAN import bigvgan
|
||||||
|
bigvgan_model = bigvgan.BigVGAN.from_pretrained("%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,), use_cuda_kernel=False) # if True, RuntimeError: Ninja is required to load C++ extensions
|
||||||
|
# remove weight norm in the model and set to eval mode
|
||||||
|
bigvgan_model.remove_weight_norm()
|
||||||
|
bigvgan_model = bigvgan_model.eval()
|
||||||
|
if is_half == True:
|
||||||
|
bigvgan_model = bigvgan_model.half().to(device)
|
||||||
|
else:
|
||||||
|
bigvgan_model = bigvgan_model.to(device)
|
||||||
|
|
||||||
|
|
||||||
|
resample_transform_dict={}
|
||||||
|
def resample(audio_tensor, sr0):
|
||||||
|
global resample_transform_dict
|
||||||
|
if sr0 not in resample_transform_dict:
|
||||||
|
resample_transform_dict[sr0] = torchaudio.transforms.Resample(
|
||||||
|
sr0, 24000
|
||||||
|
).to(device)
|
||||||
|
return resample_transform_dict[sr0](audio_tensor)
|
||||||
|
|
||||||
|
|
||||||
|
from module.mel_processing import spectrogram_torch,mel_spectrogram_torch
|
||||||
|
spec_min = -12
|
||||||
|
spec_max = 2
|
||||||
|
def norm_spec(x):
|
||||||
|
return (x - spec_min) / (spec_max - spec_min) * 2 - 1
|
||||||
|
def denorm_spec(x):
|
||||||
|
return (x + 1) / 2 * (spec_max - spec_min) + spec_min
|
||||||
|
mel_fn=lambda x: mel_spectrogram_torch(x, **{
|
||||||
|
"n_fft": 1024,
|
||||||
|
"win_size": 1024,
|
||||||
|
"hop_size": 256,
|
||||||
|
"num_mels": 100,
|
||||||
|
"sampling_rate": 24000,
|
||||||
|
"fmin": 0,
|
||||||
|
"fmax": None,
|
||||||
|
"center": False
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
|
sr_model=None
|
||||||
|
def audio_sr(audio,sr):
|
||||||
|
global sr_model
|
||||||
|
if sr_model==None:
|
||||||
|
from tools.audio_sr import AP_BWE
|
||||||
|
try:
|
||||||
|
sr_model=AP_BWE(device,DictToAttrRecursive)
|
||||||
|
except FileNotFoundError:
|
||||||
|
logger.info("你没有下载超分模型的参数,因此不进行超分。如想超分请先参照教程把文件下载")
|
||||||
|
return audio.cpu().detach().numpy(),sr
|
||||||
|
return sr_model(audio,sr)
|
||||||
|
|
||||||
|
|
||||||
class Speaker:
|
class Speaker:
|
||||||
def __init__(self, name, gpt, sovits, phones = None, bert = None, prompt = None):
|
def __init__(self, name, gpt, sovits, phones = None, bert = None, prompt = None):
|
||||||
self.name = name
|
self.name = name
|
||||||
@ -214,31 +270,72 @@ class Sovits:
|
|||||||
self.vq_model = vq_model
|
self.vq_model = vq_model
|
||||||
self.hps = hps
|
self.hps = hps
|
||||||
|
|
||||||
|
from process_ckpt import get_sovits_version_from_path_fast,load_sovits_new
|
||||||
def get_sovits_weights(sovits_path):
|
def get_sovits_weights(sovits_path):
|
||||||
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
path_sovits_v3="GPT_SoVITS/pretrained_models/s2Gv3.pth"
|
||||||
|
is_exist_s2gv3=os.path.exists(path_sovits_v3)
|
||||||
|
|
||||||
|
version, model_version, if_lora_v3=get_sovits_version_from_path_fast(sovits_path)
|
||||||
|
if if_lora_v3==True and is_exist_s2gv3==False:
|
||||||
|
logger.info("SoVITS V3 底模缺失,无法加载相应 LoRA 权重")
|
||||||
|
|
||||||
|
dict_s2 = load_sovits_new(sovits_path)
|
||||||
hps = dict_s2["config"]
|
hps = dict_s2["config"]
|
||||||
hps = DictToAttrRecursive(hps)
|
hps = DictToAttrRecursive(hps)
|
||||||
hps.model.semantic_frame_rate = "25hz"
|
hps.model.semantic_frame_rate = "25hz"
|
||||||
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
|
if 'enc_p.text_embedding.weight' not in dict_s2['weight']:
|
||||||
|
hps.model.version = "v2"#v3model,v2sybomls
|
||||||
|
