mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-07 07:14:52 +08:00
update
This commit is contained in:
parent
dc8ac29a50
commit
fb257f32e6
230
README.md
230
README.md
@ -1,7 +1,7 @@
|
||||
<div align="center">
|
||||
|
||||
<h1>GPT-SoVITS-WebUI</h1>
|
||||
A Powerful Few-shot Voice Conversion and Text-to-Speech WebUI.<br><br>
|
||||
强大的少样本语音转换与语音合成Web用户界面。<br><br>
|
||||
|
||||
[](https://github.com/RVC-Boss/GPT-SoVITS)
|
||||
|
||||
@ -11,118 +11,60 @@ A Powerful Few-shot Voice Conversion and Text-to-Speech WebUI.<br><br>
|
||||
[](https://github.com/RVC-Boss/GPT-SoVITS/blob/main/LICENSE)
|
||||
[](https://huggingface.co/lj1995/GPT-SoVITS/tree/main)
|
||||
|
||||
[**English**](./README.md) | [**中文简体**](./docs/cn/README.md) | [**日本語**](./docs/ja/README.md) | [**한국어**](./docs/ko/README.md)
|
||||
[**English**](../../README.md) | [**中文简体**](./README.md) | [**日本語**](../ja/README.md) | [**한국어**](../ko/README.md)
|
||||
|
||||
</div>
|
||||
|
||||
---
|
||||
|
||||
> Check out our [demo video](https://www.bilibili.com/video/BV12g4y1m7Uw) here!
|
||||
|
||||
Unseen speakers few-shot fine-tuning demo:
|
||||
> 查看我们的介绍视频 [demo video](https://www.bilibili.com/video/BV12g4y1m7Uw)
|
||||
|
||||
https://github.com/RVC-Boss/GPT-SoVITS/assets/129054828/05bee1fa-bdd8-4d85-9350-80c060ab47fb
|
||||
|
||||
For users in China region, you can use AutoDL Cloud Docker to experience the full functionality online: https://www.codewithgpu.com/i/RVC-Boss/GPT-SoVITS/GPT-SoVITS-Official
|
||||
中国地区用户可使用 AutoDL 云端镜像进行体验:https://www.codewithgpu.com/i/RVC-Boss/GPT-SoVITS/GPT-SoVITS-Official
|
||||
|
||||
## Features:
|
||||
## 功能:
|
||||
|
||||
1. **Zero-shot TTS:** Input a 5-second vocal sample and experience instant text-to-speech conversion.
|
||||
1. **零样本文本到语音(TTS):** 输入 5 秒的声音样本,即刻体验文本到语音转换。
|
||||
|
||||
2. **Few-shot TTS:** Fine-tune the model with just 1 minute of training data for improved voice similarity and realism.
|
||||
2. **少样本 TTS:** 仅需 1 分钟的训练数据即可微调模型,提升声音相似度和真实感。
|
||||
|
||||
3. **Cross-lingual Support:** Inference in languages different from the training dataset, currently supporting English, Japanese, and Chinese.
|
||||
3. **跨语言支持:** 支持与训练数据集不同语言的推理,目前支持英语、日语和中文。
|
||||
|
||||
4. **WebUI Tools:** Integrated tools include voice accompaniment separation, automatic training set segmentation, Chinese ASR, and text labeling, assisting beginners in creating training datasets and GPT/SoVITS models.
|
||||
4. **WebUI 工具:** 集成工具包括声音伴奏分离、自动训练集分割、中文自动语音识别(ASR)和文本标注,协助初学者创建训练数据集和 GPT/SoVITS 模型。
|
||||
|
||||
## Environment Preparation
|
||||
## 环境准备
|
||||
|
||||
If you are a Windows user (tested with win>=10) you can install directly via the prezip. Just download the [prezip](https://huggingface.co/lj1995/GPT-SoVITS-windows-package/resolve/main/GPT-SoVITS-beta.7z?download=true), unzip it and double-click go-webui.bat to start GPT-SoVITS-WebUI.
