mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-07 07:02:57 +08:00
split train && interence ui
This commit is contained in:
parent
e60988a568
commit
f1acdafd20
@ -1,606 +1,13 @@
|
||||
'''
|
||||
按中英混合识别
|
||||
按日英混合识别
|
||||
多语种启动切分识别语种
|
||||
全部按中文识别
|
||||
全部按英文识别
|
||||
全部按日文识别
|
||||
'''
|
||||
import os, re, logging
|
||||
import LangSegment
|
||||
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
||||
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
||||
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
||||
logging.getLogger("httpx").setLevel(logging.ERROR)
|
||||
logging.getLogger("asyncio").setLevel(logging.ERROR)
|
||||
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
||||
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
||||
import pdb
|
||||
|
||||
if os.path.exists("./gweight.txt"):
|
||||
with open("./gweight.txt", 'r', encoding="utf-8") as file:
|
||||
gweight_data = file.read()
|
||||
gpt_path = os.environ.get(
|
||||
"gpt_path", gweight_data)
|
||||
else:
|
||||
gpt_path = os.environ.get(
|
||||
"gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
|
||||
|
||||
if os.path.exists("./sweight.txt"):
|
||||
with open("./sweight.txt", 'r', encoding="utf-8") as file:
|
||||
sweight_data = file.read()
|
||||
sovits_path = os.environ.get("sovits_path", sweight_data)
|
||||
else:
|
||||
sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth")
|
||||
# gpt_path = os.environ.get(
|
||||
# "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||
# )
|
||||
# sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth")
|
||||
cnhubert_base_path = os.environ.get(
|
||||
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
||||
)
|
||||
bert_path = os.environ.get(
|
||||
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
||||
)
|
||||
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
||||
infer_ttswebui = int(infer_ttswebui)
|
||||
is_share = os.environ.get("is_share", "False")
|
||||
is_share = eval(is_share)
|
||||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
is_half = eval(os.environ.get("is_half", "True"))
|
||||
import gradio as gr
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
import numpy as np
|
||||
import librosa, torch
|
||||
from feature_extractor import cnhubert
|
||||
|
||||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||||
|
||||
from module.models import SynthesizerTrn
|
||||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||
from text import cleaned_text_to_sequence
|
||||
from text.cleaner import clean_text
|
||||
from time import time as ttime
|
||||
from module.mel_processing import spectrogram_torch
|
||||
from my_utils import load_audio
|
||||
import os
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
from interence_base import sovits_path, gpt_path, change_choices, GPT_names, custom_sort_key, SoVITS_names, change_sovits_weights, change_gpt_weights, get_tts_wav, cut1, cut2, cut3, cut4, cut5
|
||||
import gradio as gr
|
||||
|
||||
i18n = I18nAuto()
|
||||
|
||||
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
elif torch.backends.mps.is_available():
|
||||
device = "mps"
|
||||
else:
|
||||
device = "cpu"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
||||
if is_half == True:
|
||||
bert_model = bert_model.half().to(device)
|
||||
else:
|
||||
bert_model = bert_model.to(device)
|
||||
|
||||
|
||||
def get_bert_feature(text, word2ph):
|
||||
with torch.no_grad():
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
for i in inputs:
|
||||
inputs[i] = inputs[i].to(device)
|
||||
res = bert_model(**inputs, output_hidden_states=True)
|
||||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||||
assert len(word2ph) == len(text)
|
||||
phone_level_feature = []
|
||||
for i in range(len(word2ph)):
|
||||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||||
phone_level_feature.append(repeat_feature)
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
return phone_level_feature.T
|
||||
|
||||
|
||||
class DictToAttrRecursive(dict):
|
||||
def __init__(self, input_dict):
|
||||
super().__init__(input_dict)
|
||||
for key, value in input_dict.items():
|
||||
if isinstance(value, dict):
|
||||
value = DictToAttrRecursive(value)
|
||||
self[key] = value
|
||||
setattr(self, key, value)
|
||||
|
||||
def __getattr__(self, item):
|
||||
try:
|
||||
return self[item]
|
||||
except KeyError:
|
||||
raise AttributeError(f"Attribute {item} not found")
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
if isinstance(value, dict):
|
||||
value = DictToAttrRecursive(value)
|
||||
super(DictToAttrRecursive, self).__setitem__(key, value)
|
||||
super().__setattr__(key, value)
|
||||
|
||||
def __delattr__(self, item):
|
||||
try:
|
||||
del self[item]
|
||||
except KeyError:
|
||||
raise AttributeError(f"Attribute {item} not found")
|
||||
|
||||
|
||||
ssl_model = cnhubert.get_model()
|
||||
if is_half == True:
|
||||
ssl_model = ssl_model.half().to(device)
|
||||
else:
|
||||
ssl_model = ssl_model.to(device)
|
||||
|
||||
|
||||
def change_sovits_weights(sovits_path):
|
||||
global vq_model, hps
|
||||
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
||||
hps = dict_s2["config"]
|
||||
hps = DictToAttrRecursive(hps)
|
||||
hps.model.semantic_frame_rate = "25hz"
|
||||
vq_model = SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model
|
||||
)
|
||||
if ("pretrained" not in sovits_path):
|
||||
del vq_model.enc_q
|
||||
if is_half == True:
|
||||
vq_model = vq_model.half().to(device)
|
||||
else:
|
||||
vq_model = vq_model.to(device)
|
||||
vq_model.eval()
|
||||
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
||||
with open("./sweight.txt", "w", encoding="utf-8") as f:
|
||||
f.write(sovits_path)
|
||||
|
||||
|
||||
change_sovits_weights(sovits_path)
|
||||
|
||||
|
||||
def change_gpt_weights(gpt_path):
|
||||
global hz, max_sec, t2s_model, config
|
||||
hz = 50
|
||||
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
||||
config = dict_s1["config"]
|
||||
max_sec = config["data"]["max_sec"]
|
||||
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
||||
t2s_model.load_state_dict(dict_s1["weight"])
|
||||
if is_half == True:
|
||||
t2s_model = t2s_model.half()
|
||||
t2s_model = t2s_model.to(device)
|
||||
t2s_model.eval()
|
||||
total = sum([param.nelement() for param in t2s_model.parameters()])
|
||||
print("Number of parameter: %.2fM" % (total / 1e6))
|
||||
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)
|
||||
|
||||
|
||||
change_gpt_weights(gpt_path)
|
||||
|
||||
|
||||
def get_spepc(hps, filename):
|
||||
audio = load_audio(filename, int(hps.data.sampling_rate))
|
||||
audio = torch.FloatTensor(audio)
|
||||
audio_norm = audio
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
hps.data.filter_length,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.hop_length,
|
||||
hps.data.win_length,
|
||||
center=False,
|
||||
)
|
||||
return spec
|
||||
|
||||
|
||||
dict_language = {
|
||||
i18n("中文"): "all_zh",#全部按中文识别
|
||||
i18n("英文"): "en",#全部按英文识别#######不变
|
||||
i18n("日文"): "all_ja",#全部按日文识别
|
||||
i18n("中英混合"): "zh",#按中英混合识别####不变
|
||||
i18n("日英混合"): "ja",#按日英混合识别####不变
|
||||
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
||||
}
|
||||
|
||||
|
||||
def splite_en_inf(sentence, language):
|
||||
pattern = re.compile(r'[a-zA-Z ]+')
|
||||
textlist = []
|
||||
langlist = []
|
||||
pos = 0
|
||||
for match in pattern.finditer(sentence):
|
||||
start, end = match.span()
|
||||
if start > pos:
|
||||
textlist.append(sentence[pos:start])
|
||||
langlist.append(language)
|
||||
textlist.append(sentence[start:end])
|
||||
langlist.append("en")
|
||||
pos = end
|
||||
if pos < len(sentence):
|
||||
textlist.append(sentence[pos:])
|
||||
langlist.append(language)
|
||||
# Merge punctuation into previous word
|
||||
for i in range(len(textlist)-1, 0, -1):
|
||||
if re.match(r'^[\W_]+$', textlist[i]):
|
||||
textlist[i-1] += textlist[i]
|
||||
del textlist[i]
|
||||
del langlist[i]
|
||||
# Merge consecutive words with the same language tag
|
||||
i = 0
|
||||
while i < len(langlist) - 1:
|
||||
if langlist[i] == langlist[i+1]:
|
||||
textlist[i] += textlist[i+1]
|
||||
del textlist[i+1]
|
||||
del langlist[i+1]
|
||||
else:
|
||||
i += 1
|
||||
|
||||
return textlist, langlist
|
||||
|
||||
|
||||
def clean_text_inf(text, language):
|
||||
formattext = ""
|
||||
language = language.replace("all_","")
|
||||
for tmp in LangSegment.getTexts(text):
|
||||
if language == "ja":
|
||||
if tmp["lang"] == language or tmp["lang"] == "zh":
|
||||
formattext += tmp["text"] + " "
|
||||
continue
|
||||
if tmp["lang"] == language:
|
||||
formattext += tmp["text"] + " "
|
||||
while " " in formattext:
|
||||
formattext = formattext.replace(" ", " ")
|
||||
phones, word2ph, norm_text = clean_text(formattext, language)
|
||||
phones = cleaned_text_to_sequence(phones)
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
dtype=torch.float16 if is_half == True else torch.float32
|
||||
def get_bert_inf(phones, word2ph, norm_text, language):
|
||||
language=language.replace("all_","")
|
||||
if language == "zh":
|
||||
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
|
||||
else:
|
||||
bert = torch.zeros(
|
||||
(1024, len(phones)),
|
||||
dtype=torch.float16 if is_half == True else torch.float32,
|
||||
).to(device)
|
||||
|
||||
return bert
|
||||
|
||||
|
||||
def nonen_clean_text_inf(text, language):
|
||||
if(language!="auto"):
|
||||
textlist, langlist = splite_en_inf(text, language)
|
||||
else:
|
||||
textlist=[]
|
||||
langlist=[]
|
||||
for tmp in LangSegment.getTexts(text):
|
||||
langlist.append(tmp["lang"])
|
||||
textlist.append(tmp["text"])
|
||||
phones_list = []
|
||||
word2ph_list = []
|
||||
norm_text_list = []
|
||||
for i in range(len(textlist)):
|
||||
lang = langlist[i]
|
||||
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
||||
phones_list.append(phones)
|
||||
if lang == "zh":
|
||||
word2ph_list.append(word2ph)
|
||||
norm_text_list.append(norm_text)
|
||||
print(word2ph_list)
|
||||
phones = sum(phones_list, [])
|
||||
word2ph = sum(word2ph_list, [])
|
||||
norm_text = ' '.join(norm_text_list)
|
||||
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
|
||||
def nonen_get_bert_inf(text, language):
|
||||
if(language!="auto"):
|
||||
textlist, langlist = splite_en_inf(text, language)
|
||||
else:
|
||||
textlist=[]
|
||||
langlist=[]
|
||||
for tmp in LangSegment.getTexts(text):
|
||||
langlist.append(tmp["lang"])
|
||||
textlist.append(tmp["text"])
|
||||
print(textlist)
|
||||
print(langlist)
|
||||
bert_list = []
|
||||
for i in range(len(textlist)):
|
||||
lang = langlist[i]
|
||||
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
||||
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
||||
bert_list.append(bert)
|
||||
bert = torch.cat(bert_list, dim=1)
|
||||
|
||||
return bert
|
||||
|
||||
|
||||
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
||||
|
||||
|
||||
def get_first(text):
|
||||
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
||||
text = re.split(pattern, text)[0].strip()
|
||||
return text
|
||||
|
||||
|
||||
def get_cleaned_text_final(text,language):
|
||||
if language in {"en","all_zh","all_ja"}:
|
||||
phones, word2ph, norm_text = clean_text_inf(text, language)
|
||||
elif language in {"zh", "ja","auto"}:
|
||||
phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
def get_bert_final(phones, word2ph, text,language,device):
|
||||
if language == "en":
|
||||
bert = get_bert_inf(phones, word2ph, text, language)
|
||||