elif dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
|
||||||
hps.model.version = "v1"
|
hps.model.version = "v1"
|
||||||
else:
|
else:
|
||||||
hps.model.version = "v2"
|
hps.model.version = "v2"
|
||||||
logger.info(f"模型版本: {hps.model.version}")
|
|
||||||
|
if model_version == "v3":
|
||||||
|
hps.model.version = "v3"
|
||||||
|
|
||||||
model_params_dict = vars(hps.model)
|
model_params_dict = vars(hps.model)
|
||||||
|
if model_version!="v3":
|
||||||
vq_model = SynthesizerTrn(
|
vq_model = SynthesizerTrn(
|
||||||
hps.data.filter_length // 2 + 1,
|
hps.data.filter_length // 2 + 1,
|
||||||
hps.train.segment_size // hps.data.hop_length,
|
hps.train.segment_size // hps.data.hop_length,
|
||||||
n_speakers=hps.data.n_speakers,
|
n_speakers=hps.data.n_speakers,
|
||||||
**model_params_dict
|
**model_params_dict
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
vq_model = SynthesizerTrnV3(
|
||||||
|
hps.data.filter_length // 2 + 1,
|
||||||
|
hps.train.segment_size // hps.data.hop_length,
|
||||||
|
n_speakers=hps.data.n_speakers,
|
||||||
|
**model_params_dict
|
||||||
|
)
|
||||||
|
init_bigvgan()
|
||||||
|
model_version=hps.model.version
|
||||||
|
logger.info(f"模型版本: {model_version}")
|
||||||
if ("pretrained" not in sovits_path):
|
if ("pretrained" not in sovits_path):
|
||||||
|
try:
|
||||||
del vq_model.enc_q
|
del vq_model.enc_q
|
||||||
|
except:pass
|
||||||
if is_half == True:
|
if is_half == True:
|
||||||
vq_model = vq_model.half().to(device)
|
vq_model = vq_model.half().to(device)
|
||||||
else:
|
else:
|
||||||
vq_model = vq_model.to(device)
|
vq_model = vq_model.to(device)
|
||||||
vq_model.eval()
|
vq_model.eval()
|
||||||
|
if if_lora_v3 == False:
|
||||||
vq_model.load_state_dict(dict_s2["weight"], strict=False)
|
vq_model.load_state_dict(dict_s2["weight"], strict=False)
|
||||||
|
else:
|
||||||
|
vq_model.load_state_dict(load_sovits_new(path_sovits_v3)["weight"], strict=False)
|
||||||
|
lora_rank=dict_s2["lora_rank"]
|
||||||
|
lora_config = LoraConfig(
|
||||||
|
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
||||||
|
r=lora_rank,
|
||||||
|
lora_alpha=lora_rank,
|
||||||
|
init_lora_weights=True,
|
||||||
|
)
|
||||||
|
vq_model.cfm = get_peft_model(vq_model.cfm, lora_config)
|
||||||
|
vq_model.load_state_dict(dict_s2["weight"], strict=False)
|
||||||
|
vq_model.cfm = vq_model.cfm.merge_and_unload()
|
||||||
|
# torch.save(vq_model.state_dict(),"merge_win.pth")
|
||||||
|
vq_model.eval()
|
||||||
|
|
||||||
sovits = Sovits(vq_model, hps)
|
sovits = Sovits(vq_model, hps)
|
||||||
return sovits
|
return sovits
|
||||||
@ -260,8 +357,8 @@ def get_gpt_weights(gpt_path):
|
|||||||
t2s_model = t2s_model.half()
|
t2s_model = t2s_model.half()
|
||||||
t2s_model = t2s_model.to(device)
|
t2s_model = t2s_model.to(device)
|
||||||
t2s_model.eval()
|
t2s_model.eval()
|
||||||
total = sum([param.nelement() for param in t2s_model.parameters()])
|
# total = sum([param.nelement() for param in t2s_model.parameters()])
|
||||||
logger.info("Number of parameter: %.2fM" % (total / 1e6))
|
# logger.info("Number of parameter: %.2fM" % (total / 1e6))
|
||||||
|
|
||||||
gpt = Gpt(max_sec, t2s_model)
|
gpt = Gpt(max_sec, t2s_model)
|
||||||
return gpt
|
return gpt
|
||||||
@ -295,6 +392,7 @@ def get_bert_feature(text, word2ph):
|
|||||||
|
|
||||||
|
|
||||||
def clean_text_inf(text, language, version):
|
def clean_text_inf(text, language, version):
|
||||||
|
language = language.replace("all_","")
|
||||||