|
||||
如果你是 Windows 用户(已在 win>=10 上测试),可以直接通过预打包文件安装。只需下载[预打包文件](https://huggingface.co/lj1995/GPT-SoVITS-windows-package/resolve/main/GPT-SoVITS-beta.7z?download=true),解压后双击 go-webui.bat 即可启动 GPT-SoVITS-WebUI。
|
||||
|
||||
### Tested Environments
|
||||
### 测试通过的 Python 和 PyTorch 版本
|
||||
|
||||
- Python 3.9, PyTorch 2.0.1, CUDA 11
|
||||
- Python 3.10.13, PyTorch 2.1.2, CUDA 12.3
|
||||
- Python 3.9, PyTorch 2.3.0.dev20240122, macOS 14.3 (Apple silicon, GPU)
|
||||
- Python 3.9、PyTorch 2.0.1 和 CUDA 11
|
||||
- Python 3.10.13, PyTorch 2.1.2 和 CUDA 12.3
|
||||
- Python 3.9、Pytorch 2.3.0.dev20240122 和 macOS 14.3(Apple 芯片,GPU)
|
||||
|
||||
_Note: numba==0.56.4 require py<3.11_
|
||||
_注意: numba==0.56.4 需要 python<3.11_
|
||||
|
||||
### Quick Install with Conda
|
||||
### Mac 用户
|
||||
|
||||
```bash
|
||||
conda create -n GPTSoVits python=3.9
|
||||
conda activate GPTSoVits
|
||||
bash install.sh
|
||||
```
|
||||
如果你是 Mac 用户,请先确保满足以下条件以使用 GPU 进行训练和推理:
|
||||
|
||||
### Install Manually
|
||||
- 搭载 Apple 芯片或 AMD GPU 的 Mac
|
||||
- macOS 12.3 或更高版本
|
||||
- 已通过运行`xcode-select --install`安装 Xcode command-line tools
|
||||
|
||||
#### Pip Packages
|
||||
_其他 Mac 仅支持使用 CPU 进行推理_
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
然后使用以下命令安装:
|
||||
|
||||
#### FFmpeg
|
||||
|
||||
##### Conda Users
|
||||
|
||||
```bash
|
||||
conda install ffmpeg
|
||||
```
|
||||
|
||||
##### Ubuntu/Debian Users
|
||||
|
||||
```bash
|
||||
sudo apt install ffmpeg
|
||||
sudo apt install libsox-dev
|
||||
conda install -c conda-forge 'ffmpeg<7'
|
||||
```
|
||||
|
||||
##### MacOS Users
|
||||
|
||||
```bash
|
||||
brew install ffmpeg
|
||||
```
|
||||
|
||||
##### Windows Users
|
||||
|
||||
Download and place [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe) and [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe) in the GPT-SoVITS root.
|
||||
|
||||
### Pretrained Models
|
||||
|
||||
Download pretrained models from [GPT-SoVITS Models](https://huggingface.co/lj1995/GPT-SoVITS) and place them in `GPT_SoVITS/pretrained_models`.
|
||||
|
||||
For UVR5 (Vocals/Accompaniment Separation & Reverberation Removal, additionally), download models from [UVR5 Weights](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/uvr5_weights) and place them in `tools/uvr5/uvr5_weights`.
|
||||
|
||||
Users in China region can download these two models by entering the links below and clicking "Download a copy"
|
||||
|
||||
- [GPT-SoVITS Models](https://www.icloud.com.cn/iclouddrive/056y_Xog_HXpALuVUjscIwTtg#GPT-SoVITS_Models)
|
||||
|
||||
- [UVR5 Weights](https://www.icloud.com.cn/iclouddrive/0bekRKDiJXboFhbfm3lM2fVbA#UVR5_Weights)
|
||||
|
||||
For Chinese ASR (additionally), download models from [Damo ASR Model](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/files), [Damo VAD Model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/files), and [Damo Punc Model](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/files) and place them in `tools/damo_asr/models`.