elif language in {"zh", "ja","auto"}:
|
||||
bert = nonen_get_bert_inf(text, language)
|
||||
elif language == "all_zh":
|
||||
bert = get_bert_feature(text, word2ph).to(device)
|
||||
else:
|
||||
bert = torch.zeros((1024, len(phones))).to(device)
|
||||
return bert
|
||||
|
||||
def merge_short_text_in_array(texts, threshold):
|
||||
if (len(texts)) < 2:
|
||||
return texts
|
||||
result = []
|
||||
text = ""
|
||||
for ele in texts:
|
||||
text += ele
|
||||
if len(text) >= threshold:
|
||||
result.append(text)
|
||||
text = ""
|
||||
if (len(text) > 0):
|
||||
if len(result) == 0:
|
||||
result.append(text)
|
||||
else:
|
||||
result[len(result) - 1] += text
|
||||
return result
|
||||
|
||||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False):
|
||||
if prompt_text is None or len(prompt_text) == 0:
|
||||
ref_free = True
|
||||
t0 = ttime()
|
||||
prompt_language = dict_language[prompt_language]
|
||||
text_language = dict_language[text_language]
|
||||
if not ref_free:
|
||||
prompt_text = prompt_text.strip("\n")
|
||||
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
|
||||
print(i18n("实际输入的参考文本:"), prompt_text)
|
||||
text = text.strip("\n")
|
||||
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
|
||||
|
||||
print(i18n("实际输入的目标文本:"), text)
|
||||
zero_wav = np.zeros(
|
||||
int(hps.data.sampling_rate * 0.3),
|
||||
dtype=np.float16 if is_half == True else np.float32,
|
||||
)
|
||||
with torch.no_grad():
|
||||
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||||
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
|
||||
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
||||
wav16k = torch.from_numpy(wav16k)
|
||||
zero_wav_torch = torch.from_numpy(zero_wav)
|
||||
if is_half == True:
|
||||
wav16k = wav16k.half().to(device)
|
||||
zero_wav_torch = zero_wav_torch.half().to(device)
|
||||
else:
|
||||
wav16k = wav16k.to(device)
|
||||
zero_wav_torch = zero_wav_torch.to(device)
|
||||
wav16k = torch.cat([wav16k, zero_wav_torch])
|
||||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
||||
"last_hidden_state"
|
||||
].transpose(
|
||||
1, 2
|
||||
) # .float()
|
||||
codes = vq_model.extract_latent(ssl_content)
|
||||
|
||||
prompt_semantic = codes[0, 0]
|
||||
t1 = ttime()
|
||||
|
||||
if (how_to_cut == i18n("凑四句一切")):
|
||||
text = cut1(text)
|
||||
elif (how_to_cut == i18n("凑50字一切")):
|
||||
text = cut2(text)
|
||||
elif (how_to_cut == i18n("按中文句号。切")):
|
||||
text = cut3(text)
|
||||
elif (how_to_cut == i18n("按英文句号.切")):
|
||||
text = cut4(text)
|
||||
elif (how_to_cut == i18n("按标点符号切")):
|
||||
text = cut5(text)
|
||||
while "\n\n" in text:
|
||||
text = text.replace("\n\n", "\n")
|
||||
print(i18n("实际输入的目标文本(切句后):"), text)
|
||||
texts = text.split("\n")
|
||||
texts = merge_short_text_in_array(texts, 5)
|
||||
audio_opt = []
|
||||
if not ref_free:
|
||||
phones1, word2ph1, norm_text1=get_cleaned_text_final(prompt_text, prompt_language)
|
||||
bert1=get_bert_final(phones1, word2ph1, norm_text1,prompt_language,device).to(dtype)
|
||||
|
||||
for text in texts:
|
||||
# 解决输入目标文本的空行导致报错的问题
|
||||
if (len(text.strip()) == 0):
|
||||
continue
|
||||
if (text[-1] not in splits): text += "。" if text_language != "en" else "."
|
||||
print(i18n("实际输入的目标文本(每句):"), text)
|
||||
phones2, word2ph2, norm_text2 = get_cleaned_text_final(text, text_language)
|
||||
bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype)
|
||||
if not ref_free:
|
||||
bert = torch.cat([bert1, bert2], 1)
|
||||
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
|
||||
else:
|
||||
bert = bert2
|
||||
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
|
||||
|
||||
bert = bert.to(device).unsqueeze(0)
|
||||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||||
t2 = ttime()
|
||||
with torch.no_grad():
|
||||
# pred_semantic = t2s_model.model.infer(
|
||||
pred_semantic, idx = t2s_model.model.infer_panel(
|
||||
all_phoneme_ids,
|
||||
all_phoneme_len,
|
||||
None if ref_free else prompt,
|
||||
bert,
|
||||
# prompt_phone_len=ph_offset,
|
||||
top_k=top_k,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
early_stop_num=hz * max_sec,
|
||||
)
|
||||
t3 = ttime()
|
||||
# print(pred_semantic.shape,idx)
|
||||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
|
||||
0
|
||||
) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
||||
if is_half == True:
|
||||
refer = refer.half().to(device)
|
||||
else:
|
||||
refer = refer.to(device)
|
||||
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
||||
audio = (
|
||||
vq_model.decode(
|
||||
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
|
||||
)
|
||||
.detach()
|
||||
.cpu()
|
||||
.numpy()[0, 0]
|
||||
) ###试试重建不带上prompt部分
|
||||
max_audio=np.abs(audio).max()#简单防止16bit爆音
|
||||
if max_audio>1:audio/=max_audio
|
||||
audio_opt.append(audio)
|
||||
audio_opt.append(zero_wav)
|
||||
t4 = ttime()
|
||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
||||
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
||||
np.int16
|
||||
)
|
||||
|
||||
|
||||
def split(todo_text):
|
||||
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||||
if todo_text[-1] not in splits:
|
||||
todo_text += "。"
|
||||
i_split_head = i_split_tail = 0
|
||||
len_text = len(todo_text)
|
||||
todo_texts = []
|
||||
while 1:
|
||||
if i_split_head >= len_text:
|
||||
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
||||
if todo_text[i_split_head] in splits:
|
||||
i_split_head += 1
|
||||
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
||||
i_split_tail = i_split_head
|
||||
else:
|
||||
i_split_head += 1
|
||||
return todo_texts
|
||||
|
||||
|
||||
def cut1(inp):
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
split_idx = list(range(0, len(inps), 4))
|
||||
split_idx[-1] = None
|
||||
if len(split_idx) > 1:
|
||||
opts = []
|
||||
for idx in range(len(split_idx) - 1):
|
||||
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
||||
else:
|
||||
opts = [inp]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
def cut2(inp):
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
if len(inps) < 2:
|
||||
return inp
|
||||
opts = []
|
||||
summ = 0
|
||||
tmp_str = ""
|
||||
for i in range(len(inps)):
|
||||
summ += len(inps[i])
|
||||
tmp_str += inps[i]
|
||||
if summ > 50:
|
||||
summ = 0
|
||||
opts.append(tmp_str)
|
||||
tmp_str = ""
|
||||
if tmp_str != "":
|
||||
opts.append(tmp_str)
|
||||
# print(opts)
|
||||
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
||||
opts[-2] = opts[-2] + opts[-1]
|
||||
opts = opts[:-1]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
def cut3(inp):
|
||||
inp = inp.strip("\n")
|
||||
return "\n".join(["%s" % item for item in inp.strip("。").split("。")])
|
||||
|
||||
|
||||
def cut4(inp):
|
||||
inp = inp.strip("\n")
|
||||
return "\n".join(["%s" % item for item in inp.strip(".").split(".")])
|
||||
|
||||
|
||||
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
||||
def cut5(inp):
|
||||
# if not re.search(r'[^\w\s]', inp[-1]):
|
||||
# inp += '。'
|
||||
inp = inp.strip("\n")
|
||||
punds = r'[,.;?!、,。?!;:]'
|
||||
items = re.split(f'({punds})', inp)
|
||||
items = ["".join(group) for group in zip(items[::2], items[1::2])]
|
||||
opt = "\n".join(items)
|
||||
return opt
|
||||
|
||||
|
||||
def custom_sort_key(s):
|
||||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||||
parts = re.split('(\d+)', s)
|
||||
# 将数字部分转换为整数,非数字部分保持不变
|
||||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||||
return parts
|
||||
|
||||
|
||||
def change_choices():
|
||||
SoVITS_names, GPT_names = get_weights_names()
|
||||
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
|
||||
|
||||
|
||||
pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||||
pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||
SoVITS_weight_root = "SoVITS_weights"
|
||||
GPT_weight_root = "GPT_weights"
|
||||
os.makedirs(SoVITS_weight_root, exist_ok=True)
|
||||
os.makedirs(GPT_weight_root, exist_ok=True)
|
||||
|
||||
|
||||
def get_weights_names():
|
||||
SoVITS_names = [pretrained_sovits_name]
|
||||
for name in os.listdir(SoVITS_weight_root):
|
||||
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name))
|
||||
GPT_names = [pretrained_gpt_name]
|
||||
for name in os.listdir(GPT_weight_root):
|
||||
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name))
|
||||
return SoVITS_names, GPT_names
|
||||
|
||||
|
||||
SoVITS_names, GPT_names = get_weights_names()
|
||||
is_share = os.environ.get("is_share", "False")
|
||||
is_share = eval(is_share)
|
||||
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
||||
infer_ttswebui = int(infer_ttswebui)
|
||||
|
||||
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
gr.Markdown(
|
||||
|
602
GPT_SoVITS/interence_base.py
Normal file
602
GPT_SoVITS/interence_base.py
Normal file
@ -0,0 +1,602 @@
|
||||
'''
|
||||
按中英混合识别
|
||||
按日英混合识别
|
||||
多语种启动切分识别语种
|
||||
全部按中文识别
|
||||
全部按英文识别
|
||||
全部按日文识别
|
||||
'''
|
||||
import os, re, logging
|
||||
import LangSegment
|
||||
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
||||
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
||||
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
||||
logging.getLogger("httpx").setLevel(logging.ERROR)
|
||||
logging.getLogger("asyncio").setLevel(logging.ERROR)
|
||||
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
||||
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
||||
import pdb
|
||||
|
||||
if os.path.exists("./gweight.txt"):
|
||||
with open("./gweight.txt", 'r', encoding="utf-8") as file:
|
||||
gweight_data = file.read()
|
||||
gpt_path = os.environ.get(
|
||||
"gpt_path", gweight_data)
|
||||
else:
|
||||
gpt_path = os.environ.get(
|
||||
"gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
|
||||
|
||||
if os.path.exists("./sweight.txt"):
|
||||
with open("./sweight.txt", 'r', encoding="utf-8") as file:
|
||||
sweight_data = file.read()
|
||||
sovits_path = os.environ.get("sovits_path", sweight_data)
|
||||
else:
|
||||
sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth")
|
||||
# gpt_path = os.environ.get(
|
||||
# "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||
# )
|
||||
# sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth")
|
||||
cnhubert_base_path = os.environ.get(
|
||||
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
||||
)
|
||||
bert_path = os.environ.get(
|
||||
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
||||
)
|
||||
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
||||
infer_ttswebui = int(infer_ttswebui)
|
||||
is_share = os.environ.get("is_share", "False")
|
||||
is_share = eval(is_share)
|
||||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
is_half = eval(os.environ.get("is_half", "True"))
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
import numpy as np
|
||||
import librosa, torch
|
||||
from feature_extractor import cnhubert
|
||||
|
||||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||||
|
||||
from module.models import SynthesizerTrn
|
||||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||
from text import cleaned_text_to_sequence
|
||||
from text.cleaner import clean_text
|
||||
from time import time as ttime
|
||||
from module.mel_processing import spectrogram_torch
|
||||
from my_utils import load_audio
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
|
||||
i18n = I18nAuto()
|
||||
|
||||
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
elif torch.backends.mps.is_available():
|
||||
device = "mps"
|
||||
else:
|
||||
device = "cpu"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
