回退mask策略;

回退pad策略;
在T2SBlock中添加padding_mask,以减少pad的影响;
开放repetition_penalty参数,让用户自行调整重复惩罚的强度;
增加parallel_infer参数,用于开启或关闭并行推理,关闭时与0307版本保持一致;
在webui中增加“保持随机”选项;
同步main分支代码。
This commit is contained in:
ChasonJiang 2024-04-16 20:06:31 +08:00
parent 302cf08630
commit ef1cd01d6e
6 changed files with 215 additions and 239 deletions

View File

@ -13,11 +13,11 @@ from AR.modules.lr_schedulers import WarmupCosineLRSchedule
from AR.modules.optim import ScaledAdam from AR.modules.optim import ScaledAdam
class Text2SemanticLightningModule(LightningModule): class Text2SemanticLightningModule(LightningModule):
def __init__(self, config, output_dir, is_train=True, flash_attn_enabled:bool = False): def __init__(self, config, output_dir, is_train=True):
super().__init__() super().__init__()
self.config = config self.config = config
self.top_k = 3 self.top_k = 3
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k,flash_attn_enabled=flash_attn_enabled) self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
pretrained_s1 = config.get("pretrained_s1") pretrained_s1 = config.get("pretrained_s1")
if pretrained_s1 and is_train: if pretrained_s1 and is_train:
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"])) # print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))

View File

@ -85,15 +85,22 @@ class T2SBlock:
self.norm_b2 = norm_b2 self.norm_b2 = norm_b2
self.norm_eps2 = norm_eps2 self.norm_eps2 = norm_eps2
def process_prompt(self, x, attn_mask : torch.Tensor): @torch.jit.ignore
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1) def to_mask(self, x, padding_mask):
return x*padding_mask if padding_mask is not None else x
def process_prompt(self, x, attn_mask : torch.Tensor, padding_mask:torch.Tensor=None):
q, k, v = F.linear(self.to_mask(x, padding_mask), self.qkv_w, self.qkv_b).chunk(3, dim=-1)
batch_size = q.shape[0] batch_size = q.shape[0]
q_len = q.shape[1] q_len = q.shape[1]
kv_len = k.shape[1] kv_len = k.shape[1]
k_cache = k q = self.to_mask(q, padding_mask)
v_cache = v k_cache = self.to_mask(k, padding_mask)
v_cache = self.to_mask(v, padding_mask)
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2) q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
@ -103,13 +110,15 @@ class T2SBlock:
attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim) attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim)
attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0) attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0)
attn = F.linear(attn, self.out_w, self.out_b) attn = F.linear(self.to_mask(attn, padding_mask), self.out_w, self.out_b)
x = self.to_mask(x + attn, padding_mask)
x = F.layer_norm( x = F.layer_norm(
x + attn, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1 x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
) )
x = self.to_mask(x + self.mlp.forward(self.to_mask(x, padding_mask)), padding_mask)
x = F.layer_norm( x = F.layer_norm(
x + self.mlp.forward(x), x,
[self.hidden_dim], [self.hidden_dim],
self.norm_w2, self.norm_w2,
self.norm_b2, self.norm_b2,
@ -138,11 +147,13 @@ class T2SBlock:
attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0) attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0)
attn = F.linear(attn, self.out_w, self.out_b) attn = F.linear(attn, self.out_w, self.out_b)
x = x + attn
x = F.layer_norm( x = F.layer_norm(
x + attn, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1 x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
) )
x = x + self.mlp.forward(x)
x = F.layer_norm( x = F.layer_norm(