|
||||
|
||||
### For Mac Users
|
||||
|
||||
If you are a Mac user, make sure you meet the following conditions for training and inferencing with GPU:
|
||||
|
||||
- Mac computers with Apple silicon or AMD GPUs
|
||||
- macOS 12.3 or later
|
||||
- Xcode command-line tools installed by running `xcode-select --install`
|
||||
|
||||
_Other Macs can do inference with CPU only._
|
||||
|
||||
Then install by using the following commands:
|
||||
|
||||
#### Create Environment
|
||||
#### 创建环境
|
||||
|
||||
```bash
|
||||
conda create -n GPTSoVits python=3.9
|
||||
conda activate GPTSoVits
|
||||
```
|
||||
|
||||
#### Install Requirements
|
||||
#### 安装依赖
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
@ -130,76 +72,132 @@ pip uninstall torch torchaudio
|
||||
pip3 install --pre torch torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu
|
||||
```
|
||||
|
||||
### Using Docker
|
||||
### 使用 Conda 快速安装
|
||||
|
||||
#### docker-compose.yaml configuration
|
||||
```bash
|
||||
conda create -n GPTSoVits python=3.9
|
||||
conda activate GPTSoVits
|
||||
bash install.sh
|
||||
```
|
||||
|
||||
0. Regarding image tags: Due to rapid updates in the codebase and the slow process of packaging and testing images, please check [Docker Hub](https://hub.docker.com/r/breakstring/gpt-sovits) for the currently packaged latest images and select as per your situation, or alternatively, build locally using a Dockerfile according to your own needs.
|
||||
1. Environment Variables:
|
||||
### 手动安装包
|
||||
|
||||
- is_half: Controls half-precision/double-precision. This is typically the cause if the content under the directories 4-cnhubert/5-wav32k is not generated correctly during the "SSL extracting" step. Adjust to True or False based on your actual situation.
|
||||
#### Pip 包
|
||||
|
||||
2. Volumes Configuration,The application's root directory inside the container is set to /workspace. The default docker-compose.yaml lists some practical examples for uploading/downloading content.
|
||||
3. shm_size: The default available memory for Docker Desktop on Windows is too small, which can cause abnormal operations. Adjust according to your own situation.
|
||||
4. Under the deploy section, GPU-related settings should be adjusted cautiously according to your system and actual circumstances.
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
#### Running with docker compose
|
||||
#### FFmpeg
|
||||
|
||||
##### Conda 使用者
|
||||
|
||||
```bash
|
||||
conda install ffmpeg
|
||||
```
|
||||
|
||||
##### Ubuntu/Debian 使用者
|
||||
|
||||
```bash
|
||||
sudo apt install ffmpeg
|
||||
sudo apt install libsox-dev
|
||||
conda install -c conda-forge 'ffmpeg<7'
|
||||
```
|
||||
|
||||
##### MacOS 使用者
|
||||
|
||||
```bash
|
||||
brew install ffmpeg
|
||||
```
|
||||
|
||||
##### Windows 使用者
|
||||
|
||||
下载并将 [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe) 和 [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe) 放置在 GPT-SoVITS 根目录下。
|
||||
|
||||
### 在 Docker 中使用
|
||||
|
||||
#### docker-compose.yaml 设置
|
||||
|
||||