||||
if is_half == True:
|
||||
bert_model = bert_model.half().to(device)
|
||||
else:
|
||||
bert_model = bert_model.to(device)
|
||||
|
||||
|
||||
def get_bert_feature(text, word2ph):
|
||||
with torch.no_grad():
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
for i in inputs:
|
||||
inputs[i] = inputs[i].to(device)
|
||||
res = bert_model(**inputs, output_hidden_states=True)
|
||||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||||
assert len(word2ph) == len(text)
|
||||
phone_level_feature = []
|
||||
for i in range(len(word2ph)):
|
||||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||||
phone_level_feature.append(repeat_feature)
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
return phone_level_feature.T
|
||||
|
||||
|
||||
class DictToAttrRecursive(dict):
|
||||
def __init__(self, input_dict):
|
||||
super().__init__(input_dict)
|
||||
for key, value in input_dict.items():
|
||||
if isinstance(value, dict):
|
||||
value = DictToAttrRecursive(value)
|
||||
self[key] = value
|
||||
setattr(self, key, value)
|
||||
|
||||
def __getattr__(self, item):
|
||||
try:
|
||||
return self[item]
|
||||
except KeyError:
|
||||
raise AttributeError(f"Attribute {item} not found")
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
if isinstance(value, dict):
|
||||
value = DictToAttrRecursive(value)
|
||||
super(DictToAttrRecursive, self).__setitem__(key, value)
|
||||
super().__setattr__(key, value)
|
||||
|
||||
def __delattr__(self, item):
|
||||
try:
|
||||
del self[item]
|
||||
except KeyError:
|
||||
raise AttributeError(f"Attribute {item} not found")
|
||||
|
||||
|
||||
ssl_model = cnhubert.get_model()
|
||||
if is_half == True:
|
||||
ssl_model = ssl_model.half().to(device)
|
||||
else:
|
||||
ssl_model = ssl_model.to(device)
|
||||
|
||||
|
||||
def change_sovits_weights(sovits_path):
|
||||
global vq_model, hps
|
||||
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
||||
hps = dict_s2["config"]
|
||||
hps = DictToAttrRecursive(hps)
|
||||
hps.model.semantic_frame_rate = "25hz"
|
||||
vq_model = SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model
|
||||
)
|
||||
if ("pretrained" not in sovits_path):
|
||||
del vq_model.enc_q
|
||||
if is_half == True:
|
||||
vq_model = vq_model.half().to(device)
|
||||
else:
|
||||
vq_model = vq_model.to(device)
|
||||
vq_model.eval()
|
||||
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
||||
with open("./sweight.txt", "w", encoding="utf-8") as f:
|
||||
f.write(sovits_path)
|
||||
|
||||
|
||||
change_sovits_weights(sovits_path)
|
||||
|
||||
|
||||
def change_gpt_weights(gpt_path):
|
||||
global hz, max_sec, t2s_model, config
|
||||
hz = 50
|
||||
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
||||
config = dict_s1["config"]
|
||||
max_sec = config["data"]["max_sec"]
|
||||
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
||||
t2s_model.load_state_dict(dict_s1["weight"])
|
||||
if is_half == True:
|
||||
t2s_model = t2s_model.half()
|
||||
t2s_model = t2s_model.to(device)
|
||||
t2s_model.eval()
|
||||
total = sum([param.nelement() for param in t2s_model.parameters()])
|
||||
print("Number of parameter: %.2fM" % (total / 1e6))
|
||||
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)
|
||||
|
||||
|
||||
change_gpt_weights(gpt_path)
|
||||
|
||||
|
||||
def get_spepc(hps, filename):
|
||||
audio = load_audio(filename, int(hps.data.sampling_rate))
|
||||
audio = torch.FloatTensor(audio)
|
||||
audio_norm = audio
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
hps.data.filter_length,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.hop_length,
|
||||
hps.data.win_length,
|
||||
center=False,
|
||||
)
|
||||
return spec
|
||||
|
||||
|
||||
dict_language = {
|
||||
i18n("中文"): "all_zh",#全部按中文识别
|
||||
i18n("英文"): "en",#全部按英文识别#######不变
|
||||
i18n("日文"): "all_ja",#全部按日文识别
|
||||
i18n("中英混合"): "zh",#按中英混合识别####不变
|
||||
i18n("日英混合"): "ja",#按日英混合识别####不变
|
||||
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
||||
}
|
||||
|
||||
|
||||
def splite_en_inf(sentence, language):
|
||||
pattern = re.compile(r'[a-zA-Z ]+')
|
||||
textlist = []
|
||||
langlist = []
|
||||
pos = 0
|
||||
for match in pattern.finditer(sentence):
|
||||
start, end = match.span()
|
||||
if start > pos:
|
||||
textlist.append(sentence[pos:start])
|
||||
langlist.append(language)
|
||||
textlist.append(sentence[start:end])
|
||||
langlist.append("en")
|
||||
pos = end
|
||||
if pos < len(sentence):
|
||||
textlist.append(sentence[pos:])
|
||||
langlist.append(language)
|
||||
# Merge punctuation into previous word
|
||||
for i in range(len(textlist)-1, 0, -1):
|
||||
if re.match(r'^[\W_]+$', textlist[i]):
|
||||
textlist[i-1] += textlist[i]
|
||||
del textlist[i]
|
||||
del langlist[i]
|
||||
# Merge consecutive words with the same language tag
|
||||
i = 0
|
||||
while i < len(langlist) - 1:
|
||||
if langlist[i] == langlist[i+1]:
|
||||
textlist[i] += textlist[i+1]
|
||||
del textlist[i+1]
|
||||
del langlist[i+1]
|
||||
else:
|
||||
i += 1
|
||||
|
||||
return textlist, langlist
|
||||
|
||||
|
||||
def clean_text_inf(text, language):
|
||||
formattext = ""
|
||||
language = language.replace("all_","")
|
||||
for tmp in LangSegment.getTexts(text):
|
||||
if language == "ja":
|
||||
if tmp["lang"] == language or tmp["lang"] == "zh":
|
||||
formattext += tmp["text"] + " "
|
||||
continue
|
||||
if tmp["lang"] == language:
|
||||
formattext += tmp["text"] + " "
|
||||
while " " in formattext:
|
||||
formattext = formattext.replace(" ", " ")
|
||||
phones, word2ph, norm_text = clean_text(formattext, language)
|
||||
phones = cleaned_text_to_sequence(phones)
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
dtype=torch.float16 if is_half == True else torch.float32
|
||||
def get_bert_inf(phones, word2ph, norm_text, language):
|
||||
language=language.replace("all_","")
|
||||
if language == "zh":
|
||||
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
|
||||
else:
|
||||
bert = torch.zeros(
|
||||
(1024, len(phones)),
|
||||
dtype=torch.float16 if is_half == True else torch.float32,
|
||||
).to(device)
|
||||
|
||||
return bert
|
||||
|
||||
|
||||
def nonen_clean_text_inf(text, language):
|
||||
if(language!="auto"):
|
||||
textlist, langlist = splite_en_inf(text, language)
|
||||
else:
|
||||
textlist=[]
|
||||
langlist=[]
|
||||
for tmp in LangSegment.getTexts(text):
|
||||
langlist.append(tmp["lang"])
|
||||
textlist.append(tmp["text"])
|
||||
phones_list = []
|
||||
word2ph_list = []
|
||||
norm_text_list = []
|
||||
for i in range(len(textlist)):
|
||||
lang = langlist[i]
|
||||
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
||||
phones_list.append(phones)
|
||||
if lang == "zh":
|
||||
word2ph_list.append(word2ph)
|
||||
norm_text_list.append(norm_text)
|
||||
print(word2ph_list)
|
||||
phones = sum(phones_list, [])
|
||||
word2ph = sum(word2ph_list, [])
|
||||
norm_text = ' '.join(norm_text_list)
|
||||
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
|
||||
def nonen_get_bert_inf(text, language):
|
||||
if(language!="auto"):
|
||||
textlist, langlist = splite_en_inf(text, language)
|
||||
else:
|
||||
textlist=[]
|
||||
langlist=[]
|
||||
for tmp in LangSegment.getTexts(text):
|
||||
langlist.append(tmp["lang"])
|
||||
textlist.append(tmp["text"])
|
||||
print(textlist)
|
||||
print(langlist)
|
||||
bert_list = []
|
||||
for i in range(len(textlist)):
|
||||
lang = langlist[i]
|
||||
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
||||
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
||||
bert_list.append(bert)
|
||||
bert = torch.cat(bert_list, dim=1)
|
||||
|
||||
return bert
|
||||
|
||||
|
||||
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
||||
|
||||
|
||||
def get_first(text):
|
||||
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
||||
text = re.split(pattern, text)[0].strip()
|
||||
return text
|
||||
|
||||
|
||||
def get_cleaned_text_final(text,language):
|
||||
if language in {"en","all_zh","all_ja"}:
|
||||
phones, word2ph, norm_text = clean_text_inf(text, language)
|
||||
elif language in {"zh", "ja","auto"}:
|
||||
phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
def get_bert_final(phones, word2ph, text,language,device):
|
||||
if language == "en":
|
||||
bert = get_bert_inf(phones, word2ph, text, language)
|
||||
elif language in {"zh", "ja","auto"}:
|
||||
bert = nonen_get_bert_inf(text, language)
|
||||
elif language == "all_zh":
|
||||
bert = get_bert_feature(text, word2ph).to(device)
|
||||
else:
|
||||
bert = torch.zeros((1024, len(phones))).to(device)
|
||||
return bert
|
||||
|
||||
def merge_short_text_in_array(texts, threshold):
|
||||
if (len(texts)) < 2:
|
||||
return texts
|
||||
result = []
|
||||
text = ""
|
||||
for ele in texts:
|
||||
text += ele
|
||||
if len(text) >= threshold:
|
||||
result.append(text)
|
||||
text = ""
|
||||
if (len(text) > 0):
|
||||
if len(result) == 0:
|
||||
result.append(text)
|
||||
else:
|
||||
result[len(result) - 1] += text
|
||||
return result
|
||||
|
||||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False):
|
||||
if prompt_text is None or len(prompt_text) == 0:
|
||||
ref_free = True
|
||||
t0 = ttime()
|
||||
prompt_language = dict_language[prompt_language]
|
||||
text_language = dict_language[text_language]
|
||||
if not ref_free:
|
||||
prompt_text = prompt_text.strip("\n")
|
||||
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
|
||||
print(i18n("实际输入的参考文本:"), prompt_text)
|
||||
text = text.strip("\n")
|
||||
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
|
||||
|
||||
print(i18n("实际输入的目标文本:"), text)
|
||||
zero_wav = np.zeros(
|
||||
int(hps.data.sampling_rate * 0.3),
|
||||
dtype=np.float16 if is_half == True else np.float32,
|
||||
)
|
||||
with torch.no_grad():
|
||||
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||||
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
|
||||
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
||||
wav16k = torch.from_numpy(wav16k)
|
||||
zero_wav_torch = torch.from_numpy(zero_wav)
|
||||
if is_half == True:
|
||||
wav16k = wav16k.half().to(device)
|
||||
zero_wav_torch = zero_wav_torch.half().to(device)
|
||||
else:
|
||||
wav16k = wav16k.to(device)
|
||||
zero_wav_torch = zero_wav_torch.to(device)
|
||||
wav16k = torch.cat([wav16k, zero_wav_torch])
|
||||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
||||
"last_hidden_state"
|
||||
].transpose(
|
||||
1, 2
|
||||
) # .float()
|
||||
codes = vq_model.extract_latent(ssl_content)
|
||||
|
||||
prompt_semantic = codes[0, 0]
|
||||
t1 = ttime()
|
||||
|
||||
if (how_to_cut == i18n("凑四句一切")):
|
||||
text = cut1(text)
|
||||
elif (how_to_cut == i18n("凑50字一切")):
|
||||
text = cut2(text)
|
||||
elif (how_to_cut == i18n("按中文句号。切")):
|
||||
text = cut3(text)
|
||||
elif (how_to_cut == i18n("按英文句号.切")):
|
||||
text = cut4(text)
|
||||
elif (how_to_cut == i18n("按标点符号切")):
|
||||
text = cut5(text)
|
||||
while "\n\n" in text:
|
||||
text = text.replace("\n\n", "\n")
|
||||
print(i18n("实际输入的目标文本(切句后):"), text)
|
||||
texts = text.split("\n")
|
||||
texts = merge_short_text_in_array(texts, 5)
|
||||
audio_opt = []
|
||||
if not ref_free:
|
||||
phones1, word2ph1, norm_text1=get_cleaned_text_final(prompt_text, prompt_language)
|
||||
bert1=get_bert_final(phones1, word2ph1, norm_text1,prompt_language,device).to(dtype)
|
||||
|
||||
for text in texts:
|
||||
# 解决输入目标文本的空行导致报错的问题
|
||||
if (len(text.strip()) == 0):
|
||||
continue
|
||||
if (text[-1] not in splits): text += "。" if text_language != "en" else "."
