mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-07 23:48:48 +08:00
Update gui.py
1. Fix the issue that inference_gui needs to reload models for each inference. 2. Simplify GUI's code and address various inefficiencies, including: enabling direct input of ref text and target text (akin to the WebUI), facilitating file selection for ref audio uploads, adding language options for CH-EN/JA-EN/Multi (with Multi as the default), standardizing variable name to enhance readability.
This commit is contained in:
parent
db50670598
commit
fd3a64d392
@ -1,22 +1,592 @@
|
|||||||
|
'''
|
||||||
|
按中英混合识别
|
||||||
|
按日英混合识别
|
||||||
|
多语种启动切分识别语种
|
||||||
|
全部按中文识别
|
||||||
|
全部按英文识别
|
||||||
|
全部按日文识别
|
||||||
|
'''
|
||||||
|
import os, re, logging
|
||||||
|
import LangSegment
|
||||||
|
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
||||||
|
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
||||||
|
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
||||||
|
logging.getLogger("httpx").setLevel(logging.ERROR)
|
||||||
|
logging.getLogger("asyncio").setLevel(logging.ERROR)
|
||||||
|
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
||||||
|
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
||||||
|
import pdb
|
||||||
|
import torch
|
||||||
|
|
||||||
|
if os.path.exists("./gweight.txt"):
|
||||||
|
with open("./gweight.txt", 'r', encoding="utf-8") as file:
|
||||||
|
gweight_data = file.read()
|
||||||
|
gpt_path = os.environ.get(
|
||||||
|
"gpt_path", gweight_data)
|
||||||
|
else:
|
||||||
|
gpt_path = os.environ.get(
|
||||||
|
"gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
|
||||||
|
|
||||||
|
if os.path.exists("./sweight.txt"):
|
||||||
|
with open("./sweight.txt", 'r', encoding="utf-8") as file:
|
||||||
|
sweight_data = file.read()
|
||||||
|
sovits_path = os.environ.get("sovits_path", sweight_data)
|
||||||
|
else:
|
||||||
|
sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth")
|
||||||
|
# gpt_path = os.environ.get(
|
||||||
|
# "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||||
|
# )
|
||||||
|
# sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth")
|
||||||
|
cnhubert_base_path = os.environ.get(
|
||||||
|
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
||||||
|
)
|
||||||
|
bert_path = os.environ.get(
|
||||||
|
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
||||||
|
)
|
||||||
|
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
||||||
|
infer_ttswebui = int(infer_ttswebui)
|
||||||
|
is_share = os.environ.get("is_share", "False")
|
||||||
|
is_share = eval(is_share)
|
||||||
|
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||||
|
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||||
|
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
||||||
|
punctuation = set(['!', '?', '…', ',', '.', '-'," "])
|
||||||
|
|
||||||
import sys
|
import sys
|
||||||
from PyQt5.QtCore import QEvent
|
from PyQt5.QtCore import QEvent
|
||||||
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QLineEdit, QPushButton, QTextEdit
|
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QLineEdit, QPushButton, QTextEdit
|
||||||
from PyQt5.QtWidgets import QGridLayout, QVBoxLayout, QWidget, QFileDialog, QStatusBar, QComboBox
|
from PyQt5.QtWidgets import QGridLayout, QVBoxLayout, QWidget, QFileDialog, QStatusBar, QComboBox
|
||||||
import soundfile as sf
|
import soundfile as sf
|
||||||
|
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||||
|
import numpy as np
|
||||||
|
import librosa
|
||||||
|
from feature_extractor import cnhubert
|
||||||
|
|
||||||
|
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||||||
|
|
||||||
|
from module.models import SynthesizerTrn
|
||||||
|
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||||
|
from text import cleaned_text_to_sequence
|
||||||
|
from text.cleaner import clean_text
|
||||||
|
from time import time as ttime
|
||||||
|
from module.mel_processing import spectrogram_torch
|
||||||
|
from my_utils import load_audio
|
||||||
from tools.i18n.i18n import I18nAuto
|
from tools.i18n.i18n import I18nAuto
|
||||||
|
|
||||||
i18n = I18nAuto()
|
i18n = I18nAuto()
|
||||||
|
|
||||||
from GPT_SoVITS.inference_webui import change_gpt_weights, change_sovits_weights, get_tts_wav
|
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||||||
|
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = "cuda"
|
||||||
|
else:
|
||||||
|
device = "cpu"
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||||||
|
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
||||||
|
if is_half == True:
|
||||||
|
bert_model = bert_model.half().to(device)
|
||||||
|
else:
|
||||||
|
bert_model = bert_model.to(device)
|
||||||
|
|
||||||
|
|
||||||
|
def get_bert_feature(text, word2ph):
|
||||||
|
with torch.no_grad():
|
||||||
|
inputs = tokenizer(text, return_tensors="pt")
|
||||||
|
for i in inputs:
|
||||||
|
inputs[i] = inputs[i].to(device)
|
||||||
|
res = bert_model(**inputs, output_hidden_states=True)
|
||||||
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||||||
|
assert len(word2ph) == len(text)
|
||||||
|
phone_level_feature = []
|
||||||
|
for i in range(len(word2ph)):
|
||||||
|
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||||||