0. image 的标签:由于代码库更新很快,镜像的打包和测试又很慢,所以请自行在 [Docker Hub](https://hub.docker.com/r/breakstring/gpt-sovits) 查看当前打包好的最新的镜像并根据自己的情况选用,或者在本地根据您自己的需求通过 Dockerfile 进行构建。
|
||||
1. 环境变量:
|
||||
|
||||
- is_half: 半精度/双精度控制。在进行 "SSL extracting" 步骤时如果无法正确生成 4-cnhubert/5-wav32k 目录下的内容时,一般都是它引起的,可以根据实际情况来调整为 True 或者 False。
|
||||
|
||||
2. Volume 设置,容器内的应用根目录设置为 /workspace。 默认的 docker-compose.yaml 中列出了一些实际的例子,便于上传/下载内容。
|
||||
3. shm_size:Windows 下的 Docker Desktop 默认可用内存过小,会导致运行异常,根据自己情况酌情设置。
|
||||
4. deploy 小节下的 gpu 相关内容,请根据您的系统和实际情况酌情设置。
|
||||
|
||||
#### 通过 docker compose 运行
|
||||
|
||||
```
|
||||
docker compose -f "docker-compose.yaml" up -d
|
||||
```
|
||||
|
||||
#### Running with docker command
|
||||
#### 通过 docker 命令运行
|
||||
|
||||
As above, modify the corresponding parameters based on your actual situation, then run the following command:
|
||||
同上,根据您自己的实际情况修改对应的参数,然后运行如下命令:
|
||||
|
||||
```
|
||||
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:xxxxx
|
||||
```
|
||||
|
||||
## Dataset Format
|
||||
### 预训练模型
|
||||
|
||||
The TTS annotation .list file format:
|
||||
从 [GPT-SoVITS Models](https://huggingface.co/lj1995/GPT-SoVITS) 下载预训练模型,并将它们放置在 `GPT_SoVITS\pretrained_models` 中。
|
||||
|
||||
对于 UVR5(人声/伴奏分离和混响移除,另外),从 [UVR5 Weights](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/uvr5_weights) 下载模型,并将它们放置在 `tools/uvr5/uvr5_weights` 中。
|
||||
|
||||
中国地区用户可以进入以下链接并点击“下载副本”下载以上两个模型:
|
||||
|
||||
- [GPT-SoVITS Models](https://www.icloud.com.cn/iclouddrive/056y_Xog_HXpALuVUjscIwTtg#GPT-SoVITS_Models)
|
||||
|
||||
- [UVR5 Weights](https://www.icloud.com.cn/iclouddrive/0bekRKDiJXboFhbfm3lM2fVbA#UVR5_Weights)
|
||||
|
||||
对于中文自动语音识别(另外),从 [Damo ASR Model](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/files), [Damo VAD Model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/files), 和 [Damo Punc Model](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/files) 下载模型,并将它们放置在 `tools/damo_asr/models` 中。
|
||||
|
||||
## 数据集格式
|
||||
|
||||
文本到语音(TTS)注释 .list 文件格式:
|
||||
|
||||
```
|
||||
vocal_path|speaker_name|language|text
|
||||
```
|
||||
|
||||
Language dictionary:
|
||||
语言字典:
|
||||
|
||||
- 'zh': Chinese
|
||||
- 'ja': Japanese
|
||||
- 'en': English
|
||||
|
||||
Example:
|
||||
示例:
|
||||
|
||||
```
|
||||
D:\GPT-SoVITS\xxx/xxx.wav|xxx|en|I like playing Genshin.
|
||||
```
|
||||
|
||||
## Todo List
|
||||
## 待办事项清单
|
||||
|
||||
- [ ] **High Priority:**
|
||||
- [ ] **高优先级:**
|
||||
|
||||
- [x] Localization in Japanese and English.
|
||||
- [ ] User guide.
|
||||
- [x] Japanese and English dataset fine tune training.
|
||||
- [x] 日语和英语的本地化。
|
||||
- [ ] 用户指南。
|
||||
- [x] 日语和英语数据集微调训练。
|
||||
|
||||
- [ ] **Features:**
|
||||
- [ ] Zero-shot voice conversion (5s) / few-shot voice conversion (1min).
|
||||
- [ ] TTS speaking speed control.
|
||||
- [ ] Enhanced TTS emotion control.
|
||||
- [ ] Experiment with changing SoVITS token inputs to probability distribution of vocabs.
|
||||
- [ ] Improve English and Japanese text frontend.
|
||||
- [ ] Develop tiny and larger-sized TTS models.
|
||||
- [x] Colab scripts.
|
||||
- [ ] Try expand training dataset (2k hours -> 10k hours).