phones, word2ph, norm_text = clean_text(text, language, version)
|
phones, word2ph, norm_text = clean_text(text, language, version)
|
||||||
phones = cleaned_text_to_sequence(phones, version)
|
phones = cleaned_text_to_sequence(phones, version)
|
||||||
return phones, word2ph, norm_text
|
return phones, word2ph, norm_text
|
||||||
@ -315,16 +413,10 @@ def get_bert_inf(phones, word2ph, norm_text, language):
|
|||||||
from text import chinese
|
from text import chinese
|
||||||
def get_phones_and_bert(text,language,version,final=False):
|
def get_phones_and_bert(text,language,version,final=False):
|
||||||
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
|
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
|
||||||
language = language.replace("all_","")
|
|
||||||
if language == "en":
|
|
||||||
LangSegment.setfilters(["en"])
|
|
||||||
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
|
|
||||||
else:
|
|
||||||
# 因无法区别中日韩文汉字,以用户输入为准
|
|
||||||
formattext = text
|
formattext = text
|
||||||
while " " in formattext:
|
while " " in formattext:
|
||||||
formattext = formattext.replace(" ", " ")
|
formattext = formattext.replace(" ", " ")
|
||||||
if language == "zh":
|
if language == "all_zh":
|
||||||
if re.search(r'[A-Za-z]', formattext):
|
if re.search(r'[A-Za-z]', formattext):
|
||||||
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
||||||
formattext = chinese.mix_text_normalize(formattext)
|
formattext = chinese.mix_text_normalize(formattext)
|
||||||
@ -332,7 +424,7 @@ def get_phones_and_bert(text,language,version,final=False):
|
|||||||
else:
|
else:
|
||||||
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
|
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
|
||||||
bert = get_bert_feature(norm_text, word2ph).to(device)
|
bert = get_bert_feature(norm_text, word2ph).to(device)
|
||||||
elif language == "yue" and re.search(r'[A-Za-z]', formattext):
|
elif language == "all_yue" and re.search(r'[A-Za-z]', formattext):
|
||||||
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
||||||
formattext = chinese.mix_text_normalize(formattext)
|
formattext = chinese.mix_text_normalize(formattext)
|
||||||
return get_phones_and_bert(formattext,"yue",version)
|
return get_phones_and_bert(formattext,"yue",version)
|
||||||
@ -345,19 +437,18 @@ def get_phones_and_bert(text,language,version,final=False):
|
|||||||
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
|
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
|
||||||
textlist=[]
|
textlist=[]
|
||||||
langlist=[]
|
langlist=[]
|
||||||
LangSegment.setfilters(["zh","ja","en","ko"])
|
|
||||||
if language == "auto":
|
if language == "auto":
|
||||||
for tmp in LangSegment.getTexts(text):
|
for tmp in LangSegmenter.getTexts(text):
|
||||||
langlist.append(tmp["lang"])
|
langlist.append(tmp["lang"])
|
||||||
textlist.append(tmp["text"])
|
textlist.append(tmp["text"])
|
||||||
elif language == "auto_yue":
|
elif language == "auto_yue":
|
||||||
for tmp in LangSegment.getTexts(text):
|
for tmp in LangSegmenter.getTexts(text):
|
||||||
if tmp["lang"] == "zh":
|
if tmp["lang"] == "zh":
|
||||||
tmp["lang"] = "yue"
|
tmp["lang"] = "yue"
|
||||||
langlist.append(tmp["lang"])
|
langlist.append(tmp["lang"])
|
||||||
textlist.append(tmp["text"])
|
textlist.append(tmp["text"])
|
||||||
else:
|
else:
|
||||||
for tmp in LangSegment.getTexts(text):
|
for tmp in LangSegmenter.getTexts(text):
|
||||||
if tmp["lang"] == "en":
|
if tmp["lang"] == "en":
|
||||||