|
phone_level_feature.append(repeat_feature)
|
||||||
|
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||||
|
return phone_level_feature.T
|
||||||
|
|
||||||
|
|
||||||
|
class DictToAttrRecursive(dict):
|
||||||
|
def __init__(self, input_dict):
|
||||||
|
super().__init__(input_dict)
|
||||||
|
for key, value in input_dict.items():
|
||||||
|
if isinstance(value, dict):
|
||||||
|
value = DictToAttrRecursive(value)
|
||||||
|
self[key] = value
|
||||||
|
setattr(self, key, value)
|
||||||
|
|
||||||
|
def __getattr__(self, item):
|
||||||
|
try:
|
||||||
|
return self[item]
|
||||||
|
except KeyError:
|
||||||
|
raise AttributeError(f"Attribute {item} not found")
|
||||||
|
|
||||||
|
def __setattr__(self, key, value):
|
||||||
|
if isinstance(value, dict):
|
||||||
|
value = DictToAttrRecursive(value)
|
||||||
|
super(DictToAttrRecursive, self).__setitem__(key, value)
|
||||||
|
super().__setattr__(key, value)
|
||||||
|
|
||||||
|
def __delattr__(self, item):
|
||||||
|
try:
|
||||||
|
del self[item]
|
||||||
|
except KeyError:
|
||||||
|
raise AttributeError(f"Attribute {item} not found")
|
||||||
|
|
||||||
|
|
||||||
|
ssl_model = cnhubert.get_model()
|
||||||
|
if is_half == True:
|
||||||
|
ssl_model = ssl_model.half().to(device)
|
||||||
|
else:
|
||||||
|
ssl_model = ssl_model.to(device)
|
||||||
|
|
||||||
|
|
||||||
|
def change_sovits_weights(sovits_path):
|
||||||
|
global vq_model, hps
|
||||||
|
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
||||||
|
hps = dict_s2["config"]
|
||||||
|
hps = DictToAttrRecursive(hps)
|
||||||
|
hps.model.semantic_frame_rate = "25hz"
|
||||||
|
vq_model = SynthesizerTrn(
|
||||||
|
hps.data.filter_length // 2 + 1,
|
||||||
|
hps.train.segment_size // hps.data.hop_length,
|
||||||
|
n_speakers=hps.data.n_speakers,
|
||||||
|
**hps.model
|
||||||
|
)
|
||||||
|
if ("pretrained" not in sovits_path):
|
||||||
|
del vq_model.enc_q
|
||||||
|
if is_half == True:
|
||||||
|
vq_model = vq_model.half().to(device)
|
||||||
|
else:
|
||||||
|
vq_model = vq_model.to(device)
|
||||||
|
vq_model.eval()
|
||||||
|
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
||||||
|
with open("./sweight.txt", "w", encoding="utf-8") as f:
|
||||||
|
f.write(sovits_path)
|
||||||
|
|
||||||
|
|
||||||
|
change_sovits_weights(sovits_path)
|
||||||
|
|
||||||
|
|
||||||
|
def change_gpt_weights(gpt_path):
|
||||||
|
global hz, max_sec, t2s_model, config
|
||||||
|
hz = 50
|
||||||
|
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
||||||
|
config = dict_s1["config"]
|
||||||
|
max_sec = config["data"]["max_sec"]
|
||||||
|
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
||||||
|
t2s_model.load_state_dict(dict_s1["weight"])
|
||||||
|
if is_half == True:
|
||||||
|
t2s_model = t2s_model.half()
|
||||||
|
t2s_model = t2s_model.to(device)
|
||||||
|
t2s_model.eval()
|
||||||
|
total = sum([param.nelement() for param in t2s_model.parameters()])
|
||||||
|
print("Number of parameter: %.2fM" % (total / 1e6))
|
||||||
|
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)
|
||||||
|
|
||||||
|
|
||||||
|
change_gpt_weights(gpt_path)
|
||||||
|
|
||||||
|
|
||||||
|
def get_spepc(hps, filename):
|
||||||
|
audio = load_audio(filename, int(hps.data.sampling_rate))
|
||||||
|
audio = torch.FloatTensor(audio)
|
||||||
|
audio_norm = audio
|
||||||
|
audio_norm = audio_norm.unsqueeze(0)
|
||||||
|
spec = spectrogram_torch(
|
||||||
|
audio_norm,
|
||||||
|
hps.data.filter_length,
|
||||||
|
hps.data.sampling_rate,
|
||||||
|
hps.data.hop_length,
|
||||||
|
hps.data.win_length,
|
||||||
|
center=False,
|
||||||
|
)
|
||||||
|
return spec
|
||||||
|
|
||||||
|
|
||||||
|
dict_language = {
|
||||||
|
i18n("中文"): "all_zh",#全部按中文识别
|
||||||
|
i18n("英文"): "en",#全部按英文识别#######不变
|
||||||
|
i18n("日文"): "all_ja",#全部按日文识别
|
||||||
|
i18n("中英混合"): "zh",#按中英混合识别####不变
|
||||||
|
i18n("日英混合"): "ja",#按日英混合识别####不变
|
||||||
|
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def clean_text_inf(text, language):
|
||||||
|
phones, word2ph, norm_text = clean_text(text, language)
|
||||||
|
phones = cleaned_text_to_sequence(phones)
|
||||||
|
return phones, word2ph, norm_text
|
||||||
|
|
||||||
|
dtype=torch.float16 if is_half == True else torch.float32
|
||||||
|
def get_bert_inf(phones, word2ph, norm_text, language):
|
||||||
|
language=language.replace("all_","")
|
||||||
|
if language == "zh":
|
||||||
|
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
|
||||||
|
else:
|
||||||
|
bert = torch.zeros(
|
||||||
|
(1024, len(phones)),
|
||||||
|
dtype=torch.float16 if is_half == True else torch.float32,
|
||||||
|
).to(device)
|
||||||
|
|
||||||
|
return bert
|
||||||
|
|
||||||
|
|
||||||
|
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
||||||
|
|
||||||
|
|
||||||
|
def get_first(text):
|
||||||
|
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
||||||
|
text = re.split(pattern, text)[0].strip()
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def get_phones_and_bert(text,language):
|
||||||
|
if language in {"en","all_zh","all_ja"}:
|
||||||
|
language = language.replace("all_","")
|
||||||
|
if language == "en":
|
||||||
|
LangSegment.setfilters(["en"])
