mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-09-29 00:30:15 +08:00
fix spectrum take out working
This commit is contained in:
parent
911c53b1ee
commit
fd0fb35a49
@ -13,6 +13,7 @@ import json
|
||||
import os
|
||||
|
||||
import soundfile
|
||||
from tqdm import tqdm
|
||||
from text import cleaned_text_to_sequence
|
||||
|
||||
|
||||
@ -133,7 +134,7 @@ class T2SModel(nn.Module):
|
||||
y, k, v, y_emb, x_example = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
|
||||
|
||||
stop = False
|
||||
for idx in range(1, 1500):
|
||||
for idx in tqdm(range(1, 1500)):
|
||||
# [1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N]
|
||||
enco = self.stage_decoder(y, k, v, y_emb, x_example)
|
||||
y, k, v, y_emb, logits, samples = enco
|
||||
@ -230,19 +231,11 @@ class VitsModel(nn.Module):
|
||||
self.vq_model.eval()
|
||||
self.vq_model.load_state_dict(dict_s2["weight"], strict=False)
|
||||
#filter_length: 2048 sampling_rate: 32000 hop_length: 640 win_length: 2048
|
||||
def forward(self, text_seq, pred_semantic, ref_audio):
|
||||
refer = spectrogram_torch(
|
||||
ref_audio,
|
||||
self.hps.data.filter_length,
|
||||
self.hps.data.sampling_rate,
|
||||
self.hps.data.hop_length,
|
||||
self.hps.data.win_length,
|
||||
center=False,
|
||||
)
|
||||
def forward(self, text_seq, pred_semantic, ref_audio, spectrum):
|
||||
if self.sv_model is not None:
|
||||
sv_emb=self.sv_model.compute_embedding3_onnx(resample_audio(ref_audio, 32000, 16000))
|
||||
return self.vq_model(pred_semantic, text_seq, refer, sv_emb=sv_emb)[0, 0]
|
||||
return self.vq_model(pred_semantic, text_seq, refer)[0, 0]
|
||||
return self.vq_model(pred_semantic, text_seq, spectrum, sv_emb=sv_emb)[0, 0]
|
||||
return self.vq_model(pred_semantic, text_seq, spectrum)[0, 0]
|
||||
|
||||
|
||||
class GptSoVits(nn.Module):
|
||||
@ -251,24 +244,25 @@ class GptSoVits(nn.Module):
|
||||
self.vits = vits
|
||||
self.t2s = t2s
|
||||
|
||||
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content):
|
||||
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, spectrum, ssl_content):
|
||||
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
|
||||
audio = self.vits(text_seq, pred_semantic, ref_audio)
|
||||
audio = self.vits(text_seq, pred_semantic, ref_audio, spectrum)
|
||||
return audio
|
||||
|
||||
def export(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content, project_name):
|
||||
def export(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, spectrum, ssl_content, project_name):
|
||||
self.t2s.export(ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name)
|
||||
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
|
||||
torch.onnx.export(
|
||||
self.vits,
|
||||
(text_seq, pred_semantic, ref_audio),
|
||||
(text_seq, pred_semantic, ref_audio, spectrum),
|
||||
f"onnx/{project_name}/{project_name}_vits.onnx",
|
||||
input_names=["text_seq", "pred_semantic", "ref_audio"],
|
||||
input_names=["text_seq", "pred_semantic", "ref_audio", "spectrum"],
|
||||
output_names=["audio"],
|
||||
dynamic_axes={
|
||||
"text_seq": {1: "text_length"},
|
||||
"pred_semantic": {2: "pred_length"},
|
||||
"ref_audio": {1: "audio_length"},
|
||||
"text_seq": {0:"batch_size",1: "text_length"},
|
||||
"pred_semantic": {0: "batch_size", 2: "pred_length"},
|
||||
"ref_audio": {0: "batch_size", 1: "audio_length"},
|
||||
"spectrum": {0: "batch_size", 2: "spectrum_length"},
|
||||
},
|
||||
opset_version=17,
|
||||
verbose=False,
|
||||
@ -292,14 +286,23 @@ class HuBertSSLModel(nn.Module):
|
||||
self.model.eval()
|
||||
|
||||
def forward(self, ref_audio_32k):
|
||||
spectrum = spectrogram_torch(
|
||||
ref_audio_32k,
|
||||
2048,
|
||||
32000,