|
||||
print(i18n("实际输入的目标文本(每句):"), text)
|
||||
phones2, word2ph2, norm_text2 = get_cleaned_text_final(text, text_language)
|
||||
bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype)
|
||||
if not ref_free:
|
||||
bert = torch.cat([bert1, bert2], 1)
|
||||
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
|
||||
else:
|
||||
bert = bert2
|
||||
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
|
||||
|
||||
bert = bert.to(device).unsqueeze(0)
|
||||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||||
t2 = ttime()
|
||||
with torch.no_grad():
|
||||
# pred_semantic = t2s_model.model.infer(
|
||||
pred_semantic, idx = t2s_model.model.infer_panel(
|
||||
all_phoneme_ids,
|
||||
all_phoneme_len,
|
||||
None if ref_free else prompt,
|
||||
bert,
|
||||
# prompt_phone_len=ph_offset,
|
||||
top_k=top_k,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
early_stop_num=hz * max_sec,
|
||||
)
|
||||
t3 = ttime()
|
||||
# print(pred_semantic.shape,idx)
|
||||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
|
||||
0
|
||||
) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
||||
if is_half == True:
|
||||
refer = refer.half().to(device)
|
||||
else:
|
||||
refer = refer.to(device)
|
||||
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
||||
audio = (
|
||||
vq_model.decode(
|
||||
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
|
||||
)
|
||||
.detach()
|
||||
.cpu()
|
||||
.numpy()[0, 0]
|
||||
) ###试试重建不带上prompt部分
|
||||
max_audio=np.abs(audio).max()#简单防止16bit爆音
|
||||
if max_audio>1:audio/=max_audio
|
||||
audio_opt.append(audio)
|
||||
audio_opt.append(zero_wav)
|
||||
t4 = ttime()
|
||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
||||
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
||||
np.int16
|
||||
)
|
||||
|
||||
|
||||
def split(todo_text):
|
||||
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||||
if todo_text[-1] not in splits:
|
||||
todo_text += "。"
|
||||
i_split_head = i_split_tail = 0
|
||||
len_text = len(todo_text)
|
||||
todo_texts = []
|
||||
while 1:
|
||||
if i_split_head >= len_text:
|
||||
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
||||
if todo_text[i_split_head] in splits:
|
||||
i_split_head += 1
|
||||
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
||||
i_split_tail = i_split_head
|
||||
else:
|
||||
i_split_head += 1
|
||||
return todo_texts
|
||||
|
||||
|
||||
def cut1(inp):
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
split_idx = list(range(0, len(inps), 4))
|
||||
split_idx[-1] = None
|
||||
if len(split_idx) > 1:
|
||||
opts = []
|
||||
for idx in range(len(split_idx) - 1):
|
||||
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
||||
else:
|
||||
opts = [inp]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
def cut2(inp):
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
if len(inps) < 2:
|
||||
return inp
|
||||
opts = []
|
||||
summ = 0
|
||||
tmp_str = ""
|
||||
for i in range(len(inps)):
|
||||
summ += len(inps[i])
|
||||
tmp_str += inps[i]
|
||||
if summ > 50:
|
||||
summ = 0
|
||||
opts.append(tmp_str)
|
||||
tmp_str = ""
|
||||
if tmp_str != "":
|
||||
opts.append(tmp_str)
|
||||
# print(opts)
|
||||
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
||||
opts[-2] = opts[-2] + opts[-1]
|
||||
opts = opts[:-1]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
def cut3(inp):
|
||||
inp = inp.strip("\n")
|
||||
return "\n".join(["%s" % item for item in inp.strip("。").split("。")])
|
||||
|
||||
|
||||
def cut4(inp):
|
||||
inp = inp.strip("\n")
|
||||
return "\n".join(["%s" % item for item in inp.strip(".").split(".")])
|
||||
|
||||
|
||||
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
||||
def cut5(inp):
|
||||
# if not re.search(r'[^\w\s]', inp[-1]):
|
||||
# inp += '。'
|
||||
inp = inp.strip("\n")
|
||||
punds = r'[,.;?!、,。?!;:]'
|
||||
items = re.split(f'({punds})', inp)
|
||||
items = ["".join(group) for group in zip(items[::2], items[1::2])]
|
||||
opt = "\n".join(items)
|
||||
return opt
|
||||
|
||||
|
||||
def custom_sort_key(s):
|
||||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||||
parts = re.split('(\d+)', s)
|
||||
# 将数字部分转换为整数,非数字部分保持不变
|
||||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||||
return parts
|
||||
|
||||
|
||||
def change_choices():
|
||||
SoVITS_names, GPT_names = get_weights_names()
|
||||
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
|
||||
|
||||
|
||||
pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||||
pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||
SoVITS_weight_root = "SoVITS_weights"
|
||||
GPT_weight_root = "GPT_weights"
|
||||
os.makedirs(SoVITS_weight_root, exist_ok=True)
|
||||
os.makedirs(GPT_weight_root, exist_ok=True)
|
||||
|
||||
|
||||
def get_weights_names():
|
||||
SoVITS_names = [pretrained_sovits_name]
|
||||
for name in os.listdir(SoVITS_weight_root):
|
||||
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name))
|
||||
GPT_names = [pretrained_gpt_name]
|
||||
for name in os.listdir(GPT_weight_root):
|
||||
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name))
|
||||
return SoVITS_names, GPT_names
|
||||
|
||||
|
||||
SoVITS_names, GPT_names = get_weights_names()
|
626
train_base.py
Normal file
626
train_base.py
Normal file
@ -0,0 +1,626 @@
|
||||
import os,shutil,sys,pdb,re
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
import json,yaml,warnings,torch
|
||||
import platform
|
||||
import psutil
|
||||
import signal
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
torch.manual_seed(233333)
|
||||
tmp = os.path.join(now_dir, "TEMP")
|
||||
os.makedirs(tmp, exist_ok=True)
|
||||
os.environ["TEMP"] = tmp
|
||||
if(os.path.exists(tmp)):
|
||||
for name in os.listdir(tmp):
|
||||
if(name=="jieba.cache"):continue
|
||||
path="%s/%s"%(tmp,name)
|
||||
delete=os.remove if os.path.isfile(path) else shutil.rmtree
|
||||
try:
|
||||
delete(path)
|
||||
except Exception as e:
|
||||
print(str(e))
|
||||
pass
|
||||
import site
|
||||
site_packages_roots = []
|
||||
for path in site.getsitepackages():
|
||||
if "packages" in path:
|
||||
site_packages_roots.append(path)
|
||||
if(site_packages_roots==[]):site_packages_roots=["%s/runtime/Lib/site-packages" % now_dir]
|
||||
#os.environ["OPENBLAS_NUM_THREADS"] = "4"
|
||||
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
|
||||
os.environ["all_proxy"] = ""
|
||||
for site_packages_root in site_packages_roots:
|
||||
if os.path.exists(site_packages_root):
|
||||
try:
|
||||
with open("%s/users.pth" % (site_packages_root), "w") as f:
|
||||
f.write(
|
||||
"%s\n%s/tools\n%s/tools/damo_asr\n%s/GPT_SoVITS\n%s/tools/uvr5"
|
||||
% (now_dir, now_dir, now_dir, now_dir, now_dir)
|
||||
)
|
||||
break
|
||||
except PermissionError:
|
||||
pass
|
||||
from tools import my_utils
|
||||
import traceback
|
||||
import shutil
|
||||
import pdb
|
||||
from subprocess import Popen
|
||||
import signal
|
||||
from config import python_exec,infer_device,is_half,exp_root,webui_port_main,webui_port_infer_tts,webui_port_uvr5,webui_port_subfix,is_share
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
i18n = I18nAuto()
|
||||
from scipy.io import wavfile
|
||||
from tools.my_utils import load_audio
|
||||
from multiprocessing import cpu_count
|
||||
|
||||
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu
|
||||
|
||||
n_cpu=cpu_count()
|
||||
|
||||
ngpu = torch.cuda.device_count()
|
||||
gpu_infos = []
|
||||
mem = []
|
||||
if_gpu_ok = False
|
||||
|
||||
# 判断是否有能用来训练和加速推理的N卡
|
||||
if torch.cuda.is_available() or ngpu != 0:
|
||||
for i in range(ngpu):
|
||||
gpu_name = torch.cuda.get_device_name(i)
|
||||
if any(value in gpu_name.upper()for value in ["10","16","20","30","40","A2","A3","A4","P4","A50","500","A60","70","80","90","M4","T4","TITAN","L4","4060"]):
|
||||
# A10#A100#V100#A40#P40#M40#K80#A4500
|
||||
if_gpu_ok = True # 至少有一张能用的N卡
|
||||
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
||||
mem.append(int(torch.cuda.get_device_properties(i).total_memory/ 1024/ 1024/ 1024+ 0.4))
|
||||
# 判断是否支持mps加速
|
||||
if torch.backends.mps.is_available():
|
||||
if_gpu_ok = True
|
||||
gpu_infos.append("%s\t%s" % ("0", "Apple GPU"))
|
||||
mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) # 实测使用系统内存作为显存不会爆显存
|
||||
|
||||
if if_gpu_ok and len(gpu_infos) > 0:
|
||||
gpu_info = "\n".join(gpu_infos)
|
||||
default_batch_size = min(mem) // 2
|
||||
else:
|
||||
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
||||
default_batch_size = 1
|
||||
gpus = "-".join([i[0] for i in gpu_infos])
|
||||
|
||||
pretrained_sovits_name="GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||||
pretrained_gpt_name="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||
def get_weights_names():
|
||||
SoVITS_names = [pretrained_sovits_name]
|
||||
for name in os.listdir(SoVITS_weight_root):
|
||||
if name.endswith(".pth"):SoVITS_names.append(name)
|
||||
GPT_names = [pretrained_gpt_name]
|
||||
for name in os.listdir(GPT_weight_root):
|
||||
if name.endswith(".ckpt"): GPT_names.append(name)
|
||||
return SoVITS_names,GPT_names
|
||||
SoVITS_weight_root="SoVITS_weights"
|
||||
GPT_weight_root="GPT_weights"
|
||||
os.makedirs(SoVITS_weight_root,exist_ok=True)
|
||||
os.makedirs(GPT_weight_root,exist_ok=True)
|
||||
SoVITS_names,GPT_names = get_weights_names()
|
||||
|
||||
def custom_sort_key(s):
|
||||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||||
parts = re.split('(\d+)', s)
|
||||
# 将数字部分转换为整数,非数字部分保持不变
|
||||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||||
return parts
|
||||
|
||||
def change_choices():
|
||||
SoVITS_names, GPT_names = get_weights_names()
|
||||
return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"}
|
||||
|
||||
p_label=None
|
||||
p_uvr5=None
|
||||
p_asr=None
|
||||
p_tts_inference=None
|
||||
|
||||
def kill_proc_tree(pid, including_parent=True):
|
||||
try:
|
||||
parent = psutil.Process(pid)
|
||||
except psutil.NoSuchProcess:
|
||||
# Process already terminated
|
||||
return
|
||||
|
||||
children = parent.children(recursive=True)
|
||||
for child in children:
|
||||
try:
|
||||
os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL
|
||||
except OSError:
|
||||
pass
|
||||
if including_parent:
|
||||
try:
|
||||
os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL
|
||||
except OSError:
|
||||
pass
|
||||
|
||||
system=platform.system()
|
||||