x + self.mlp.forward(x), x,
[self.hidden_dim], [self.hidden_dim],
self.norm_w2, self.norm_w2,
self.norm_b2, self.norm_b2,
@ -158,11 +169,13 @@ class T2STransformer:
self.blocks = blocks self.blocks = blocks
def process_prompt( def process_prompt(
self, x, attn_mask : torch.Tensor): self, x, attn_mask : torch.Tensor,
padding_mask : torch.Tensor=None,
):
k_cache : List[torch.Tensor] = [] k_cache : List[torch.Tensor] = []
v_cache : List[torch.Tensor] = [] v_cache : List[torch.Tensor] = []
for i in range(self.num_blocks): for i in range(self.num_blocks):
x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask) x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask, padding_mask)
k_cache.append(k_cache_) k_cache.append(k_cache_)
v_cache.append(v_cache_) v_cache.append(v_cache_)
return x, k_cache, v_cache return x, k_cache, v_cache
@ -176,7 +189,7 @@ class T2STransformer:
class Text2SemanticDecoder(nn.Module): class Text2SemanticDecoder(nn.Module):
def __init__(self, config, norm_first=False, top_k=3, flash_attn_enabled:bool=False): def __init__(self, config, norm_first=False, top_k=3):
super(Text2SemanticDecoder, self).__init__() super(Text2SemanticDecoder, self).__init__()
self.model_dim = config["model"]["hidden_dim"] self.model_dim = config["model"]["hidden_dim"]
self.embedding_dim = config["model"]["embedding_dim"] self.embedding_dim = config["model"]["embedding_dim"]
@ -228,47 +241,37 @@ class Text2SemanticDecoder(nn.Module):
multidim_average="global", multidim_average="global",
ignore_index=self.EOS, ignore_index=self.EOS,
) )
blocks = []
for i in range(self.num_layers):
layer = self.h.layers[i]
t2smlp = T2SMLP(
layer.linear1.weight,
layer.linear1.bias,
layer.linear2.weight,
layer.linear2.bias
)
block = T2SBlock(
self.num_head,
self.model_dim,
t2smlp,
layer.self_attn.in_proj_weight,
layer.self_attn.in_proj_bias,
layer.self_attn.out_proj.weight,
layer.self_attn.out_proj.bias,
layer.norm1.weight,
layer.norm1.bias,
layer.norm1.eps,
layer.norm2.weight,
layer.norm2.bias,
layer.norm2.eps
)
blocks.append(block)
self.enable_flash_attn(flash_attn_enabled) self.t2s_transformer = T2STransformer(self.num_layers, blocks)
def enable_flash_attn(self, enable:bool=True):
if not enable:
print("Not Using Flash Attention")
self.infer_panel = self.infer_panel_batch_only
else:
self.infer_panel = self.infer_panel_batch_infer_with_flash_attn
print("Using Flash Attention")
blocks = []
for i in range(self.num_layers):
layer = self.h.layers[i]
t2smlp = T2SMLP(
layer.linear1.weight,
layer.linear1.bias,
layer.linear2.weight,
layer.linear2.bias
)
block = T2SBlock(
self.num_head,
self.model_dim,
t2smlp,
layer.self_attn.in_proj_weight,
layer.self_attn.in_proj_bias,
layer.self_attn.out_proj.weight,
layer.self_attn.out_proj.bias,
layer.norm1.weight,
layer.norm1.bias,
layer.norm1.eps,
layer.norm2.weight,
layer.norm2.bias,
layer.norm2.eps
)
blocks.append(block)
self.t2s_transformer = T2STransformer(self.num_layers, blocks)
def make_input_data(self, x, x_lens, y, y_lens, bert_feature): def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
x = self.ar_text_embedding(x) x = self.ar_text_embedding(x)
@ -297,8 +300,7 @@ class Text2SemanticDecoder(nn.Module):
(0, y_len), (0, y_len),
value=True, value=True,
) )
# 取消对y[0]的mask,以防止复读详见https://github.com/RVC-Boss/GPT-SoVITS/issues/965 # x_attn_mask[:, x_len]=False
x_attn_mask[:, x_len]=False
y_attn_mask = F.pad( y_attn_mask = F.pad(
torch.triu( torch.triu(
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device), torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