langlist.append(tmp["lang"])
|
langlist.append(tmp["lang"])
|
||||||
else:
|
else:
|
||||||
@ -556,10 +647,11 @@ def only_punc(text):
|
|||||||
|
|
||||||
|
|
||||||
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
||||||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, top_k= 15, top_p = 0.6, temperature = 0.6, speed = 1, inp_refs = None, spk = "default"):
|
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, top_k= 15, top_p = 0.6, temperature = 0.6, speed = 1, inp_refs = None, sample_steps = 32, if_sr = False, spk = "default"):
|
||||||
infer_sovits = speaker_list[spk].sovits
|
infer_sovits = speaker_list[spk].sovits
|
||||||
vq_model = infer_sovits.vq_model
|
vq_model = infer_sovits.vq_model
|
||||||
hps = infer_sovits.hps
|
hps = infer_sovits.hps
|
||||||
|
version = vq_model.version
|
||||||
|
|
||||||
infer_gpt = speaker_list[spk].gpt
|
infer_gpt = speaker_list[spk].gpt
|
||||||
t2s_model = infer_gpt.t2s_model
|
t2s_model = infer_gpt.t2s_model
|
||||||
@ -587,6 +679,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
|||||||
prompt_semantic = codes[0, 0]
|
prompt_semantic = codes[0, 0]
|
||||||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||||||
|
|
||||||
|
if version != "v3":
|
||||||
refers=[]
|
refers=[]
|
||||||
if(inp_refs):
|
if(inp_refs):
|
||||||
for path in inp_refs:
|
for path in inp_refs:
|
||||||
@ -597,10 +690,11 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
|||||||
logger.error(e)
|
logger.error(e)
|
||||||
if(len(refers)==0):
|
if(len(refers)==0):
|
||||||
refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)]
|
refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)]
|
||||||
|
else:
|
||||||
|
refer = get_spepc(hps, ref_wav_path).to(device).to(dtype)
|
||||||
|
|
||||||
t1 = ttime()
|
t1 = ttime()
|
||||||
version = vq_model.version
|
# os.environ['version'] = version
|
||||||
os.environ['version'] = version
|
|
||||||
prompt_language = dict_language[prompt_language.lower()]
|
prompt_language = dict_language[prompt_language.lower()]
|
||||||
text_language = dict_language[text_language.lower()]
|
text_language = dict_language[text_language.lower()]
|
||||||
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, version)
|
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, version)
|
||||||
@ -634,20 +728,82 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
|||||||
early_stop_num=hz * max_sec)
|
early_stop_num=hz * max_sec)
|
||||||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
|
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
|
||||||
t3 = ttime()
|
t3 = ttime()
|
||||||
|
|
||||||
|
if version != "v3":
|
||||||
audio = \
|
audio = \
|
||||||
vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0),
|
vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0),
|
||||||
refers,speed=speed).detach().cpu().numpy()[
|
refers,speed=speed).detach().cpu().numpy()[
|
||||||
0, 0] ###试试重建不带上prompt部分
|
0, 0] ###试试重建不带上prompt部分
|
||||||
|
else:
|
||||||
|
phoneme_ids0=torch.LongTensor(phones1).to(device).unsqueeze(0)
|
||||||
|
phoneme_ids1=torch.LongTensor(phones2).to(device).unsqueeze(0)
|
||||||
|
# print(11111111, phoneme_ids0, phoneme_ids1)
|
||||||
|
fea_ref,ge = vq_model.decode_encp(prompt.unsqueeze(0), phoneme_ids0, refer)
|
||||||
|
ref_audio, sr = torchaudio.load(ref_wav_path)
|
||||||
|
ref_audio=ref_audio.to(device).float()
|
||||||
|
if (ref_audio.shape[0] == 2):
|
||||||
|
ref_audio = ref_audio.mean(0).unsqueeze(0)
|
||||||
|
if sr!=24000:
|
||||||
|