|
||||||
|
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
|
||||||
|
else:
|
||||||
|
# 因无法区别中日文汉字,以用户输入为准
|
||||||
|
formattext = text
|
||||||
|
while " " in formattext:
|
||||||
|
formattext = formattext.replace(" ", " ")
|
||||||
|
phones, word2ph, norm_text = clean_text_inf(formattext, language)
|
||||||
|
if language == "zh":
|
||||||
|
bert = get_bert_feature(norm_text, word2ph).to(device)
|
||||||
|
else:
|
||||||
|
bert = torch.zeros(
|
||||||
|
(1024, len(phones)),
|
||||||
|
dtype=torch.float16 if is_half == True else torch.float32,
|
||||||
|
).to(device)
|
||||||
|
elif language in {"zh", "ja","auto"}:
|
||||||
|
textlist=[]
|
||||||
|
langlist=[]
|
||||||
|
LangSegment.setfilters(["zh","ja","en","ko"])
|
||||||
|
if language == "auto":
|
||||||
|
for tmp in LangSegment.getTexts(text):
|
||||||
|
if tmp["lang"] == "ko":
|
||||||
|
langlist.append("zh")
|
||||||
|
textlist.append(tmp["text"])
|
||||||
|
else:
|
||||||
|
langlist.append(tmp["lang"])
|
||||||
|
textlist.append(tmp["text"])
|
||||||
|
else:
|
||||||
|
for tmp in LangSegment.getTexts(text):
|
||||||
|
if tmp["lang"] == "en":
|
||||||
|
langlist.append(tmp["lang"])
|
||||||
|
else:
|
||||||
|
# 因无法区别中日文汉字,以用户输入为准
|
||||||
|
langlist.append(language)
|
||||||
|
textlist.append(tmp["text"])
|
||||||
|
print(textlist)
|
||||||
|
print(langlist)
|
||||||
|
phones_list = []
|
||||||
|
bert_list = []
|
||||||
|
norm_text_list = []
|
||||||
|
for i in range(len(textlist)):
|
||||||
|
lang = langlist[i]
|
||||||
|
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
||||||
|
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
||||||
|
phones_list.append(phones)
|
||||||
|
norm_text_list.append(norm_text)
|
||||||
|
bert_list.append(bert)
|
||||||
|
bert = torch.cat(bert_list, dim=1)
|
||||||
|
phones = sum(phones_list, [])
|
||||||
|
norm_text = ''.join(norm_text_list)
|
||||||
|
|
||||||
|
return phones,bert.to(dtype),norm_text
|
||||||
|
|
||||||
|
|
||||||
|
def merge_short_text_in_array(texts, threshold):
|
||||||
|
if (len(texts)) < 2:
|
||||||
|
return texts
|
||||||
|
result = []
|
||||||
|
text = ""
|
||||||
|
for ele in texts:
|
||||||
|
text += ele
|
||||||
|
if len(text) >= threshold:
|
||||||
|
result.append(text)
|
||||||
|
text = ""
|
||||||
|
if (len(text) > 0):
|
||||||
|
if len(result) == 0:
|
||||||
|
result.append(text)
|
||||||
|
else:
|
||||||
|
result[len(result) - 1] += text
|
||||||
|
return result
|
||||||
|
|
||||||
|
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False):
|
||||||
|
if prompt_text is None or len(prompt_text) == 0:
|
||||||
|
ref_free = True
|
||||||
|
t0 = ttime()
|
||||||
|
prompt_language = dict_language[prompt_language]
|
||||||
|
text_language = dict_language[text_language]
|
||||||
|
if not ref_free:
|
||||||
|
prompt_text = prompt_text.strip("\n")
|
||||||
|
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
|
||||||
|
print(i18n("实际输入的参考文本:"), prompt_text)
|
||||||
|
text = text.strip("\n")
|
||||||
|
text = replace_consecutive_punctuation(text)
|
||||||
|
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
|
||||||
|
|
||||||
|
print(i18n("实际输入的目标文本:"), text)
|
||||||
|
zero_wav = np.zeros(
|
||||||
|
int(hps.data.sampling_rate * 0.3),
|
||||||
|
dtype=np.float16 if is_half == True else np.float32,
|
||||||
|
)
|
||||||
|
with torch.no_grad():
|
||||||
|
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||||||
|
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
|
||||||
|
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
||||||
|
wav16k = torch.from_numpy(wav16k)
|
||||||
|
zero_wav_torch = torch.from_numpy(zero_wav)
|
||||||
|
if is_half == True:
|
||||||
|
wav16k = wav16k.half().to(device)
|
||||||
|
zero_wav_torch = zero_wav_torch.half().to(device)
|
||||||
|
else:
|
||||||
|
wav16k = wav16k.to(device)
|
||||||
|
zero_wav_torch = zero_wav_torch.to(device)
|
||||||
|
wav16k = torch.cat([wav16k, zero_wav_torch])
|
||||||
|
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
||||||
|
"last_hidden_state"
|
||||||
|
].transpose(
|
||||||
|
1, 2
|
||||||
|
) # .float()
|
||||||
|
codes = vq_model.extract_latent(ssl_content)
|
||||||
|
|
||||||
|
prompt_semantic = codes[0, 0]
|
||||||
|
t1 = ttime()
|
||||||
|
|
||||||
|
if (how_to_cut == i18n("凑四句一切")):
|
||||||
|
text = cut1(text)
|
||||||
|
elif (how_to_cut == i18n("凑50字一切")):
|
||||||
|
text = cut2(text)
|
||||||
|
elif (how_to_cut == i18n("按中文句号。切")):
|
||||||
|
text = cut3(text)
|
||||||
|
elif (how_to_cut == i18n("按英文句号.切")):
|
||||||
|
text = cut4(text)
|
||||||
|
elif (how_to_cut == i18n("按标点符号切")):
|
||||||
|
text = cut5(text)
|
||||||
|
while "\n\n" in text:
|
||||||
|
text = text.replace("\n\n", "\n")
|
||||||
|
print(i18n("实际输入的目标文本(切句后):"), text)
|
||||||
|
texts = text.split("\n")
|
||||||
|
texts = process_text(texts)
|
||||||
|
texts = merge_short_text_in_array(texts, 5)
|
||||||
|
audio_opt = []
|
||||||
|
if not ref_free:
|
||||||
|
phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language)
|
||||||
|
|
||||||
|
for text in texts:
|
||||||
|
# 解决输入目标文本的空行导致报错的问题
|
||||||
|
if (len(text.strip()) == 0):
|
||||||
|
continue
|
||||||
|
if (text[-1] not in splits): text += "。" if text_language != "en" else "."