def kill_process(pid):
|
||||
if(system=="Windows"):
|
||||
cmd = "taskkill /t /f /pid %s" % pid
|
||||
os.system(cmd)
|
||||
else:
|
||||
kill_proc_tree(pid)
|
||||
|
||||
|
||||
def change_label(if_label,path_list):
|
||||
global p_label
|
||||
if(if_label==True and p_label==None):
|
||||
path_list=my_utils.clean_path(path_list)
|
||||
cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s --is_share %s'%(python_exec,path_list,webui_port_subfix,is_share)
|
||||
yield i18n("打标工具WebUI已开启")
|
||||
print(cmd)
|
||||
p_label = Popen(cmd, shell=True)
|
||||
elif(if_label==False and p_label!=None):
|
||||
kill_process(p_label.pid)
|
||||
p_label=None
|
||||
yield i18n("打标工具WebUI已关闭")
|
||||
|
||||
def change_uvr5(if_uvr5):
|
||||
global p_uvr5
|
||||
if(if_uvr5==True and p_uvr5==None):
|
||||
cmd = '"%s" tools/uvr5/webui.py "%s" %s %s %s'%(python_exec,infer_device,is_half,webui_port_uvr5,is_share)
|
||||
yield i18n("UVR5已开启")
|
||||
print(cmd)
|
||||
p_uvr5 = Popen(cmd, shell=True)
|
||||
elif(if_uvr5==False and p_uvr5!=None):
|
||||
kill_process(p_uvr5.pid)
|
||||
p_uvr5=None
|
||||
yield i18n("UVR5已关闭")
|
||||
|
||||
|
||||
from tools.asr.config import asr_dict
|
||||
def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang):
|
||||
global p_asr
|
||||
if(p_asr==None):
|
||||
asr_inp_dir=my_utils.clean_path(asr_inp_dir)
|
||||
cmd = f'"{python_exec}" tools/asr/{asr_dict[asr_model]["path"]}'
|
||||
cmd += f' -i "{asr_inp_dir}"'
|
||||
cmd += f' -o "{asr_opt_dir}"'
|
||||
cmd += f' -s {asr_model_size}'
|
||||
cmd += f' -l {asr_lang}'
|
||||
cmd += " -p %s"%("float16"if is_half==True else "float32")
|
||||
|
||||
yield "ASR任务开启:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
|
||||
print(cmd)
|
||||
p_asr = Popen(cmd, shell=True)
|
||||
p_asr.wait()
|
||||
p_asr=None
|
||||
yield f"ASR任务完成, 查看终端进行下一步",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
else:
|
||||
yield "已有正在进行的ASR任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
|
||||
# return None
|
||||
|
||||
def close_asr():
|
||||
global p_asr
|
||||
if(p_asr!=None):
|
||||
kill_process(p_asr.pid)
|
||||
p_asr=None
|
||||
return "已终止ASR进程",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
|
||||
p_train_SoVITS=None
|
||||
def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D):
|
||||
global p_train_SoVITS
|
||||
if(p_train_SoVITS==None):
|
||||
with open("GPT_SoVITS/configs/s2.json")as f:
|
||||
data=f.read()
|
||||
data=json.loads(data)
|
||||
s2_dir="%s/%s"%(exp_root,exp_name)
|
||||
os.makedirs("%s/logs_s2"%(s2_dir),exist_ok=True)
|
||||
if(is_half==False):
|
||||
data["train"]["fp16_run"]=False
|
||||
batch_size=max(1,batch_size//2)
|
||||
data["train"]["batch_size"]=batch_size
|
||||
data["train"]["epochs"]=total_epoch
|
||||
data["train"]["text_low_lr_rate"]=text_low_lr_rate
|
||||
data["train"]["pretrained_s2G"]=pretrained_s2G
|
||||
data["train"]["pretrained_s2D"]=pretrained_s2D
|
||||
data["train"]["if_save_latest"]=if_save_latest
|
||||
data["train"]["if_save_every_weights"]=if_save_every_weights
|
||||
data["train"]["save_every_epoch"]=save_every_epoch
|
||||
data["train"]["gpu_numbers"]=gpu_numbers1Ba
|
||||
data["data"]["exp_dir"]=data["s2_ckpt_dir"]=s2_dir
|
||||
data["save_weight_dir"]=SoVITS_weight_root
|
||||
data["name"]=exp_name
|
||||
tmp_config_path="%s/tmp_s2.json"%tmp
|
||||
with open(tmp_config_path,"w")as f:f.write(json.dumps(data))
|
||||
|
||||
cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"'%(python_exec,tmp_config_path)
|
||||
yield "SoVITS训练开始:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
|
||||
print(cmd)
|
||||
p_train_SoVITS = Popen(cmd, shell=True)
|
||||
p_train_SoVITS.wait()
|
||||
p_train_SoVITS=None
|
||||
yield "SoVITS训练完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
else:
|
||||
yield "已有正在进行的SoVITS训练任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
|
||||
|
||||
def close1Ba():
|
||||
global p_train_SoVITS
|
||||
if(p_train_SoVITS!=None):
|
||||
kill_process(p_train_SoVITS.pid)
|
||||
p_train_SoVITS=None
|
||||
return "已终止SoVITS训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
|
||||
p_train_GPT=None
|
||||
def open1Bb(batch_size,total_epoch,exp_name,if_dpo,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers,pretrained_s1):
|
||||
global p_train_GPT
|
||||
if(p_train_GPT==None):
|
||||
with open("GPT_SoVITS/configs/s1longer.yaml")as f:
|
||||
data=f.read()
|
||||
data=yaml.load(data, Loader=yaml.FullLoader)
|
||||
s1_dir="%s/%s"%(exp_root,exp_name)
|
||||
os.makedirs("%s/logs_s1"%(s1_dir),exist_ok=True)
|
||||
if(is_half==False):
|
||||
data["train"]["precision"]="32"
|
||||
batch_size = max(1, batch_size // 2)
|
||||
data["train"]["batch_size"]=batch_size
|
||||
data["train"]["epochs"]=total_epoch
|
||||
data["pretrained_s1"]=pretrained_s1
|
||||
data["train"]["save_every_n_epoch"]=save_every_epoch
|
||||
data["train"]["if_save_every_weights"]=if_save_every_weights
|
||||
data["train"]["if_save_latest"]=if_save_latest
|
||||
data["train"]["if_dpo"]=if_dpo
|
||||
data["train"]["half_weights_save_dir"]=GPT_weight_root
|
||||
data["train"]["exp_name"]=exp_name
|
||||
data["train_semantic_path"]="%s/6-name2semantic.tsv"%s1_dir
|
||||
data["train_phoneme_path"]="%s/2-name2text.txt"%s1_dir
|
||||
data["output_dir"]="%s/logs_s1"%s1_dir
|
||||
|
||||
os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_numbers.replace("-",",")
|
||||
os.environ["hz"]="25hz"
|
||||
tmp_config_path="%s/tmp_s1.yaml"%tmp
|
||||
with open(tmp_config_path, "w") as f:f.write(yaml.dump(data, default_flow_style=False))
|
||||
# cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" --train_semantic_path "%s/6-name2semantic.tsv" --train_phoneme_path "%s/2-name2text.txt" --output_dir "%s/logs_s1"'%(python_exec,tmp_config_path,s1_dir,s1_dir,s1_dir)
|
||||
cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" '%(python_exec,tmp_config_path)
|
||||
yield "GPT训练开始:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
|
||||
print(cmd)
|
||||
p_train_GPT = Popen(cmd, shell=True)
|
||||
p_train_GPT.wait()
|
||||
p_train_GPT=None
|
||||
yield "GPT训练完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
else:
|
||||
yield "已有正在进行的GPT训练任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
|
||||
|
||||
def close1Bb():
|
||||
global p_train_GPT
|
||||
if(p_train_GPT!=None):
|
||||
kill_process(p_train_GPT.pid)
|
||||
p_train_GPT=None
|
||||
return "已终止GPT训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
|
||||
ps_slice=[]
|
||||
def open_slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_parts):
|
||||
global ps_slice
|
||||
inp = my_utils.clean_path(inp)
|
||||
opt_root = my_utils.clean_path(opt_root)
|
||||
if(os.path.exists(inp)==False):
|
||||
yield "输入路径不存在",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
return
|
||||
if os.path.isfile(inp):n_parts=1
|
||||
elif os.path.isdir(inp):pass
|
||||
else:
|
||||
yield "输入路径存在但既不是文件也不是文件夹",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
return
|
||||
if (ps_slice == []):
|
||||
for i_part in range(n_parts):
|
||||
cmd = '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s''' % (python_exec,inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, i_part, n_parts)
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps_slice.append(p)
|
||||
yield "切割执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
for p in ps_slice:
|
||||
p.wait()
|
||||
ps_slice=[]
|
||||
yield "切割结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
else:
|
||||
yield "已有正在进行的切割任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
|
||||
def close_slice():
|
||||
global ps_slice
|
||||
if (ps_slice != []):
|
||||
for p_slice in ps_slice:
|
||||
try:
|
||||
kill_process(p_slice.pid)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
ps_slice=[]
|
||||
return "已终止所有切割进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
|
||||
|
||||
ps1a=[]
|
||||
def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir):
|
||||
global ps1a
|
||||
inp_text = my_utils.clean_path(inp_text)
|
||||
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
|
||||
if (ps1a == []):
|
||||
opt_dir="%s/%s"%(exp_root,exp_name)
|
||||
config={
|
||||
"inp_text":inp_text,
|
||||
"inp_wav_dir":inp_wav_dir,
|
||||
"exp_name":exp_name,
|
||||
"opt_dir":opt_dir,
|
||||
"bert_pretrained_dir":bert_pretrained_dir,
|
||||
}
|
||||
gpu_names=gpu_numbers.split("-")
|
||||
all_parts=len(gpu_names)
|
||||
for i_part in range(all_parts):
|
||||
config.update(
|
||||
{
|
||||
"i_part": str(i_part),
|
||||
"all_parts": str(all_parts),
|
||||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||||
"is_half": str(is_half)
|
||||
}
|
||||
)
|
||||
os.environ.update(config)
|
||||
cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps1a.append(p)
|
||||
yield "文本进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
for p in ps1a:
|
||||
p.wait()
|
||||
opt = []
|
||||
for i_part in range(all_parts):
|
||||
txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
|
||||
with open(txt_path, "r", encoding="utf8") as f:
|
||||
opt += f.read().strip("\n").split("\n")
|
||||
os.remove(txt_path)
|
||||
path_text = "%s/2-name2text.txt" % opt_dir
|
||||
with open(path_text, "w", encoding="utf8") as f:
|
||||
f.write("\n".join(opt) + "\n")
|
||||
ps1a=[]
|
||||
yield "文本进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
else:
|
||||
yield "已有正在进行的文本任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
|
||||
def close1a():
|
||||
global ps1a
|
||||
if (ps1a != []):
|
||||
for p1a in ps1a:
|
||||
try:
|
||||
kill_process(p1a.pid)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
ps1a=[]
|
||||
return "已终止所有1a进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
|
||||
|
||||
ps1b=[]
|
||||
def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir):
|
||||
global ps1b
|
||||
inp_text = my_utils.clean_path(inp_text)
|
||||
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
|
||||
if (ps1b == []):
|
||||
config={
|
||||
"inp_text":inp_text,
|
||||
"inp_wav_dir":inp_wav_dir,
|
||||
"exp_name":exp_name,
|
||||
"opt_dir":"%s/%s"%(exp_root,exp_name),
|
||||
"cnhubert_base_dir":ssl_pretrained_dir,
|
||||
"is_half": str(is_half)
|
||||
}
|
||||
gpu_names=gpu_numbers.split("-")
|
||||
all_parts=len(gpu_names)
|
||||
for i_part in range(all_parts):
|
||||
config.update(
|
||||
{
|
||||
"i_part": str(i_part),
|
||||
"all_parts": str(all_parts),
|
||||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||||