ref_audio=resample(ref_audio,sr)
|
||||||
|
# print("ref_audio",ref_audio.abs().mean())
|
||||||
|
mel2 = mel_fn(ref_audio)
|
||||||
|
mel2 = norm_spec(mel2)
|
||||||
|
T_min = min(mel2.shape[2], fea_ref.shape[2])
|
||||||
|
mel2 = mel2[:, :, :T_min]
|
||||||
|
fea_ref = fea_ref[:, :, :T_min]
|
||||||
|
if (T_min > 468):
|
||||||
|
mel2 = mel2[:, :, -468:]
|
||||||
|
fea_ref = fea_ref[:, :, -468:]
|
||||||
|
T_min = 468
|
||||||
|
chunk_len = 934 - T_min
|
||||||
|
# print("fea_ref",fea_ref,fea_ref.shape)
|
||||||
|
# print("mel2",mel2)
|
||||||
|
mel2=mel2.to(dtype)
|
||||||
|
fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge,speed)
|
||||||
|
# print("fea_todo",fea_todo)
|
||||||
|
# print("ge",ge.abs().mean())
|
||||||
|
cfm_resss = []
|
||||||
|
idx = 0
|
||||||
|
while (1):
|
||||||
|
fea_todo_chunk = fea_todo[:, :, idx:idx + chunk_len]
|
||||||
|
if (fea_todo_chunk.shape[-1] == 0): break
|
||||||
|
idx += chunk_len
|
||||||
|
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1)
|
||||||
|
# set_seed(123)
|
||||||
|
cfm_res = vq_model.cfm.inference(fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0)
|
||||||
|
cfm_res = cfm_res[:, :, mel2.shape[2]:]
|
||||||
|
mel2 = cfm_res[:, :, -T_min:]
|
||||||
|
# print("fea", fea)
|
||||||
|
# print("mel2in", mel2)
|
||||||
|
fea_ref = fea_todo_chunk[:, :, -T_min:]
|
||||||
|
cfm_resss.append(cfm_res)
|
||||||
|
cmf_res = torch.cat(cfm_resss, 2)
|
||||||
|
cmf_res = denorm_spec(cmf_res)
|
||||||
|
if bigvgan_model==None:init_bigvgan()
|
||||||
|
with torch.inference_mode():
|
||||||
|
wav_gen = bigvgan_model(cmf_res)
|
||||||
|
audio=wav_gen[0][0].cpu().detach().numpy()
|
||||||
|
|
||||||
max_audio=np.abs(audio).max()
|
max_audio=np.abs(audio).max()
|
||||||
if max_audio>1:
|
if max_audio>1:
|
||||||
audio/=max_audio
|
audio/=max_audio
|
||||||
audio_opt.append(audio)
|
audio_opt.append(audio)
|
||||||
audio_opt.append(zero_wav)
|
audio_opt.append(zero_wav)
|
||||||
|
audio_opt = np.concatenate(audio_opt, 0)
|
||||||
t4 = ttime()
|
t4 = ttime()
|
||||||
|
|
||||||
|
sr = hps.data.sampling_rate if version != "v3" else 24000
|
||||||
|
if if_sr and sr == 24000:
|
||||||
|
audio_opt = torch.from_numpy(audio_opt).float().to(device)
|
||||||
|
audio_opt,sr=audio_sr(audio_opt.unsqueeze(0),sr)
|
||||||
|
max_audio=np.abs(audio_opt).max()
|
||||||
|
if max_audio > 1: audio_opt /= max_audio
|
||||||
|
sr = 48000
|
||||||
|
|
||||||
if is_int32:
|
if is_int32:
|
||||||
audio_bytes = pack_audio(audio_bytes,(np.concatenate(audio_opt, 0) * 2147483647).astype(np.int32),hps.data.sampling_rate)
|
audio_bytes = pack_audio(audio_bytes,(audio_opt * 2147483647).astype(np.int32),sr)
|
||||||
else:
|
else:
|
||||||
audio_bytes = pack_audio(audio_bytes,(np.concatenate(audio_opt, 0) * 32768).astype(np.int16),hps.data.sampling_rate)
|
audio_bytes = pack_audio(audio_bytes,(audio_opt * 32768).astype(np.int16),sr)
|
||||||
# logger.info("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
# logger.info("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
||||||
if stream_mode == "normal":
|
if stream_mode == "normal":
|
||||||
audio_bytes, audio_chunk = read_clean_buffer(audio_bytes)
|
audio_bytes, audio_chunk = read_clean_buffer(audio_bytes)
|
||||||
@ -655,7 +811,9 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
|||||||
|
|
||||||
if not stream_mode == "normal":
|
if not stream_mode == "normal":
|
||||||
if media_type == "wav":
|
if media_type == "wav":
|
||||||
audio_bytes = pack_wav(audio_bytes,hps.data.sampling_rate)