|
||||||
|
print(i18n("实际输入的目标文本(每句):"), text)
|
||||||
|
phones2,bert2,norm_text2=get_phones_and_bert(text, text_language)
|
||||||
|
print(i18n("前端处理后的文本(每句):"), norm_text2)
|
||||||
|
if not ref_free:
|
||||||
|
bert = torch.cat([bert1, bert2], 1)
|
||||||
|
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
|
||||||
|
else:
|
||||||
|
bert = bert2
|
||||||
|
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
|
||||||
|
|
||||||
|
bert = bert.to(device).unsqueeze(0)
|
||||||
|
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||||||
|
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||||||
|
t2 = ttime()
|
||||||
|
with torch.no_grad():
|
||||||
|
# pred_semantic = t2s_model.model.infer(
|
||||||
|
pred_semantic, idx = t2s_model.model.infer_panel(
|
||||||
|
all_phoneme_ids,
|
||||||
|
all_phoneme_len,
|
||||||
|
None if ref_free else prompt,
|
||||||
|
bert,
|
||||||
|
# prompt_phone_len=ph_offset,
|
||||||
|
top_k=top_k,
|
||||||
|
top_p=top_p,
|
||||||
|
temperature=temperature,
|
||||||
|
early_stop_num=hz * max_sec,
|
||||||
|
)
|
||||||
|
t3 = ttime()
|
||||||
|
# print(pred_semantic.shape,idx)
|
||||||
|
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
|
||||||
|
0
|
||||||
|
) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||||
|
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
||||||
|
if is_half == True:
|
||||||
|
refer = refer.half().to(device)
|
||||||
|
else:
|
||||||
|
refer = refer.to(device)
|
||||||
|
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
||||||
|
audio = (
|
||||||
|
vq_model.decode(
|
||||||
|
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
|
||||||
|
)
|
||||||
|
.detach()
|
||||||
|
.cpu()
|
||||||
|
.numpy()[0, 0]
|
||||||
|
) ###试试重建不带上prompt部分
|
||||||
|
max_audio=np.abs(audio).max()#简单防止16bit爆音
|
||||||
|
if max_audio>1:audio/=max_audio
|
||||||
|
audio_opt.append(audio)
|
||||||
|
audio_opt.append(zero_wav)
|
||||||
|
t4 = ttime()
|
||||||
|
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
||||||
|
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
||||||
|
np.int16
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def split(todo_text):
|
||||||
|
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||||||
|
if todo_text[-1] not in splits:
|
||||||
|
todo_text += "。"
|
||||||
|
i_split_head = i_split_tail = 0
|
||||||
|
len_text = len(todo_text)
|
||||||
|
todo_texts = []
|
||||||
|
while 1:
|
||||||
|
if i_split_head >= len_text:
|
||||||
|
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
||||||
|
if todo_text[i_split_head] in splits:
|
||||||
|
i_split_head += 1
|
||||||
|
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
||||||
|
i_split_tail = i_split_head
|
||||||
|
else:
|
||||||
|
i_split_head += 1
|
||||||
|
return todo_texts
|
||||||
|
|
||||||
|
|
||||||
|
def cut1(inp):
|
||||||
|
inp = inp.strip("\n")
|
||||||
|
inps = split(inp)
|
||||||
|
split_idx = list(range(0, len(inps), 4))
|
||||||
|
split_idx[-1] = None
|
||||||
|
if len(split_idx) > 1:
|
||||||
|
opts = []
|
||||||
|
for idx in range(len(split_idx) - 1):
|
||||||
|
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
||||||
|
else:
|
||||||
|
opts = [inp]
|
||||||
|
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||||||
|
return "\n".join(opts)
|
||||||
|
|
||||||
|
|
||||||
|
def cut2(inp):
|
||||||
|
inp = inp.strip("\n")
|
||||||
|
inps = split(inp)
|
||||||
|
if len(inps) < 2:
|
||||||
|
return inp
|
||||||
|
opts = []
|
||||||
|
summ = 0
|
||||||
|
tmp_str = ""
|
||||||
|
for i in range(len(inps)):
|
||||||
|
summ += len(inps[i])
|
||||||
|
tmp_str += inps[i]
|
||||||
|
if summ > 50:
|
||||||
|
summ = 0
|
||||||
|
opts.append(tmp_str)
|
||||||
|
tmp_str = ""
|
||||||
|
if tmp_str != "":
|
||||||
|
opts.append(tmp_str)
|
||||||
|
# print(opts)
|
||||||
|
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
||||||
|
opts[-2] = opts[-2] + opts[-1]
|
||||||
|
opts = opts[:-1]
|
||||||
|
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||||||
|
return "\n".join(opts)
|
||||||
|
|
||||||
|
|
||||||
|
def cut3(inp):
|
||||||
|
inp = inp.strip("\n")
|
||||||
|
opts = ["%s" % item for item in inp.strip("。").split("。")]
|
||||||
|
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||||||
|
return "\n".join(opts)
|
||||||
|
|
||||||
|
def cut4(inp):
|
||||||
|
inp = inp.strip("\n")
|
||||||
|
opts = ["%s" % item for item in inp.strip(".").split(".")]