|
||||
- [ ] better sovits base model (enhanced audio quality)
|
||||
- [ ] model mix
|
||||
- [ ] 零样本声音转换(5 秒)/ 少样本声音转换(1 分钟)。
|
||||
- [ ] TTS 语速控制。
|
||||
- [ ] 增强的 TTS 情感控制。
|
||||
- [ ] 尝试将 SoVITS 令牌输入更改为词汇的概率分布。
|
||||
- [ ] 改进英语和日语文本前端。
|
||||
- [ ] 开发体积小和更大的 TTS 模型。
|
||||
- [x] Colab 脚本。
|
||||
- [ ] 扩展训练数据集(从 2k 小时到 10k 小时)。
|
||||
- [ ] 更好的 sovits 基础模型(增强的音频质量)。
|
||||
- [ ] 模型混合。
|
||||
|
||||
## Credits
|
||||
## 致谢
|
||||
|
||||
Special thanks to the following projects and contributors:
|
||||
特别感谢以下项目和贡献者:
|
||||
|
||||
- [ar-vits](https://github.com/innnky/ar-vits)
|
||||
- [SoundStorm](https://github.com/yangdongchao/SoundStorm/tree/master/soundstorm/s1/AR)
|
||||
@ -216,7 +214,7 @@ Special thanks to the following projects and contributors:
|
||||
- [FFmpeg](https://github.com/FFmpeg/FFmpeg)
|
||||
- [gradio](https://github.com/gradio-app/gradio)
|
||||
|
||||
## Thanks to all contributors for their efforts
|
||||
## 感谢所有贡献者的努力
|
||||
|
||||
<a href="https://github.com/RVC-Boss/GPT-SoVITS/graphs/contributors" target="_blank">
|
||||
<img src="https://contrib.rocks/image?repo=RVC-Boss/GPT-SoVITS" />
|
||||
|
223
docs/en/README.md
Normal file
223
docs/en/README.md
Normal file
@ -0,0 +1,223 @@
|
||||
<div align="center">
|
||||
|
||||
<h1>GPT-SoVITS-WebUI</h1>
|
||||
A Powerful Few-shot Voice Conversion and Text-to-Speech WebUI.<br><br>
|
||||
|
||||
[](https://github.com/RVC-Boss/GPT-SoVITS)
|
||||
|
||||
<img src="https://counter.seku.su/cmoe?name=gptsovits&theme=r34" /><br>
|
||||
|
||||
[](https://colab.research.google.com/github/RVC-Boss/GPT-SoVITS/blob/main/colab_webui.ipynb)
|
||||
[](https://github.com/RVC-Boss/GPT-SoVITS/blob/main/LICENSE)
|
||||
[](https://huggingface.co/lj1995/GPT-SoVITS/tree/main)
|
||||
|
||||
[**English**](./README.md) | [**中文简体**](./docs/cn/README.md) | [**日本語**](./docs/ja/README.md) | [**한국어**](./docs/ko/README.md)
|
||||
|
||||
</div>
|
||||
|
||||
---
|
||||
|
||||
> Check out our [demo video](https://www.bilibili.com/video/BV12g4y1m7Uw) here!
|
||||
|
||||
Unseen speakers few-shot fine-tuning demo:
|
||||
|
||||
https://github.com/RVC-Boss/GPT-SoVITS/assets/129054828/05bee1fa-bdd8-4d85-9350-80c060ab47fb
|
||||
|
||||
For users in China region, you can use AutoDL Cloud Docker to experience the full functionality online: https://www.codewithgpu.com/i/RVC-Boss/GPT-SoVITS/GPT-SoVITS-Official
|
||||
|
||||
## Features:
|
||||
|
||||
1. **Zero-shot TTS:** Input a 5-second vocal sample and experience instant text-to-speech conversion.
|
||||
|
||||
2. **Few-shot TTS:** Fine-tune the model with just 1 minute of training data for improved voice similarity and realism.
|
||||
|
||||
3. **Cross-lingual Support:** Inference in languages different from the training dataset, currently supporting English, Japanese, and Chinese.
|
||||
|
||||
4. **WebUI Tools:** Integrated tools include voice accompaniment separation, automatic training set segmentation, Chinese ASR, and text labeling, assisting beginners in creating training datasets and GPT/SoVITS models.
|
||||
|
||||
## Environment Preparation
|
||||
|
||||
If you are a Windows user (tested with win>=10) you can install directly via the prezip. Just download the [prezip](https://huggingface.co/lj1995/GPT-SoVITS-windows-package/resolve/main/GPT-SoVITS-beta.7z?download=true), unzip it and double-click go-webui.bat to start GPT-SoVITS-WebUI.