|
sr = 48000 if if_sr else 24000
|
||||||
|
sr = hps.data.sampling_rate if version != "v3" else sr
|
||||||
|
audio_bytes = pack_wav(audio_bytes,sr)
|
||||||
yield audio_bytes.getvalue()
|
yield audio_bytes.getvalue()
|
||||||
|
|
||||||
|
|
||||||
@ -688,7 +846,7 @@ def handle_change(path, text, language):
|
|||||||
return JSONResponse({"code": 0, "message": "Success"}, status_code=200)
|
return JSONResponse({"code": 0, "message": "Success"}, status_code=200)
|
||||||
|
|
||||||
|
|
||||||
def handle(refer_wav_path, prompt_text, prompt_language, text, text_language, cut_punc, top_k, top_p, temperature, speed, inp_refs):
|
def handle(refer_wav_path, prompt_text, prompt_language, text, text_language, cut_punc, top_k, top_p, temperature, speed, inp_refs, sample_steps, if_sr):
|
||||||
if (
|
if (
|
||||||
refer_wav_path == "" or refer_wav_path is None
|
refer_wav_path == "" or refer_wav_path is None
|
||||||
or prompt_text == "" or prompt_text is None
|
or prompt_text == "" or prompt_text is None
|
||||||
@ -702,12 +860,15 @@ def handle(refer_wav_path, prompt_text, prompt_language, text, text_language, cu
|
|||||||
if not default_refer.is_ready():
|
if not default_refer.is_ready():
|
||||||
return JSONResponse({"code": 400, "message": "未指定参考音频且接口无预设"}, status_code=400)
|
return JSONResponse({"code": 400, "message": "未指定参考音频且接口无预设"}, status_code=400)
|
||||||
|
|
||||||
|
if not sample_steps in [4,8,16,32]:
|
||||||
|
sample_steps = 32
|
||||||
|
|
||||||
if cut_punc == None:
|
if cut_punc == None:
|
||||||
text = cut_text(text,default_cut_punc)
|
text = cut_text(text,default_cut_punc)
|
||||||
else:
|
else:
|
||||||
text = cut_text(text,cut_punc)
|
text = cut_text(text,cut_punc)
|
||||||
|
|
||||||
return StreamingResponse(get_tts_wav(refer_wav_path, prompt_text, prompt_language, text, text_language, top_k, top_p, temperature, speed, inp_refs), media_type="audio/"+media_type)
|
return StreamingResponse(get_tts_wav(refer_wav_path, prompt_text, prompt_language, text, text_language, top_k, top_p, temperature, speed, inp_refs, sample_steps, if_sr), media_type="audio/"+media_type)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -915,7 +1076,9 @@ async def tts_endpoint(request: Request):
|
|||||||
json_post_raw.get("top_p", 1.0),
|
json_post_raw.get("top_p", 1.0),
|
||||||
json_post_raw.get("temperature", 1.0),
|
json_post_raw.get("temperature", 1.0),
|
||||||
json_post_raw.get("speed", 1.0),
|
json_post_raw.get("speed", 1.0),
|
||||||
json_post_raw.get("inp_refs", [])
|
json_post_raw.get("inp_refs", []),
|
||||||
|
json_post_raw.get("sample_steps", 32),
|
||||||
|
json_post_raw.get("if_sr", False)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -931,9 +1094,11 @@ async def tts_endpoint(
|
|||||||
top_p: float = 1.0,
|
top_p: float = 1.0,
|
||||||
temperature: float = 1.0,
|
temperature: float = 1.0,
|
||||||
speed: float = 1.0,
|
speed: float = 1.0,
|
||||||
inp_refs: list = Query(default=[])
|
inp_refs: list = Query(default=[]),
|
||||||
|
sample_steps: int = 32,
|
||||||
|
if_sr: bool = False
|
||||||
):
|
):
|
||||||
return handle(refer_wav_path, prompt_text, prompt_language, text, text_language, cut_punc, top_k, top_p, temperature, speed, inp_refs)
|
return handle(refer_wav_path, prompt_text, prompt_language, text, text_language, cut_punc, top_k, top_p, temperature, speed, inp_refs, sample_steps, if_sr)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
Loading…
x
Reference in New Issue
Block a user