|
||||||
|
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||||||
|
return "\n".join(opts)
|
||||||
|
|
||||||
|
|
||||||
|
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
||||||
|
def cut5(inp):
|
||||||
|
# if not re.search(r'[^\w\s]', inp[-1]):
|
||||||
|
# inp += '。'
|
||||||
|
inp = inp.strip("\n")
|
||||||
|
punds = r'[,.;?!、,。?!;:…]'
|
||||||
|
items = re.split(f'({punds})', inp)
|
||||||
|
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])]
|
||||||
|
# 在句子不存在符号或句尾无符号的时候保证文本完整
|
||||||
|
if len(items)%2 == 1:
|
||||||
|
mergeitems.append(items[-1])
|
||||||
|
opt = [item for item in mergeitems if not set(item).issubset(punctuation)]
|
||||||
|
return "\n".join(opt)
|
||||||
|
|
||||||
|
|
||||||
|
def custom_sort_key(s):
|
||||||
|
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||||||
|
parts = re.split('(\d+)', s)
|
||||||
|
# 将数字部分转换为整数,非数字部分保持不变
|
||||||
|
parts = [int(part) if part.isdigit() else part for part in parts]
|
||||||
|
return parts
|
||||||
|
|
||||||
|
def process_text(texts):
|
||||||
|
_text=[]
|
||||||
|
if all(text in [None, " ", "\n",""] for text in texts):
|
||||||
|
raise ValueError(i18n("请输入有效文本"))
|
||||||
|
for text in texts:
|
||||||
|
if text in [None, " ", ""]:
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
_text.append(text)
|
||||||
|
return _text
|
||||||
|
|
||||||
|
|
||||||
|
def replace_consecutive_punctuation(text):
|
||||||
|
punctuations = ''.join(re.escape(p) for p in punctuation)
|
||||||
|
pattern = f'([{punctuations}])([{punctuations}])+'
|
||||||
|
result = re.sub(pattern, r'\1', text)
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def change_choices():
|
||||||
|
SoVITS_names, GPT_names = get_weights_names()
|
||||||
|
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
|
||||||
|
|
||||||
|
|
||||||
|
pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||||||
|
pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||||
|
SoVITS_weight_root = "SoVITS_weights"
|
||||||
|
GPT_weight_root = "GPT_weights"
|
||||||
|
os.makedirs(SoVITS_weight_root, exist_ok=True)
|
||||||
|
os.makedirs(GPT_weight_root, exist_ok=True)
|
||||||
|
|
||||||
|
|
||||||
|
def get_weights_names():
|
||||||
|
SoVITS_names = [pretrained_sovits_name]
|
||||||
|
for name in os.listdir(SoVITS_weight_root):
|
||||||
|
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name))
|
||||||
|
GPT_names = [pretrained_gpt_name]
|
||||||
|
for name in os.listdir(GPT_weight_root):
|
||||||
|
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name))
|
||||||
|
return SoVITS_names, GPT_names
|
||||||
|
|
||||||
|
|
||||||
|
SoVITS_names, GPT_names = get_weights_names()
|
||||||
|
|
||||||
|
|
||||||
class GPTSoVITSGUI(QMainWindow):
|
class GPTSoVITSGUI(QMainWindow):
|
||||||
|
gpt_path = gpt_path
|
||||||
|
sovits_path = sovits_path
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
self.init_ui()
|
|
||||||
|
|
||||||
def init_ui(self):
|
|
||||||
self.setWindowTitle('GPT-SoVITS GUI')
|
self.setWindowTitle('GPT-SoVITS GUI')
|
||||||
self.setGeometry(800, 450, 950, 850)
|
self.setGeometry(800, 450, 950, 850)
|
||||||
|
|
||||||
@ -71,6 +641,7 @@ class GPTSoVITSGUI(QMainWindow):
|
|||||||
self.GPT_model_label = QLabel("选择GPT模型:")
|
self.GPT_model_label = QLabel("选择GPT模型:")
|
||||||
self.GPT_model_input = QLineEdit()
|
self.GPT_model_input = QLineEdit()
|
||||||
self.GPT_model_input.setPlaceholderText("拖拽或选择文件")
|
self.GPT_model_input.setPlaceholderText("拖拽或选择文件")
|
||||||
|
self.GPT_model_input.setText(self.gpt_path)
|
||||||
self.GPT_model_input.setReadOnly(True)
|
self.GPT_model_input.setReadOnly(True)
|
||||||
self.GPT_model_button = QPushButton("选择GPT模型文件")
|
self.GPT_model_button = QPushButton("选择GPT模型文件")
|
||||||
self.GPT_model_button.clicked.connect(self.select_GPT_model)
|
self.GPT_model_button.clicked.connect(self.select_GPT_model)
|
||||||
@ -78,6 +649,7 @@ class GPTSoVITSGUI(QMainWindow):
|
|||||||
self.SoVITS_model_label = QLabel("选择SoVITS模型:")
|
self.SoVITS_model_label = QLabel("选择SoVITS模型:")
|
||||||
self.SoVITS_model_input = QLineEdit()
|
self.SoVITS_model_input = QLineEdit()
|
||||||
self.SoVITS_model_input.setPlaceholderText("拖拽或选择文件")
|
self.SoVITS_model_input.setPlaceholderText("拖拽或选择文件")
|
||||||
|
self.SoVITS_model_input.setText(self.sovits_path)
|
||||||
self.SoVITS_model_input.setReadOnly(True)