@ -394,8 +396,7 @@ class Text2SemanticDecoder(nn.Module):
(0, y_len), (0, y_len),
value=True, value=True,
) )
# 取消对y[0]的mask,以防止复读详见https://github.com/RVC-Boss/GPT-SoVITS/issues/965 # x_attn_mask[:, x_len]=False
x_attn_mask[:, x_len]=False
y_attn_mask = F.pad( y_attn_mask = F.pad(
torch.triu( torch.triu(
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device), torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
@ -461,7 +462,7 @@ class Text2SemanticDecoder(nn.Module):
value=True, value=True,
) )
y_attn_mask = F.pad( y_attn_mask = F.pad(
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=0),# diagonal必须为0否则会导致batch_size>1时的复读情况 torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0), (x_len, 0),
value=False, value=False,
) )
@ -507,29 +508,39 @@ class Text2SemanticDecoder(nn.Module):
def infer_panel_batch_infer_with_flash_attn( def infer_panel_batch_infer_with_flash_attn(
self, self,
x:torch.LongTensor, #####全部文本token x:List[torch.LongTensor], #####全部文本token
x_lens:torch.LongTensor, x_lens:torch.LongTensor,
prompts:torch.LongTensor, ####参考音频token prompts:torch.LongTensor, ####参考音频token
bert_feature:torch.LongTensor, bert_feature:List[torch.LongTensor],
top_k: int = -100, top_k: int = -100,
top_p: int = 100, top_p: int = 100,
early_stop_num: int = -1, early_stop_num: int = -1,
temperature: float = 1.0, temperature: float = 1.0,
repetition_penalty: float = 1.35,
**kwargs,
): ):
## 先对phones进行embedding、对bert_features进行project再pad到相同长度padding策略会影响T2S模型生成的结果但不直接影响复读概率。影响复读概率的主要因素是mask的策略 # # fp16 会对结果产生影响和没pad相比
# max_len = 0 # bert_feature_dtype = bert_feature[0].dtype
# if not hasattr(self.bert_proj, "dtype"):
# self.bert_proj.dtype = torch.float32
# self.bert_proj=self.bert_proj.float()
## 先对phones进行embedding、对bert_features进行project再pad到相同长度padding策略会影响T2S模型生成的结果。
## pad之后再进行Linear会有误差和没pad相比就离谱。。。
max_len = kwargs.get("max_len",x_lens.max())
# for x_item, bert_item in zip(x, bert_feature): # for x_item, bert_item in zip(x, bert_feature):
# max_len = max(max_len, x_item.shape[0], bert_item.shape[1]) # max_len = max(max_len, x_item.shape[0], bert_item.shape[1])
# x_list = [self.ar_text_embedding(item) for item in x] x_list = [self.ar_text_embedding(item) for item in x]
# x_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) if item.shape[0]<max_len else item for item in x_list] x_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) if item.shape[0]<max_len else item for item in x_list]
# x = torch.stack(x_list, dim=0) x = torch.stack(x_list, dim=0)
# bert_features_list = [self.bert_proj(item.transpose(0, 1)) for item in bert_feature] bert_features_list = [self.bert_proj(item.transpose(0, 1)) for item in bert_feature]
# bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) if item.shape[0]<max_len else item for item in bert_features_list] bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) if item.shape[0]<max_len else item for item in bert_features_list]
# bert_feature = torch.stack(bert_features_list, dim=0) bert_feature = torch.stack(bert_features_list, dim=0)
bert_feature = self.bert_proj(bert_feature.transpose(1, 2))
x = self.ar_text_embedding(x) # bert_feature = self.bert_proj(bert_feature.transpose(1, 2).float()).to(dtype=bert_feature_dtype)
# x = self.ar_text_embedding(x)
x = x + bert_feature x = x + bert_feature
x = self.ar_text_position(x) x = self.ar_text_position(x)
@ -539,7 +550,6 @@ class Text2SemanticDecoder(nn.Module):
x_len = x.shape[1] x_len = x.shape[1]