}
|
||||
)
|
||||
os.environ.update(config)
|
||||
cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps1b.append(p)
|
||||
yield "SSL提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
for p in ps1b:
|
||||
p.wait()
|
||||
ps1b=[]
|
||||
yield "SSL提取进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
else:
|
||||
yield "已有正在进行的SSL提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
|
||||
def close1b():
|
||||
global ps1b
|
||||
if (ps1b != []):
|
||||
for p1b in ps1b:
|
||||
try:
|
||||
kill_process(p1b.pid)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
ps1b=[]
|
||||
return "已终止所有1b进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
|
||||
|
||||
ps1c=[]
|
||||
def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path):
|
||||
global ps1c
|
||||
inp_text = my_utils.clean_path(inp_text)
|
||||
if (ps1c == []):
|
||||
opt_dir="%s/%s"%(exp_root,exp_name)
|
||||
config={
|
||||
"inp_text":inp_text,
|
||||
"exp_name":exp_name,
|
||||
"opt_dir":opt_dir,
|
||||
"pretrained_s2G":pretrained_s2G_path,
|
||||
"s2config_path":"GPT_SoVITS/configs/s2.json",
|
||||
"is_half": str(is_half)
|
||||
}
|
||||
gpu_names=gpu_numbers.split("-")
|
||||
all_parts=len(gpu_names)
|
||||
for i_part in range(all_parts):
|
||||
config.update(
|
||||
{
|
||||
"i_part": str(i_part),
|
||||
"all_parts": str(all_parts),
|
||||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||||
}
|
||||
)
|
||||
os.environ.update(config)
|
||||
cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps1c.append(p)
|
||||
yield "语义token提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
for p in ps1c:
|
||||
p.wait()
|
||||
opt = ["item_name\tsemantic_audio"]
|
||||
path_semantic = "%s/6-name2semantic.tsv" % opt_dir
|
||||
for i_part in range(all_parts):
|
||||
semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
|
||||
with open(semantic_path, "r", encoding="utf8") as f:
|
||||
opt += f.read().strip("\n").split("\n")
|
||||
os.remove(semantic_path)
|
||||
with open(path_semantic, "w", encoding="utf8") as f:
|
||||
f.write("\n".join(opt) + "\n")
|
||||
ps1c=[]
|
||||
yield "语义token提取进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
else:
|
||||
yield "已有正在进行的语义token提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
|
||||
def close1c():
|
||||
global ps1c
|
||||
if (ps1c != []):
|
||||
for p1c in ps1c:
|
||||
try:
|
||||
kill_process(p1c.pid)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
ps1c=[]
|
||||
return "已终止所有语义token进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
|
||||
#####inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G
|
||||
ps1abc=[]
|
||||
def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,ssl_pretrained_dir,pretrained_s2G_path):
|
||||
global ps1abc
|
||||
inp_text = my_utils.clean_path(inp_text)
|
||||
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
|
||||
if (ps1abc == []):
|
||||
opt_dir="%s/%s"%(exp_root,exp_name)
|
||||
try:
|
||||
#############################1a
|
||||
path_text="%s/2-name2text.txt" % opt_dir
|
||||
if(os.path.exists(path_text)==False or (os.path.exists(path_text)==True and len(open(path_text,"r",encoding="utf8").read().strip("\n").split("\n"))<2)):
|
||||
config={
|
||||
"inp_text":inp_text,
|
||||
"inp_wav_dir":inp_wav_dir,
|
||||
"exp_name":exp_name,
|
||||
"opt_dir":opt_dir,
|
||||
"bert_pretrained_dir":bert_pretrained_dir,
|
||||
"is_half": str(is_half)
|
||||
}
|
||||
gpu_names=gpu_numbers1a.split("-")
|
||||
all_parts=len(gpu_names)
|
||||
for i_part in range(all_parts):
|
||||
config.update(
|
||||
{
|
||||
"i_part": str(i_part),
|
||||
"all_parts": str(all_parts),
|
||||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||||
}
|
||||
)
|
||||
os.environ.update(config)
|
||||
cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps1abc.append(p)
|
||||
yield "进度:1a-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
for p in ps1abc:p.wait()
|
||||
|
||||
opt = []
|
||||
for i_part in range(all_parts):#txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part)
|
||||
txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
|
||||
with open(txt_path, "r",encoding="utf8") as f:
|
||||
opt += f.read().strip("\n").split("\n")
|
||||
os.remove(txt_path)
|
||||
with open(path_text, "w",encoding="utf8") as f:
|
||||
f.write("\n".join(opt) + "\n")
|
||||
|
||||
yield "进度:1a-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
ps1abc=[]
|
||||
#############################1b
|
||||
config={
|
||||
"inp_text":inp_text,
|
||||
"inp_wav_dir":inp_wav_dir,
|
||||
"exp_name":exp_name,
|
||||
"opt_dir":opt_dir,
|
||||
"cnhubert_base_dir":ssl_pretrained_dir,
|
||||
}
|
||||
gpu_names=gpu_numbers1Ba.split("-")
|
||||
all_parts=len(gpu_names)
|
||||
for i_part in range(all_parts):
|
||||
config.update(
|
||||
{
|
||||
"i_part": str(i_part),
|
||||
"all_parts": str(all_parts),
|
||||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||||
}
|
||||
)
|
||||
os.environ.update(config)
|
||||
cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps1abc.append(p)
|
||||
yield "进度:1a-done, 1b-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
for p in ps1abc:p.wait()
|
||||
yield "进度:1a1b-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
ps1abc=[]
|
||||
#############################1c
|
||||
path_semantic = "%s/6-name2semantic.tsv" % opt_dir
|
||||
if(os.path.exists(path_semantic)==False or (os.path.exists(path_semantic)==True and os.path.getsize(path_semantic)<31)):
|
||||
config={
|
||||
"inp_text":inp_text,
|
||||
"exp_name":exp_name,
|
||||
"opt_dir":opt_dir,
|
||||
"pretrained_s2G":pretrained_s2G_path,
|
||||
"s2config_path":"GPT_SoVITS/configs/s2.json",
|
||||
}
|
||||
gpu_names=gpu_numbers1c.split("-")
|
||||
all_parts=len(gpu_names)
|
||||
for i_part in range(all_parts):
|
||||
config.update(
|
||||
{
|
||||
"i_part": str(i_part),
|
||||
"all_parts": str(all_parts),
|
||||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||||
}
|
||||
)
|
||||
os.environ.update(config)
|
||||
cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps1abc.append(p)
|
||||
yield "进度:1a1b-done, 1cing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
for p in ps1abc:p.wait()
|
||||
|
||||
opt = ["item_name\tsemantic_audio"]
|
||||
for i_part in range(all_parts):
|
||||
semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
|
||||
with open(semantic_path, "r",encoding="utf8") as f:
|
||||
opt += f.read().strip("\n").split("\n")
|
||||
os.remove(semantic_path)
|
||||
with open(path_semantic, "w",encoding="utf8") as f:
|
||||
f.write("\n".join(opt) + "\n")
|
||||
yield "进度:all-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
ps1abc = []
|
||||
yield "一键三连进程结束", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
|
||||
except:
|
||||
traceback.print_exc()
|
||||
close1abc()
|
||||
yield "一键三连中途报错", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
|
||||
else:
|
||||
yield "已有正在进行的一键三连任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
|
||||
def close1abc():
|
||||
global ps1abc
|
||||
if (ps1abc != []):
|
||||
for p1abc in ps1abc:
|
||||
try:
|
||||
kill_process(p1abc.pid)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
ps1abc=[]
|
||||
return "已终止所有一键三连进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
|
627
webui.py
627
webui.py
@ -1,176 +1,12 @@
|
||||
import os,shutil,sys,pdb,re
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
import json,yaml,warnings,torch
|
||||
import platform
|
||||
import psutil
|
||||
import signal
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
torch.manual_seed(233333)
|
||||
tmp = os.path.join(now_dir, "TEMP")
|
||||
os.makedirs(tmp, exist_ok=True)
|
||||
os.environ["TEMP"] = tmp
|
||||
if(os.path.exists(tmp)):
|
||||
for name in os.listdir(tmp):
|
||||
if(name=="jieba.cache"):continue
|
||||
path="%s/%s"%(tmp,name)
|
||||
delete=os.remove if os.path.isfile(path) else shutil.rmtree
|
||||
try:
|
||||
delete(path)
|
||||
except Exception as e:
|
||||
print(str(e))
|
||||
pass
|
||||
import site
|
||||
site_packages_roots = []
|
||||
for path in site.getsitepackages():
|
||||
if "packages" in path:
|
||||
site_packages_roots.append(path)
|
||||
if(site_packages_roots==[]):site_packages_roots=["%s/runtime/Lib/site-packages" % now_dir]
|
||||
#os.environ["OPENBLAS_NUM_THREADS"] = "4"
|
||||
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
|
||||
os.environ["all_proxy"] = ""
|
||||
for site_packages_root in site_packages_roots:
|
||||
if os.path.exists(site_packages_root):
|
||||
try:
|
||||
with open("%s/users.pth" % (site_packages_root), "w") as f:
|
||||
f.write(
|
||||
"%s\n%s/tools\n%s/tools/damo_asr\n%s/GPT_SoVITS\n%s/tools/uvr5"
|
||||
% (now_dir, now_dir, now_dir, now_dir, now_dir)
|
||||
)
|
||||
break
|
||||
except PermissionError:
|
||||
pass
|
||||
from tools import my_utils
|
||||
import traceback
|
||||
import shutil
|
||||
import pdb
|
||||
import os
|
||||
import gradio as gr
|
||||
from subprocess import Popen
|
||||
import signal
|
||||
from config import python_exec,infer_device,is_half,exp_root,webui_port_main,webui_port_infer_tts,webui_port_uvr5,webui_port_subfix,is_share
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
i18n = I18nAuto()
|
||||
from scipy.io import wavfile
|
||||
from tools.my_utils import load_audio
|
||||
from multiprocessing import cpu_count
|
||||
|
||||
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu
|
||||
|
||||
n_cpu=cpu_count()
|
||||
|
||||
ngpu = torch.cuda.device_count()
|
||||
gpu_infos = []
|
||||
mem = []
|
||||
if_gpu_ok = False
|
||||
|
||||
# 判断是否有能用来训练和加速推理的N卡
|
||||
if torch.cuda.is_available() or ngpu != 0:
|
||||
for i in range(ngpu):
|
||||
gpu_name = torch.cuda.get_device_name(i)
|
||||
if any(value in gpu_name.upper()for value in ["10","16","20","30","40","A2","A3","A4","P4","A50","500","A60","70","80","90","M4","T4","TITAN","L4","4060"]):
|
||||
# A10#A100#V100#A40#P40#M40#K80#A4500
|
||||
if_gpu_ok = True # 至少有一张能用的N卡
|
||||
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
||||
mem.append(int(torch.cuda.get_device_properties(i).total_memory/ 1024/ 1024/ 1024+ 0.4))
|
||||
# 判断是否支持mps加速
|
||||
if torch.backends.mps.is_available():
|
||||
if_gpu_ok = True
|
||||
gpu_infos.append("%s\t%s" % ("0", "Apple GPU"))
|
||||
mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) # 实测使用系统内存作为显存不会爆显存
|
||||
|
||||
if if_gpu_ok and len(gpu_infos) > 0:
|
||||
gpu_info = "\n".join(gpu_infos)
|
||||