|
||||
|
||||
### Tested Environments
|
||||
|
||||
- Python 3.9, PyTorch 2.0.1, CUDA 11
|
||||
- Python 3.10.13, PyTorch 2.1.2, CUDA 12.3
|
||||
- Python 3.9, PyTorch 2.3.0.dev20240122, macOS 14.3 (Apple silicon, GPU)
|
||||
|
||||
_Note: numba==0.56.4 require py<3.11_
|
||||
|
||||
### Quick Install with Conda
|
||||
|
||||
```bash
|
||||
conda create -n GPTSoVits python=3.9
|
||||
conda activate GPTSoVits
|
||||
bash install.sh
|
||||
```
|
||||
|
||||
### Install Manually
|
||||
|
||||
#### Pip Packages
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
#### FFmpeg
|
||||
|
||||
##### Conda Users
|
||||
|
||||
```bash
|
||||
conda install ffmpeg
|
||||
```
|
||||
|
||||
##### Ubuntu/Debian Users
|
||||
|
||||
```bash
|
||||
sudo apt install ffmpeg
|
||||
sudo apt install libsox-dev
|
||||
conda install -c conda-forge 'ffmpeg<7'
|
||||
```
|
||||
|
||||
##### MacOS Users
|
||||
|
||||
```bash
|
||||
brew install ffmpeg
|
||||
```
|
||||
|
||||
##### Windows Users
|
||||
|
||||
Download and place [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe) and [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe) in the GPT-SoVITS root.
|
||||
|
||||
### Pretrained Models
|
||||
|
||||
Download pretrained models from [GPT-SoVITS Models](https://huggingface.co/lj1995/GPT-SoVITS) and place them in `GPT_SoVITS/pretrained_models`.
|
||||
|
||||
For UVR5 (Vocals/Accompaniment Separation & Reverberation Removal, additionally), download models from [UVR5 Weights](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/uvr5_weights) and place them in `tools/uvr5/uvr5_weights`.
|
||||
|
||||
Users in China region can download these two models by entering the links below and clicking "Download a copy"
|
||||
|
||||
- [GPT-SoVITS Models](https://www.icloud.com.cn/iclouddrive/056y_Xog_HXpALuVUjscIwTtg#GPT-SoVITS_Models)
|
||||
|
||||
- [UVR5 Weights](https://www.icloud.com.cn/iclouddrive/0bekRKDiJXboFhbfm3lM2fVbA#UVR5_Weights)
|
||||
|
||||
For Chinese ASR (additionally), download models from [Damo ASR Model](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/files), [Damo VAD Model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/files), and [Damo Punc Model](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/files) and place them in `tools/damo_asr/models`.
|
||||
|
||||
### For Mac Users
|
||||
|
||||
If you are a Mac user, make sure you meet the following conditions for training and inferencing with GPU:
|
||||
|
||||
- Mac computers with Apple silicon or AMD GPUs
|
||||
- macOS 12.3 or later
|
||||
- Xcode command-line tools installed by running `xcode-select --install`
|
||||
|
||||
_Other Macs can do inference with CPU only._
|
||||
|
||||
Then install by using the following commands:
|
||||
|
||||
#### Create Environment
|
||||
|
||||
```bash
|
||||
conda create -n GPTSoVits python=3.9
|
||||
conda activate GPTSoVits
|
||||
```
|
||||
|
||||
#### Install Requirements
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
pip uninstall torch torchaudio
|
||||
pip3 install --pre torch torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu
|
||||
```
|
||||
|
||||
### Using Docker
|
||||
|
||||
#### docker-compose.yaml configuration
|
||||
|
||||
0. Regarding image tags: Due to rapid updates in the codebase and the slow process of packaging and testing images, please check [Docker Hub](https://hub.docker.com/r/breakstring/gpt-sovits) for the currently packaged latest images and select as per your situation, or alternatively, build locally using a Dockerfile according to your own needs.
|
||||
1. Environment Variables:
|
||||
|
||||
- is_half: Controls half-precision/double-precision. This is typically the cause if the content under the directories 4-cnhubert/5-wav32k is not generated correctly during the "SSL extracting" step. Adjust to True or False based on your actual situation.