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool) x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
stop = False stop = False
# print(1111111,self.num_layers)
k_cache = None k_cache = None
v_cache = None v_cache = None
@ -548,6 +558,7 @@ class Text2SemanticDecoder(nn.Module):
y_emb = self.ar_audio_embedding(y) y_emb = self.ar_audio_embedding(y)
y_len = y_emb.shape[1] y_len = y_emb.shape[1]
prefix_len = y.shape[1] prefix_len = y.shape[1]
y_lens = torch.LongTensor([y_emb.shape[1]]*y_emb.shape[0]).to(x.device)
y_pos = self.ar_audio_position(y_emb) y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x, y_pos], dim=1) xy_pos = torch.concat([x, y_pos], dim=1)
ref_free = False ref_free = False
@ -555,6 +566,7 @@ class Text2SemanticDecoder(nn.Module):
y_emb = None y_emb = None
y_len = 0 y_len = 0
prefix_len = 0 prefix_len = 0
y_lens = torch.LongTensor([y_len]*x.shape[0]).to(x.device)
y_pos = None y_pos = None
xy_pos = x xy_pos = x
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device) y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
@ -564,39 +576,41 @@ class Text2SemanticDecoder(nn.Module):
##### create mask ##### ##### create mask #####
bsz = x.shape[0] bsz = x.shape[0]
src_len = x_len + y_len src_len = x_len + y_len
y_lens = torch.LongTensor([y_len]*bsz).to(x.device) y_paddind_mask = make_pad_mask(y_lens, y_len)
y_mask = make_pad_mask(y_lens) x_paddind_mask = make_pad_mask(x_lens, max_len)
x_mask = make_pad_mask(x_lens)
# (bsz, x_len + y_len) # (bsz, x_len + y_len)
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1) xy_padding_mask = torch.concat([x_paddind_mask, y_paddind_mask], dim=1)
x_mask = F.pad( x_mask = F.pad(
x_attn_mask, x_attn_mask,
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1(x,x+y) (0, y_len), ###xx的纯0扩展到xx纯0+xy纯1(x,x+y)
value=True, value=True,
) )
y_mask = F.pad( ###yy的右上0扩展到左边xy的0,(y,x+y) y_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=0), # diagonal必须为0否则会导致batch_size>1时的复读情况 torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0), (x_len, 0),
value=False, value=False,
) )
xy_mask = torch.concat([x_mask, y_mask], dim=0).view(1 , src_len, src_len).expand(bsz, -1, -1).to(x.device) xy_mask = torch.concat([x_mask, y_mask], dim=0).view(1 , src_len, src_len).expand(bsz, -1, -1).to(x.device)
# xy_mask = torch.triu(torch.ones(src_len, src_len, dtype=torch.bool, device=x.device), diagonal=1) # xy_mask = torch.triu(torch.ones(src_len, src_len, dtype=torch.bool, device=x.device), diagonal=1).view(1 , src_len, src_len).expand(bsz, -1, -1).to(x.device)
xy_padding_mask = xy_padding_mask.view(bsz, 1, src_len).expand(-1, src_len, src_len) _xy_padding_mask = xy_padding_mask.view(bsz, 1, src_len).expand(-1, src_len, src_len)
xy_attn_mask = xy_mask.logical_or(xy_padding_mask) xy_attn_mask = xy_mask.logical_or(_xy_padding_mask)
xy_attn_mask = xy_attn_mask.unsqueeze(1).expand(-1, self.num_head, -1, -1) xy_attn_mask = xy_attn_mask.unsqueeze(1).expand(-1, self.num_head, -1, -1)
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype) new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
xy_attn_mask = new_attn_mask.masked_fill(xy_attn_mask, float("-inf")) xy_attn_mask = new_attn_mask.masked_fill(xy_attn_mask, float("-inf"))
xy_padding_mask = ~xy_padding_mask.view(bsz, src_len, 1).expand(-1, -1, self.model_dim)
xy_padding_mask = xy_padding_mask.to(dtype=x.dtype)
###### decode ##### ###### decode #####
y_list = [None]*y.shape[0] y_list = [None]*y.shape[0]
batch_idx_map = list(range(y.shape[0])) batch_idx_map = list(range(y.shape[0]))