|
self.SoVITS_model_input.setReadOnly(True)
|
||||||
self.SoVITS_model_button = QPushButton("选择SoVITS模型文件")
|
self.SoVITS_model_button = QPushButton("选择SoVITS模型文件")
|
||||||
self.SoVITS_model_button.clicked.connect(self.select_SoVITS_model)
|
self.SoVITS_model_button.clicked.connect(self.select_SoVITS_model)
|
||||||
@ -91,25 +663,25 @@ class GPTSoVITSGUI(QMainWindow):
|
|||||||
|
|
||||||
self.ref_text_label = QLabel("参考音频文本:")
|
self.ref_text_label = QLabel("参考音频文本:")
|
||||||
self.ref_text_input = QLineEdit()
|
self.ref_text_input = QLineEdit()
|
||||||
self.ref_text_input.setPlaceholderText("拖拽或选择文件")
|
self.ref_text_input.setPlaceholderText("直接输入文字或上传文本")
|
||||||
self.ref_text_input.setReadOnly(True)
|
|
||||||
self.ref_text_button = QPushButton("上传文本")
|
self.ref_text_button = QPushButton("上传文本")
|
||||||
self.ref_text_button.clicked.connect(self.upload_ref_text)
|
self.ref_text_button.clicked.connect(self.upload_ref_text)
|
||||||
|
|
||||||
self.language_label = QLabel("参考音频语言:")
|
self.ref_language_label = QLabel("参考音频语言:")
|
||||||
self.language_combobox = QComboBox()
|
self.ref_language_combobox = QComboBox()
|
||||||
self.language_combobox.addItems(["中文", "英文", "日文"])
|
self.ref_language_combobox.addItems(["中文", "英文", "日文", "中英混合", "日英混合", "多语种混合"])
|
||||||
|
self.ref_language_combobox.setCurrentText("多语种混合")
|
||||||
|
|
||||||
self.target_text_label = QLabel("合成目标文本:")
|
self.target_text_label = QLabel("合成目标文本:")
|
||||||
self.target_text_input = QLineEdit()
|
self.target_text_input = QLineEdit()
|
||||||
self.target_text_input.setPlaceholderText("拖拽或选择文件")
|
self.target_text_input.setPlaceholderText("直接输入文字或上传文本")
|
||||||
self.target_text_input.setReadOnly(True)
|
|
||||||
self.target_text_button = QPushButton("上传文本")
|
self.target_text_button = QPushButton("上传文本")
|
||||||
self.target_text_button.clicked.connect(self.upload_target_text)
|
self.target_text_button.clicked.connect(self.upload_target_text)
|
||||||
|
|
||||||
self.language_label_02 = QLabel("合成音频语言:")
|
self.target_language_label = QLabel("合成音频语言:")
|
||||||
self.language_combobox_02 = QComboBox()
|
self.target_language_combobox = QComboBox()
|
||||||
self.language_combobox_02.addItems(["中文", "英文", "日文"])
|
self.target_language_combobox.addItems(["中文", "英文", "日文", "中英混合", "日英混合", "多语种混合"])
|
||||||
|
self.target_language_combobox.setCurrentText("多语种混合")
|
||||||
|
|
||||||
self.output_label = QLabel("输出音频路径:")
|
self.output_label = QLabel("输出音频路径:")
|
||||||
self.output_input = QLineEdit()
|
self.output_input = QLineEdit()
|
||||||
@ -140,10 +712,8 @@ class GPTSoVITSGUI(QMainWindow):
|
|||||||
|
|
||||||
main_layout = QVBoxLayout()
|
main_layout = QVBoxLayout()
|
||||||
|
|
||||||
input_layout = QGridLayout()
|
input_layout = QGridLayout(self)
|
||||||
input_layout.setSpacing(10)
|
input_layout.setSpacing(10)
|
||||||
|
|
||||||
self.setLayout(input_layout)
|
|
||||||
|
|
||||||
input_layout.addWidget(license_label, 0, 0, 1, 3)
|
input_layout.addWidget(license_label, 0, 0, 1, 3)
|
||||||
|
|
||||||
@ -159,22 +729,22 @@ class GPTSoVITSGUI(QMainWindow):
|
|||||||
input_layout.addWidget(self.ref_audio_input, 6, 0, 1, 2)
|
input_layout.addWidget(self.ref_audio_input, 6, 0, 1, 2)
|
||||||
input_layout.addWidget(self.ref_audio_button, 6, 2)
|
input_layout.addWidget(self.ref_audio_button, 6, 2)
|
||||||
|
|
||||||
input_layout.addWidget(self.language_label, 7, 0)
|
input_layout.addWidget(self.ref_language_label, 7, 0)
|
||||||
input_layout.addWidget(self.language_combobox, 8, 0, 1, 1)
|
input_layout.addWidget(self.ref_language_combobox, 8, 0, 1, 1)
|
||||||
input_layout.addWidget(self.ref_text_label, 9, 0)
|
input_layout.addWidget(self.ref_text_label, 9, 0)
|
||||||
input_layout.addWidget(self.ref_text_input, 10, 0, 1, 2)
|
input_layout.addWidget(self.ref_text_input, 10, 0, 1, 2)
|
||||||
input_layout.addWidget(self.ref_text_button, 10, 2)
|
input_layout.addWidget(self.ref_text_button, 10, 2)
|
||||||
|
|
||||||
input_layout.addWidget(self.language_label_02, 11, 0)
|
input_layout.addWidget(self.target_language_label, 11, 0)
|
||||||
input_layout.addWidget(self.language_combobox_02, 12, 0, 1, 1)
|
input_layout.addWidget(self.target_language_combobox, 12, 0, 1, 1)
|
||||||
input_layout.addWidget(self.target_text_label, 13, 0)
|
input_layout.addWidget(self.target_text_label, 13, 0)
|
||||||