|
||||
|
||||
2. Volumes Configuration,The application's root directory inside the container is set to /workspace. The default docker-compose.yaml lists some practical examples for uploading/downloading content.
|
||||
3. shm_size: The default available memory for Docker Desktop on Windows is too small, which can cause abnormal operations. Adjust according to your own situation.
|
||||
4. Under the deploy section, GPU-related settings should be adjusted cautiously according to your system and actual circumstances.
|
||||
|
||||
#### Running with docker compose
|
||||
|
||||
```
|
||||
docker compose -f "docker-compose.yaml" up -d
|
||||
```
|
||||
|
||||
#### Running with docker command
|
||||
|
||||
As above, modify the corresponding parameters based on your actual situation, then run the following command:
|
||||
|
||||
```
|
||||
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:xxxxx
|
||||
```
|
||||
|
||||
## Dataset Format
|
||||
|
||||
The TTS annotation .list file format:
|
||||
|
||||
```
|
||||
vocal_path|speaker_name|language|text
|
||||
```
|
||||
|
||||
Language dictionary:
|
||||
|
||||
- 'zh': Chinese
|
||||
- 'ja': Japanese
|
||||
- 'en': English
|
||||
|
||||
Example:
|
||||
|
||||
```
|
||||
D:\GPT-SoVITS\xxx/xxx.wav|xxx|en|I like playing Genshin.
|
||||
```
|
||||
|
||||
## Todo List
|
||||
|
||||
- [ ] **High Priority:**
|
||||
|
||||
- [x] Localization in Japanese and English.
|
||||
- [ ] User guide.
|
||||
- [x] Japanese and English dataset fine tune training.
|
||||
|
||||
- [ ] **Features:**
|
||||
- [ ] Zero-shot voice conversion (5s) / few-shot voice conversion (1min).
|
||||
- [ ] TTS speaking speed control.
|
||||
- [ ] Enhanced TTS emotion control.
|
||||
- [ ] Experiment with changing SoVITS token inputs to probability distribution of vocabs.
|
||||
- [ ] Improve English and Japanese text frontend.
|
||||
- [ ] Develop tiny and larger-sized TTS models.
|
||||
- [x] Colab scripts.
|
||||
- [ ] Try expand training dataset (2k hours -> 10k hours).
|
||||
- [ ] better sovits base model (enhanced audio quality)
|
||||
- [ ] model mix
|
||||
|
||||
## Credits
|
||||
|
||||
Special thanks to the following projects and contributors:
|
||||
|
||||
- [ar-vits](https://github.com/innnky/ar-vits)
|
||||
- [SoundStorm](https://github.com/yangdongchao/SoundStorm/tree/master/soundstorm/s1/AR)
|
||||
- [vits](https://github.com/jaywalnut310/vits)
|
||||
- [TransferTTS](https://github.com/hcy71o/TransferTTS/blob/master/models.py#L556)
|
||||
- [Chinese Speech Pretrain](https://github.com/TencentGameMate/chinese_speech_pretrain)
|
||||
- [contentvec](https://github.com/auspicious3000/contentvec/)
|
||||
- [hifi-gan](https://github.com/jik876/hifi-gan)
|
||||
- [Chinese-Roberta-WWM-Ext-Large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large)
|
||||
- [fish-speech](https://github.com/fishaudio/fish-speech/blob/main/tools/llama/generate.py#L41)
|
||||
- [ultimatevocalremovergui](https://github.com/Anjok07/ultimatevocalremovergui)
|
||||
- [audio-slicer](https://github.com/openvpi/audio-slicer)
|
||||
- [SubFix](https://github.com/cronrpc/SubFix)
|
||||
- [FFmpeg](https://github.com/FFmpeg/FFmpeg)
|
||||
- [gradio](https://github.com/gradio-app/gradio)
|
||||
|
||||
## Thanks to all contributors for their efforts
|
||||
|
||||
<a href="https://github.com/RVC-Boss/GPT-SoVITS/graphs/contributors" target="_blank">
|
||||
<img src="https://contrib.rocks/image?repo=RVC-Boss/GPT-SoVITS" />
|
||||
</a>
|
Loading…
x
Reference in New Issue
Block a user