idx_list = [None]*y.shape[0] idx_list = [None]*y.shape[0]
for idx in tqdm(range(1500)): for idx in tqdm(range(1500)):
if idx == 0: if idx == 0:
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask) xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, xy_padding_mask)
else: else:
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache) xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
@ -609,7 +623,7 @@ class Text2SemanticDecoder(nn.Module):
logits = logits[:, :-1] logits = logits[:, :-1]
samples = sample( samples = sample(
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
)[0] )[0]
y = torch.concat([y, samples], dim=1) y = torch.concat([y, samples], dim=1)
@ -659,7 +673,7 @@ class Text2SemanticDecoder(nn.Module):
####################### update next step ################################### ####################### update next step ###################################
y_emb = self.ar_audio_embedding(y[:, -1:]) y_emb = self.ar_audio_embedding(y[:, -1:])
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to( dtype= y_emb.dtype,device=y_emb.device) xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to( dtype= y_emb.dtype,device=y_emb.device)
if (None in idx_list): if (None in idx_list):
for i in range(x.shape[0]): for i in range(x.shape[0]):
@ -670,7 +684,37 @@ class Text2SemanticDecoder(nn.Module):
return y_list, [0]*x.shape[0] return y_list, [0]*x.shape[0]
return y_list, idx_list return y_list, idx_list
def infer_panel_batch_only( def infer_panel_0307(self,
x:List[torch.LongTensor], #####全部文本token
x_lens:torch.LongTensor,
prompts:torch.LongTensor, ####参考音频token
bert_feature:List[torch.LongTensor],
top_k: int = -100,
top_p: int = 100,
early_stop_num: int = -1,
temperature: float = 1.0,
repetition_penalty: float = 1.35,
**kwargs
):
y_list = []
idx_list = []
for i in range(len(x)):
y, idx = self.infer_panel_with_flash_attn_only(x[i].unsqueeze(0),
x_lens[i],
prompts[i].unsqueeze(0),
bert_feature[i].unsqueeze(0),
top_k,
top_p,
early_stop_num,
temperature,
repetition_penalty,
**kwargs)
y_list.append(y[0])
idx_list.append(idx)
return y_list, idx_list
def infer_panel_with_flash_attn_only(
self, self,
x:torch.LongTensor, #####全部文本token x:torch.LongTensor, #####全部文本token
x_lens:torch.LongTensor, x_lens:torch.LongTensor,
@ -680,22 +724,11 @@ class Text2SemanticDecoder(nn.Module):
top_p: int = 100, top_p: int = 100,
early_stop_num: int = -1, early_stop_num: int = -1,
temperature: float = 1.0, temperature: float = 1.0,
repetition_penalty: float = 1.35,
**kwargs
): ):
## 先对phones进行embedding、对bert_features进行project再pad到相同长度padding策略会影响T2S模型生成的结果但不直接影响复读概率。影响复读概率的主要因素是mask的策略
# max_len = 0
# for x_item, bert_item in zip(x, bert_feature):
# max_len = max(max_len, x_item.shape[0], bert_item.shape[1])
# x_list = [self.ar_text_embedding(item) for item in x]
# x_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) if item.shape[0]<max_len else item for item in x_list]
# x = torch.stack(x_list, dim=0)
# bert_features_list = [self.bert_proj(item.transpose(0, 1)) for item in bert_feature]
# bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) if item.shape[0]<max_len else item for item in bert_features_list]
# bert_feature = torch.stack(bert_features_list, dim=0)
bert_feature = self.bert_proj(bert_feature.transpose(1, 2))
x = self.ar_text_embedding(x) x = self.ar_text_embedding(x)
x = x + bert_feature x = x + self.bert_proj(bert_feature.transpose(1, 2))
x = self.ar_text_position(x) x = self.ar_text_position(x)