input_layout.addWidget(self.target_text_input, 14, 0, 1, 2)
|
input_layout.addWidget(self.target_text_input, 14, 0, 1, 2)
|
||||||
input_layout.addWidget(self.target_text_button, 14, 2)
|
input_layout.addWidget(self.target_text_button, 14, 2)
|
||||||
|
|
||||||
input_layout.addWidget(self.output_label, 15, 0)
|
input_layout.addWidget(self.output_label, 15, 0)
|
||||||
input_layout.addWidget(self.output_input, 16, 0, 1, 2)
|
input_layout.addWidget(self.output_input, 16, 0, 1, 2)
|
||||||
input_layout.addWidget(self.output_button, 16, 2)
|
input_layout.addWidget(self.output_button, 16, 2)
|
||||||
|
|
||||||
main_layout.addLayout(input_layout)
|
main_layout.addLayout(input_layout)
|
||||||
|
|
||||||
output_layout = QVBoxLayout()
|
output_layout = QVBoxLayout()
|
||||||
@ -198,10 +768,8 @@ class GPTSoVITSGUI(QMainWindow):
|
|||||||
def dropEvent(self, event):
|
def dropEvent(self, event):
|
||||||
if event.mimeData().hasUrls():
|
if event.mimeData().hasUrls():
|
||||||
file_paths = [url.toLocalFile() for url in event.mimeData().urls()]
|
file_paths = [url.toLocalFile() for url in event.mimeData().urls()]
|
||||||
|
|
||||||
if len(file_paths) == 1:
|
if len(file_paths) == 1:
|
||||||
self.update_ref_audio(file_paths[0])
|
self.update_ref_audio(file_paths[0])
|
||||||
self.update_input_paths(self.ref_audio_input, file_paths[0])
|
|
||||||
else:
|
else:
|
||||||
self.update_ref_audio(", ".join(file_paths))
|
self.update_ref_audio(", ".join(file_paths))
|
||||||
|
|
||||||
@ -211,23 +779,13 @@ class GPTSoVITSGUI(QMainWindow):
|
|||||||
widget.installEventFilter(self)
|
widget.installEventFilter(self)
|
||||||
|
|
||||||
def eventFilter(self, obj, event):
|
def eventFilter(self, obj, event):
|
||||||
if event.type() == QEvent.DragEnter:
|
if event.type() in (QEvent.DragEnter, QEvent.Drop):
|
||||||
mime_data = event.mimeData()
|
mime_data = event.mimeData()
|
||||||
if mime_data.hasUrls():
|
if mime_data.hasUrls():
|
||||||
event.acceptProposedAction()
|
event.acceptProposedAction()
|
||||||
|
|
||||||
elif event.type() == QEvent.Drop:
|
|
||||||
mime_data = event.mimeData()
|
|
||||||
if mime_data.hasUrls():
|
|
||||||
file_paths = [url.toLocalFile() for url in mime_data.urls()]
|
|
||||||
if len(file_paths) == 1:
|
|
||||||
self.update_input_paths(obj, file_paths[0])
|
|
||||||
else:
|
|
||||||
self.update_input_paths(obj, ", ".join(file_paths))
|
|
||||||
event.acceptProposedAction()
|
|
||||||
|
|
||||||
return super().eventFilter(obj, event)
|
return super().eventFilter(obj, event)
|
||||||
|
|
||||||
def select_GPT_model(self):
|
def select_GPT_model(self):
|
||||||
file_path, _ = QFileDialog.getOpenFileName(self, "选择GPT模型文件", "", "GPT Files (*.ckpt)")
|
file_path, _ = QFileDialog.getOpenFileName(self, "选择GPT模型文件", "", "GPT Files (*.ckpt)")
|
||||||
if file_path:
|
if file_path:
|
||||||
@ -239,24 +797,9 @@ class GPTSoVITSGUI(QMainWindow):
|
|||||||
self.SoVITS_model_input.setText(file_path)
|
self.SoVITS_model_input.setText(file_path)
|
||||||
|
|
||||||
def select_ref_audio(self):
|
def select_ref_audio(self):
|
||||||
options = QFileDialog.Options()
|
file_path, _ = QFileDialog.getOpenFileName(self, "选择参考音频文件", "", "Audio Files (*.wav *.mp3)")
|
||||||
options |= QFileDialog.DontUseNativeDialog
|
if file_path:
|
||||||
options |= QFileDialog.ShowDirsOnly
|
self.update_ref_audio(file_path)
|
||||||
|
|
||||||
file_dialog = QFileDialog()
|
|
||||||
file_dialog.setOptions(options)
|
|
||||||
|
|
||||||
file_dialog.setFileMode(QFileDialog.AnyFile)
|
|
||||||
file_dialog.setNameFilter("Audio Files (*.wav *.mp3)")
|
|
||||||
|
|
||||||
if file_dialog.exec_():
|
|
||||||
file_paths = file_dialog.selectedFiles()
|
|
||||||
|
|
||||||
if len(file_paths) == 1:
|
|
||||||
self.update_ref_audio(file_paths[0])
|
|
||||||
self.update_input_paths(self.ref_audio_input, file_paths[0])
|
|
||||||
else:
|
|
||||||
self.update_ref_audio(", ".join(file_paths))
|
|
||||||
|
|
||||||
def upload_ref_text(self):
|
def upload_ref_text(self):
|
||||||
file_path, _ = QFileDialog.getOpenFileName(self, "选择文本文件", "", "Text Files (*.txt)")
|
file_path, _ = QFileDialog.getOpenFileName(self, "选择文本文件", "", "Text Files (*.txt)")
|
||||||
@ -264,7 +807,6 @@ class GPTSoVITSGUI(QMainWindow):
|
|||||||
with open(file_path, 'r', encoding='utf-8') as file:
|
with open(file_path, 'r', encoding='utf-8') as file:
|
||||||
content = file.read()
|
content = file.read()
|
||||||
self.ref_text_input.setText(content)
|
self.ref_text_input.setText(content)
|
||||||
self.update_input_paths(self.ref_text_input, file_path)
|
|
||||||
|
|
||||||
def upload_target_text(self):
|
def upload_target_text(self):
|
||||||
file_path, _ = QFileDialog.getOpenFileName(self, "选择文本文件", "", "Text Files (*.txt)")
|
file_path, _ = QFileDialog.getOpenFileName(self, "选择文本文件", "", "Text Files (*.txt)")
|
||||||
@ -272,7 +814,6 @@ class GPTSoVITSGUI(QMainWindow):
|
|||||||
with open(file_path, 'r', encoding='utf-8') as file:
|
with open(file_path, 'r', encoding='utf-8') as file:
|
||||||
content = file.read()
|
content = file.read()
|
||||||
self.target_text_input.setText(content)
|
self.target_text_input.setText(content)
|
||||||
self.update_input_paths(self.target_text_input, file_path)
|
|
||||||
|
|
||||||
def select_output_path(self):
|
def select_output_path(self):
|
||||||
options = QFileDialog.Options()
|
options = QFileDialog.Options()
|
||||||
@ -290,9 +831,6 @@ class GPTSoVITSGUI(QMainWindow):
|
|||||||
def update_ref_audio(self, file_path):
|
def update_ref_audio(self, file_path):
|
||||||
self.ref_audio_input.setText(file_path)
|
self.ref_audio_input.setText(file_path)
|
||||||
|
|
||||||
def update_input_paths(self, input_box, file_path):
|
|
||||||
input_box.setText(file_path)
|
|
||||||
|
|
||||||
def clear_output(self):
|
def clear_output(self):
|
||||||
self.output_text.clear()
|
self.output_text.clear()
|
||||||
|
|
||||||
@ -300,23 +838,27 @@ class GPTSoVITSGUI(QMainWindow):
|
|||||||
GPT_model_path = self.GPT_model_input.text()
|
GPT_model_path = self.GPT_model_input.text()
|
||||||
SoVITS_model_path = self.SoVITS_model_input.text()
|
SoVITS_model_path = self.SoVITS_model_input.text()
|
||||||
ref_audio_path = self.ref_audio_input.text()
|
ref_audio_path = self.ref_audio_input.text()
|
||||||
language_combobox = self.language_combobox.currentText()
|
language_combobox = self.ref_language_combobox.currentText()
|
||||||
language_combobox = i18n(language_combobox)
|
language_combobox = i18n(language_combobox)
|
||||||
ref_text = self.ref_text_input.text()
|
ref_text = self.ref_text_input.text()
|
||||||
language_combobox_02 = self.language_combobox_02.currentText()
|
target_language_combobox = self.target_language_combobox.currentText()
|
||||||
language_combobox_02 = i18n(language_combobox_02)
|
target_language_combobox = i18n(target_language_combobox)
|
||||||
target_text = self.target_text_input.text()
|
target_text = self.target_text_input.text()
|
||||||
output_path = self.output_input.text()
|
output_path = self.output_input.text()
|
||||||
|
|
||||||
change_gpt_weights(gpt_path=GPT_model_path)
|
if GPT_model_path != self.gpt_path:
|
||||||
change_sovits_weights(sovits_path=SoVITS_model_path)
|
change_gpt_weights(gpt_path=GPT_model_path)
|
||||||
|
self.gpt_path = GPT_model_path
|
||||||
|
if SoVITS_model_path != self.sovits_path:
|
||||||
|
change_sovits_weights(sovits_path=SoVITS_model_path)
|
||||||
|
self.sovits_path = SoVITS_model_path
|
||||||
|
|
||||||
synthesis_result = get_tts_wav(ref_wav_path=ref_audio_path,
|
synthesis_result = get_tts_wav(ref_wav_path=ref_audio_path,
|
||||||
prompt_text=ref_text,
|
prompt_text=ref_text,
|
||||||
prompt_language=language_combobox,
|
prompt_language=language_combobox,
|
||||||
text=target_text,
|
text=target_text,
|
||||||
text_language=language_combobox_02)
|
text_language=target_language_combobox)
|
||||||
|
|
||||||
result_list = list(synthesis_result)
|
result_list = list(synthesis_result)
|
||||||
|
|
||||||
if result_list:
|
if result_list:
|
||||||
@ -329,12 +871,9 @@ class GPTSoVITSGUI(QMainWindow):
|
|||||||
self.status_bar.showMessage("合成完成!输出路径:" + output_wav_path, 5000)
|
self.status_bar.showMessage("合成完成!输出路径:" + output_wav_path, 5000)
|
||||||
self.output_text.append("处理结果:\n" + result)
|
self.output_text.append("处理结果:\n" + result)
|
||||||
|
|
||||||
def main():
|
|
||||||
|
if __name__ == '__main__':
|
||||||
app = QApplication(sys.argv)
|
app = QApplication(sys.argv)
|
||||||
mainWin = GPTSoVITSGUI()
|
mainWin = GPTSoVITSGUI()
|
||||||
mainWin.show()
|
mainWin.show()
|
||||||
sys.exit(app.exec_())
|
sys.exit(app.exec_())
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
Loading…
x
Reference in New Issue
Block a user