default_batch_size = min(mem) // 2
|
||||
else:
|
||||
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
||||
default_batch_size = 1
|
||||
gpus = "-".join([i[0] for i in gpu_infos])
|
||||
|
||||
pretrained_sovits_name="GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||||
pretrained_gpt_name="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||
def get_weights_names():
|
||||
SoVITS_names = [pretrained_sovits_name]
|
||||
for name in os.listdir(SoVITS_weight_root):
|
||||
if name.endswith(".pth"):SoVITS_names.append(name)
|
||||
GPT_names = [pretrained_gpt_name]
|
||||
for name in os.listdir(GPT_weight_root):
|
||||
if name.endswith(".ckpt"): GPT_names.append(name)
|
||||
return SoVITS_names,GPT_names
|
||||
SoVITS_weight_root="SoVITS_weights"
|
||||
GPT_weight_root="GPT_weights"
|
||||
os.makedirs(SoVITS_weight_root,exist_ok=True)
|
||||
os.makedirs(GPT_weight_root,exist_ok=True)
|
||||
SoVITS_names,GPT_names = get_weights_names()
|
||||
|
||||
def custom_sort_key(s):
|
||||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||||
parts = re.split('(\d+)', s)
|
||||
# 将数字部分转换为整数,非数字部分保持不变
|
||||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||||
return parts
|
||||
|
||||
def change_choices():
|
||||
SoVITS_names, GPT_names = get_weights_names()
|
||||
return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"}
|
||||
|
||||
p_label=None
|
||||
p_uvr5=None
|
||||
p_asr=None
|
||||
p_tts_inference=None
|
||||
|
||||
def kill_proc_tree(pid, including_parent=True):
|
||||
try:
|
||||
parent = psutil.Process(pid)
|
||||
except psutil.NoSuchProcess:
|
||||
# Process already terminated
|
||||
return
|
||||
|
||||
children = parent.children(recursive=True)
|
||||
for child in children:
|
||||
try:
|
||||
os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL
|
||||
except OSError:
|
||||
pass
|
||||
if including_parent:
|
||||
try:
|
||||
os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL
|
||||
except OSError:
|
||||
pass
|
||||
|
||||
system=platform.system()
|
||||
def kill_process(pid):
|
||||
if(system=="Windows"):
|
||||
cmd = "taskkill /t /f /pid %s" % pid
|
||||
os.system(cmd)
|
||||
else:
|
||||
kill_proc_tree(pid)
|
||||
|
||||
|
||||
def change_label(if_label,path_list):
|
||||
global p_label
|
||||
if(if_label==True and p_label==None):
|
||||
path_list=my_utils.clean_path(path_list)
|
||||
cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s --is_share %s'%(python_exec,path_list,webui_port_subfix,is_share)
|
||||
yield i18n("打标工具WebUI已开启")
|
||||
print(cmd)
|
||||
p_label = Popen(cmd, shell=True)
|
||||
elif(if_label==False and p_label!=None):
|
||||
kill_process(p_label.pid)
|
||||
p_label=None
|
||||
yield i18n("打标工具WebUI已关闭")
|
||||
|
||||
def change_uvr5(if_uvr5):
|
||||
global p_uvr5
|
||||
if(if_uvr5==True and p_uvr5==None):
|
||||
cmd = '"%s" tools/uvr5/webui.py "%s" %s %s %s'%(python_exec,infer_device,is_half,webui_port_uvr5,is_share)
|
||||
yield i18n("UVR5已开启")
|
||||
print(cmd)
|
||||
p_uvr5 = Popen(cmd, shell=True)
|
||||
elif(if_uvr5==False and p_uvr5!=None):
|
||||
kill_process(p_uvr5.pid)
|
||||
p_uvr5=None
|
||||
yield i18n("UVR5已关闭")
|
||||
from train_base import gpu_info, n_cpu, SoVITS_names, pretrained_sovits_name, pretrained_gpt_name, custom_sort_key, GPT_names, default_batch_size, kill_process, SoVITS_weight_root, GPT_weight_root, change_choices, change_label, change_uvr5, open_asr, change_tts_inference, open1Ba, open1Bb, close1Bb, open_slice, close_asr, open1a, close1a, open1b, close1Ba, close_slice, close1b, open1c, close1c, open1abc, close1abc, gpus
|
||||
from tools.asr.config import asr_dict
|
||||
from config import python_exec,infer_device,is_half,exp_root,webui_port_main,webui_port_infer_tts,webui_port_uvr5,webui_port_subfix,is_share
|
||||
from subprocess import Popen
|
||||
|
||||
def change_tts_inference(if_tts,bert_path,cnhubert_base_path,gpu_number,gpt_path,sovits_path):
|
||||
global p_tts_inference
|
||||
@ -192,459 +28,6 @@ def change_tts_inference(if_tts,bert_path,cnhubert_base_path,gpu_number,gpt_path
|
||||
p_tts_inference=None
|
||||
yield i18n("TTS推理进程已关闭")
|
||||
|
||||
from tools.asr.config import asr_dict
|
||||
def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang):
|
||||
global p_asr
|
||||
if(p_asr==None):
|
||||
asr_inp_dir=my_utils.clean_path(asr_inp_dir)
|
||||
cmd = f'"{python_exec}" tools/asr/{asr_dict[asr_model]["path"]}'
|
||||
cmd += f' -i "{asr_inp_dir}"'
|
||||
cmd += f' -o "{asr_opt_dir}"'
|
||||
cmd += f' -s {asr_model_size}'
|
||||
cmd += f' -l {asr_lang}'
|
||||
cmd += " -p %s"%("float16"if is_half==True else "float32")
|
||||
|
||||
yield "ASR任务开启:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
|
||||
print(cmd)
|
||||
p_asr = Popen(cmd, shell=True)
|
||||
p_asr.wait()
|
||||
p_asr=None
|
||||
yield f"ASR任务完成, 查看终端进行下一步",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
else:
|
||||
yield "已有正在进行的ASR任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
|
||||
# return None
|
||||
|
||||
def close_asr():
|
||||
global p_asr
|
||||
if(p_asr!=None):
|
||||
kill_process(p_asr.pid)
|
||||
p_asr=None
|
||||
return "已终止ASR进程",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
|
||||
p_train_SoVITS=None
|
||||
def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D):
|
||||
global p_train_SoVITS
|
||||
if(p_train_SoVITS==None):
|
||||
with open("GPT_SoVITS/configs/s2.json")as f:
|
||||
data=f.read()
|
||||
data=json.loads(data)
|
||||
s2_dir="%s/%s"%(exp_root,exp_name)
|
||||
os.makedirs("%s/logs_s2"%(s2_dir),exist_ok=True)
|
||||
if(is_half==False):
|
||||
data["train"]["fp16_run"]=False
|
||||
batch_size=max(1,batch_size//2)
|
||||
data["train"]["batch_size"]=batch_size
|
||||
data["train"]["epochs"]=total_epoch
|
||||
data["train"]["text_low_lr_rate"]=text_low_lr_rate
|
||||
data["train"]["pretrained_s2G"]=pretrained_s2G
|
||||
data["train"]["pretrained_s2D"]=pretrained_s2D
|
||||
data["train"]["if_save_latest"]=if_save_latest
|
||||
data["train"]["if_save_every_weights"]=if_save_every_weights
|
||||
data["train"]["save_every_epoch"]=save_every_epoch
|
||||
data["train"]["gpu_numbers"]=gpu_numbers1Ba
|
||||
data["data"]["exp_dir"]=data["s2_ckpt_dir"]=s2_dir
|
||||
data["save_weight_dir"]=SoVITS_weight_root
|
||||
data["name"]=exp_name
|
||||
tmp_config_path="%s/tmp_s2.json"%tmp
|
||||
with open(tmp_config_path,"w")as f:f.write(json.dumps(data))
|
||||
|
||||
cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"'%(python_exec,tmp_config_path)
|
||||
yield "SoVITS训练开始:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
|
||||
print(cmd)
|
||||
p_train_SoVITS = Popen(cmd, shell=True)
|
||||
p_train_SoVITS.wait()
|
||||
p_train_SoVITS=None
|
||||
yield "SoVITS训练完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
else:
|
||||
yield "已有正在进行的SoVITS训练任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
|
||||
|
||||
def close1Ba():
|
||||
global p_train_SoVITS
|
||||
if(p_train_SoVITS!=None):
|
||||
kill_process(p_train_SoVITS.pid)
|
||||
p_train_SoVITS=None
|
||||
return "已终止SoVITS训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
|
||||
p_train_GPT=None
|
||||
def open1Bb(batch_size,total_epoch,exp_name,if_dpo,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers,pretrained_s1):
|
||||
global p_train_GPT
|
||||
if(p_train_GPT==None):
|
||||
with open("GPT_SoVITS/configs/s1longer.yaml")as f:
|
||||
data=f.read()
|
||||
data=yaml.load(data, Loader=yaml.FullLoader)
|
||||
s1_dir="%s/%s"%(exp_root,exp_name)
|
||||
os.makedirs("%s/logs_s1"%(s1_dir),exist_ok=True)
|
||||
if(is_half==False):
|
||||
data["train"]["precision"]="32"
|
||||
batch_size = max(1, batch_size // 2)
|
||||
data["train"]["batch_size"]=batch_size
|
||||
data["train"]["epochs"]=total_epoch
|
||||
data["pretrained_s1"]=pretrained_s1
|
||||
data["train"]["save_every_n_epoch"]=save_every_epoch
|
||||
data["train"]["if_save_every_weights"]=if_save_every_weights
|
||||
data["train"]["if_save_latest"]=if_save_latest
|
||||
data["train"]["if_dpo"]=if_dpo
|
||||
data["train"]["half_weights_save_dir"]=GPT_weight_root
|
||||
data["train"]["exp_name"]=exp_name
|
||||
data["train_semantic_path"]="%s/6-name2semantic.tsv"%s1_dir
|
||||
data["train_phoneme_path"]="%s/2-name2text.txt"%s1_dir
|
||||
data["output_dir"]="%s/logs_s1"%s1_dir
|
||||
|
||||
os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_numbers.replace("-",",")
|
||||
os.environ["hz"]="25hz"
|
||||
tmp_config_path="%s/tmp_s1.yaml"%tmp
|
||||
with open(tmp_config_path, "w") as f:f.write(yaml.dump(data, default_flow_style=False))
|
||||
# cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" --train_semantic_path "%s/6-name2semantic.tsv" --train_phoneme_path "%s/2-name2text.txt" --output_dir "%s/logs_s1"'%(python_exec,tmp_config_path,s1_dir,s1_dir,s1_dir)
|
||||
cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" '%(python_exec,tmp_config_path)
|
||||
yield "GPT训练开始:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
|
||||
print(cmd)
|
||||
p_train_GPT = Popen(cmd, shell=True)
|
||||
p_train_GPT.wait()
|
||||
p_train_GPT=None
|
||||
yield "GPT训练完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
else:
|
||||
yield "已有正在进行的GPT训练任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
|
||||
|
||||
def close1Bb():
|
||||
global p_train_GPT
|
||||
if(p_train_GPT!=None):
|
||||
kill_process(p_train_GPT.pid)
|
||||
p_train_GPT=None
|
||||
return "已终止GPT训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
|
||||
ps_slice=[]
|
||||
def open_slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_parts):
|
||||
global ps_slice
|
||||
inp = my_utils.clean_path(inp)
|
||||
opt_root = my_utils.clean_path(opt_root)
|
||||
if(os.path.exists(inp)==False):
|
||||
yield "输入路径不存在",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
return
|
||||
if os.path.isfile(inp):n_parts=1
|
||||
elif os.path.isdir(inp):pass
|
||||
else:
|
||||
yield "输入路径存在但既不是文件也不是文件夹",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
return
|
||||
if (ps_slice == []):
|
||||
for i_part in range(n_parts):
|
||||
cmd = '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s''' % (python_exec,inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, i_part, n_parts)
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps_slice.append(p)
|
||||
yield "切割执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
for p in ps_slice:
|
||||
p.wait()
|
||||
ps_slice=[]
|
||||