|
||||
640,
|
||||
2048,
|
||||
center=False,
|
||||
)
|
||||
|
||||
|
||||
ref_audio_16k = resample_audio(ref_audio_32k, 32000, 16000).unsqueeze(0)
|
||||
zero_tensor = torch.zeros((1, 4800), dtype=torch.float32)
|
||||
|
||||
# concate zero_tensor with waveform
|
||||
ref_audio_16k = torch.cat([ref_audio_16k, zero_tensor], dim=1)
|
||||
ssl_content = self.model(ref_audio_16k)["last_hidden_state"].transpose(1, 2)
|
||||
|
||||
return ssl_content
|
||||
return ssl_content, spectrum
|
||||
|
||||
|
||||
def export(vits_path, gpt_path, project_name, voice_model_version="v2"):
|
||||
@ -375,14 +378,17 @@ def export(vits_path, gpt_path, project_name, voice_model_version="v2"):
|
||||
|
||||
torch.onnx.export(ssl, (ref_audio32k,), f"onnx/{project_name}/{project_name}_hubertssl.onnx",
|
||||
input_names=["audio32k"],
|
||||
output_names=["hubert_ssl_output"],
|
||||
output_names=["hubert_ssl_output", "spectrum"],
|
||||
dynamic_axes={
|
||||
"audio32k": {0: "batch_size", 1: "sequence_length"},
|
||||
"hubert_ssl_output": {0: "batch_size", 2: "hubert_length"}
|
||||
"hubert_ssl_output": {0: "batch_size", 2: "hubert_length"},
|
||||
"spectrum": {0: "batch_size", 2: "spectrum_length"}
|
||||
})
|
||||
|
||||
ssl_content = ssl(ref_audio32k).float()
|
||||
gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ref_audio32k, ssl_content, project_name)
|
||||
[ssl_content, spectrum] = ssl(ref_audio32k)
|
||||
gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio32k, spectrum.float(), ssl_content.float())
|
||||
# exit()
|
||||
gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ref_audio32k, spectrum.float(), ssl_content.float(), project_name)
|
||||
|
||||
if voice_model_version == "v1":
|
||||
symbols = symbols_v1
|
||||
|
@ -86,10 +86,10 @@ def get_audio_hubert(audio_path):
|
||||
waveform = load_and_preprocess_audio(audio_path)
|
||||
ort_session = ort.InferenceSession(MODEL_PATH + "_export_hubertssl.onnx")
|
||||
ort_inputs = {ort_session.get_inputs()[0].name: waveform.numpy()}
|
||||
hubert_feature = ort_session.run(None, ort_inputs)[0].astype(np.float32)
|
||||
[hubert_feature, spectrum] = ort_session.run(None, ort_inputs)
|
||||
# transpose axis 1 and 2 with numpy
|
||||
# hubert_feature = hubert_feature.transpose(0, 2, 1)
|
||||
return hubert_feature
|
||||
return hubert_feature, spectrum
|
||||
|
||||
def preprocess_text(text:str):
|
||||
preprocessor = TextPreprocessorOnnx("playground/bert")
|
||||
@ -100,7 +100,7 @@ def preprocess_text(text:str):
|
||||
|
||||
# input_phones_saved = np.load("playground/ref/input_phones.npy")
|
||||
# input_bert_saved = np.load("playground/ref/input_bert.npy").T.astype(np.float32)
|
||||
[input_phones, input_bert] = preprocess_text("震撼视角,感受开幕式,闭幕式烟花")
|
||||
[input_phones, input_bert] = preprocess_text("像大雨匆匆打击过的屋檐")
|
||||
|
||||
|
||||
# ref_phones = np.load("playground/ref/ref_phones.npy")
|
||||
@ -108,7 +108,7 @@ def preprocess_text(text:str):
|
||||
[ref_phones, ref_bert] = preprocess_text("今日江苏苏州荷花市集开张热闹与浪漫交织")
|
||||
|
||||
|
||||
audio_prompt_hubert = get_audio_hubert("playground/ref/audio.wav")
|
||||
[audio_prompt_hubert, spectrum] = get_audio_hubert("playground/ref/audio.wav")
|
||||
|
||||
|
||||
encoder = ort.InferenceSession(MODEL_PATH+"_export_t2s_encoder.onnx")
|
||||
@ -160,7 +160,8 @@ vtis = ort.InferenceSession(MODEL_PATH+"_export_vits.onnx")
|
||||
[audio] = vtis.run(None, {
|
||||
"text_seq": input_phones,
|
||||
"pred_semantic": pred_semantic,
|
||||
"ref_audio": ref_audio
|
||||
"ref_audio": ref_audio,
|
||||
"spectrum": spectrum.astype(np.float32)
|
||||
})
|
||||
|
||||
audio_postprocess([audio])
|
||||
|
Loading…
x
Reference in New Issue
Block a user