yield "切割结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
else:
|
||||
yield "已有正在进行的切割任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
|
||||
def close_slice():
|
||||
global ps_slice
|
||||
if (ps_slice != []):
|
||||
for p_slice in ps_slice:
|
||||
try:
|
||||
kill_process(p_slice.pid)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
ps_slice=[]
|
||||
return "已终止所有切割进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
|
||||
|
||||
ps1a=[]
|
||||
def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir):
|
||||
global ps1a
|
||||
inp_text = my_utils.clean_path(inp_text)
|
||||
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
|
||||
if (ps1a == []):
|
||||
opt_dir="%s/%s"%(exp_root,exp_name)
|
||||
config={
|
||||
"inp_text":inp_text,
|
||||
"inp_wav_dir":inp_wav_dir,
|
||||
"exp_name":exp_name,
|
||||
"opt_dir":opt_dir,
|
||||
"bert_pretrained_dir":bert_pretrained_dir,
|
||||
}
|
||||
gpu_names=gpu_numbers.split("-")
|
||||
all_parts=len(gpu_names)
|
||||
for i_part in range(all_parts):
|
||||
config.update(
|
||||
{
|
||||
"i_part": str(i_part),
|
||||
"all_parts": str(all_parts),
|
||||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||||
"is_half": str(is_half)
|
||||
}
|
||||
)
|
||||
os.environ.update(config)
|
||||
cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps1a.append(p)
|
||||
yield "文本进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
for p in ps1a:
|
||||
p.wait()
|
||||
opt = []
|
||||
for i_part in range(all_parts):
|
||||
txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
|
||||
with open(txt_path, "r", encoding="utf8") as f:
|
||||
opt += f.read().strip("\n").split("\n")
|
||||
os.remove(txt_path)
|
||||
path_text = "%s/2-name2text.txt" % opt_dir
|
||||
with open(path_text, "w", encoding="utf8") as f:
|
||||
f.write("\n".join(opt) + "\n")
|
||||
ps1a=[]
|
||||
yield "文本进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
else:
|
||||
yield "已有正在进行的文本任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
|
||||
def close1a():
|
||||
global ps1a
|
||||
if (ps1a != []):
|
||||
for p1a in ps1a:
|
||||
try:
|
||||
kill_process(p1a.pid)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
ps1a=[]
|
||||
return "已终止所有1a进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
|
||||
|
||||
ps1b=[]
|
||||
def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir):
|
||||
global ps1b
|
||||
inp_text = my_utils.clean_path(inp_text)
|
||||
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
|
||||
if (ps1b == []):
|
||||
config={
|
||||
"inp_text":inp_text,
|
||||
"inp_wav_dir":inp_wav_dir,
|
||||
"exp_name":exp_name,
|
||||
"opt_dir":"%s/%s"%(exp_root,exp_name),
|
||||
"cnhubert_base_dir":ssl_pretrained_dir,
|
||||
"is_half": str(is_half)
|
||||
}
|
||||
gpu_names=gpu_numbers.split("-")
|
||||
all_parts=len(gpu_names)
|
||||
for i_part in range(all_parts):
|
||||
config.update(
|
||||
{
|
||||
"i_part": str(i_part),
|
||||
"all_parts": str(all_parts),
|
||||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||||
}
|
||||
)
|
||||
os.environ.update(config)
|
||||
cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps1b.append(p)
|
||||
yield "SSL提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
for p in ps1b:
|
||||
p.wait()
|
||||
ps1b=[]
|
||||
yield "SSL提取进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
else:
|
||||
yield "已有正在进行的SSL提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
|
||||
def close1b():
|
||||
global ps1b
|
||||
if (ps1b != []):
|
||||
for p1b in ps1b:
|
||||
try:
|
||||
kill_process(p1b.pid)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
ps1b=[]
|
||||
return "已终止所有1b进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
|
||||
|
||||
ps1c=[]
|
||||
def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path):
|
||||
global ps1c
|
||||
inp_text = my_utils.clean_path(inp_text)
|
||||
if (ps1c == []):
|
||||
opt_dir="%s/%s"%(exp_root,exp_name)
|
||||
config={
|
||||
"inp_text":inp_text,
|
||||
"exp_name":exp_name,
|
||||
"opt_dir":opt_dir,
|
||||
"pretrained_s2G":pretrained_s2G_path,
|
||||
"s2config_path":"GPT_SoVITS/configs/s2.json",
|
||||
"is_half": str(is_half)
|
||||
}
|
||||
gpu_names=gpu_numbers.split("-")
|
||||
all_parts=len(gpu_names)
|
||||
for i_part in range(all_parts):
|
||||
config.update(
|
||||
{
|
||||
"i_part": str(i_part),
|
||||
"all_parts": str(all_parts),
|
||||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||||
}
|
||||
)
|
||||
os.environ.update(config)
|
||||
cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps1c.append(p)
|
||||
yield "语义token提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
for p in ps1c:
|
||||
p.wait()
|
||||
opt = ["item_name\tsemantic_audio"]
|
||||
path_semantic = "%s/6-name2semantic.tsv" % opt_dir
|
||||
for i_part in range(all_parts):
|
||||
semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
|
||||
with open(semantic_path, "r", encoding="utf8") as f:
|
||||
opt += f.read().strip("\n").split("\n")
|
||||
os.remove(semantic_path)
|
||||
with open(path_semantic, "w", encoding="utf8") as f:
|
||||
f.write("\n".join(opt) + "\n")
|
||||
ps1c=[]
|
||||
yield "语义token提取进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
|
||||
else:
|
||||
yield "已有正在进行的语义token提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
|
||||
def close1c():
|
||||
global ps1c
|
||||
if (ps1c != []):
|
||||
for p1c in ps1c:
|
||||
try:
|
||||
kill_process(p1c.pid)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
ps1c=[]
|
||||
return "已终止所有语义token进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
|
||||
#####inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G
|
||||
ps1abc=[]
|
||||
def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,ssl_pretrained_dir,pretrained_s2G_path):
|
||||
global ps1abc
|
||||
inp_text = my_utils.clean_path(inp_text)
|
||||
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
|
||||
if (ps1abc == []):
|
||||
opt_dir="%s/%s"%(exp_root,exp_name)
|
||||
try:
|
||||
#############################1a
|
||||
path_text="%s/2-name2text.txt" % opt_dir
|
||||
if(os.path.exists(path_text)==False or (os.path.exists(path_text)==True and len(open(path_text,"r",encoding="utf8").read().strip("\n").split("\n"))<2)):
|
||||
config={
|
||||
"inp_text":inp_text,
|
||||
"inp_wav_dir":inp_wav_dir,
|
||||
"exp_name":exp_name,
|
||||
"opt_dir":opt_dir,
|
||||
"bert_pretrained_dir":bert_pretrained_dir,
|
||||
"is_half": str(is_half)
|
||||
}
|
||||
gpu_names=gpu_numbers1a.split("-")
|
||||
all_parts=len(gpu_names)
|
||||
for i_part in range(all_parts):
|
||||
config.update(
|
||||
{
|
||||
"i_part": str(i_part),
|
||||
"all_parts": str(all_parts),
|
||||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||||
}
|
||||
)
|
||||
os.environ.update(config)
|
||||
cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps1abc.append(p)
|
||||
yield "进度:1a-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
for p in ps1abc:p.wait()
|
||||
|
||||
opt = []
|
||||
for i_part in range(all_parts):#txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part)
|
||||
txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
|
||||
with open(txt_path, "r",encoding="utf8") as f:
|
||||
opt += f.read().strip("\n").split("\n")
|
||||
os.remove(txt_path)
|
||||
with open(path_text, "w",encoding="utf8") as f:
|
||||
f.write("\n".join(opt) + "\n")
|
||||
|
||||
yield "进度:1a-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
ps1abc=[]
|
||||
#############################1b
|
||||
config={
|
||||
"inp_text":inp_text,
|
||||
"inp_wav_dir":inp_wav_dir,
|
||||
"exp_name":exp_name,
|
||||
"opt_dir":opt_dir,
|
||||
"cnhubert_base_dir":ssl_pretrained_dir,
|
||||
}
|
||||
gpu_names=gpu_numbers1Ba.split("-")
|
||||
all_parts=len(gpu_names)
|
||||
for i_part in range(all_parts):
|
||||
config.update(
|
||||
{
|
||||
"i_part": str(i_part),
|
||||
"all_parts": str(all_parts),
|
||||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||||
}
|
||||
)
|
||||
os.environ.update(config)
|
||||
cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps1abc.append(p)
|
||||
yield "进度:1a-done, 1b-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
for p in ps1abc:p.wait()
|
||||
yield "进度:1a1b-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
ps1abc=[]
|
||||
#############################1c
|
||||
path_semantic = "%s/6-name2semantic.tsv" % opt_dir
|
||||
if(os.path.exists(path_semantic)==False or (os.path.exists(path_semantic)==True and os.path.getsize(path_semantic)<31)):
|
||||
config={
|
||||
"inp_text":inp_text,
|
||||
"exp_name":exp_name,
|
||||
"opt_dir":opt_dir,
|
||||
"pretrained_s2G":pretrained_s2G_path,
|
||||
"s2config_path":"GPT_SoVITS/configs/s2.json",
|
||||
}
|
||||
gpu_names=gpu_numbers1c.split("-")
|
||||
all_parts=len(gpu_names)
|
||||
for i_part in range(all_parts):
|
||||
config.update(
|
||||
{
|
||||
"i_part": str(i_part),
|
||||
"all_parts": str(all_parts),
|
||||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||||
}
|
||||
)
|
||||
os.environ.update(config)
|
||||
cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps1abc.append(p)
|
||||
yield "进度:1a1b-done, 1cing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
for p in ps1abc:p.wait()
|
||||
|
||||
opt = ["item_name\tsemantic_audio"]
|
||||
for i_part in range(all_parts):
|
||||
semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
|
||||
with open(semantic_path, "r",encoding="utf8") as f:
|
||||
opt += f.read().strip("\n").split("\n")
|
||||
os.remove(semantic_path)
|
||||
with open(path_semantic, "w",encoding="utf8") as f:
|
||||
f.write("\n".join(opt) + "\n")
|
||||
yield "进度:all-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
ps1abc = []
|
||||
yield "一键三连进程结束", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
|
||||
except:
|
||||
traceback.print_exc()
|
||||
close1abc()
|
||||
yield "一键三连中途报错", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
|
||||
else:
|
||||
yield "已有正在进行的一键三连任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
|
||||
|
||||
def close1abc():
|
||||
global ps1abc
|
||||
if (ps1abc != []):
|
||||
for p1abc in ps1abc:
|
||||
try:
|
||||
kill_process(p1abc.pid)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
ps1abc=[]
|
||||
return "已终止所有一键三连进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
|
||||
|
||||
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
gr.Markdown(
|
||||
value=
|
||||
|
Loading…
x
Reference in New Issue
Block a user