# AR Decoder # AR Decoder
@ -705,17 +738,9 @@ class Text2SemanticDecoder(nn.Module):
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool) x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
stop = False stop = False
# print(1111111,self.num_layers) # print(1111111,self.num_layers)
cache = {
"all_stage": self.num_layers, k_cache = None
"k": [None] * self.num_layers, ###根据配置自己手写 v_cache = None
"v": [None] * self.num_layers,
# "xy_pos":None,##y_pos位置编码每次都不一样的没法缓存每次都要重新拼xy_pos.主要还是写法原因,其实是可以历史统一一样的,但也没啥计算量就不管了
"y_emb": None, ##只需要对最新的samples求emb再拼历史的就行
# "logits":None,###原版就已经只对结尾求再拼接了,不用管
# "xy_dec":None,###不需要本来只需要最后一个做logits
"first_infer": 1,
"stage": 0,
}
################### first step ########################## ################### first step ##########################
if y is not None: if y is not None:
y_emb = self.ar_audio_embedding(y) y_emb = self.ar_audio_embedding(y)
@ -723,7 +748,6 @@ class Text2SemanticDecoder(nn.Module):
prefix_len = y.shape[1] prefix_len = y.shape[1]
y_pos = self.ar_audio_position(y_emb) y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x, y_pos], dim=1) xy_pos = torch.concat([x, y_pos], dim=1)
cache["y_emb"] = y_emb
ref_free = False ref_free = False
else: else:
y_emb = None y_emb = None
@ -734,127 +758,58 @@ class Text2SemanticDecoder(nn.Module):
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device) y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
ref_free = True ref_free = True
##### create mask #####
bsz = x.shape[0] bsz = x.shape[0]
src_len = x_len + y_len src_len = x_len + y_len
y_lens = torch.LongTensor([y_len]*bsz).to(x.device) x_attn_mask_pad = F.pad(
y_mask = make_pad_mask(y_lens)
x_mask = make_pad_mask(x_lens)
# (bsz, x_len + y_len)
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
x_mask = F.pad(
x_attn_mask, x_attn_mask,
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1(x,x+y) (0, y_len), ###xx的纯0扩展到xx纯0+xy纯1(x,x+y)
value=True, value=True,
) )
y_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y) y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=0), # diagonal必须为0否则会导致batch_size>1时的复读情况 torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0), (x_len, 0),
value=False, value=False,
) )
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).unsqueeze(0).expand(bsz*self.num_head, -1, -1).view(bsz, self.num_head, src_len, src_len).to(x.device)
xy_mask = torch.concat([x_mask, y_mask], dim=0).view(1 , src_len, src_len).expand(bsz*self.num_head, -1, -1).to(x.device)
# xy_mask = torch.triu(torch.ones(src_len, src_len, dtype=torch.bool, device=x.device), diagonal=1)
xy_padding_mask = xy_padding_mask.view(bsz, 1, src_len).expand(bsz, src_len, src_len).repeat(self.num_head, 1, 1)
xy_attn_mask = xy_mask.logical_or(xy_padding_mask)
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype) new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
xy_attn_mask = new_attn_mask.masked_fill(xy_attn_mask, float("-inf")) xy_attn_mask = new_attn_mask.masked_fill(xy_attn_mask, float("-inf"))
y_list = [None]*y.shape[0]
batch_idx_map = list(range(y.shape[0]))
idx_list = [None]*y.shape[0]
for idx in tqdm(range(1500)): for idx in tqdm(range(1500)):
if xy_attn_mask is not None:
xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache) xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None)
else:
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
logits = self.ar_predict_layer( logits = self.ar_predict_layer(
xy_dec[:, -1] xy_dec[:, -1]
) ##不用改如果用了cache的默认就是只有一帧取最后一帧一样的 )
# samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
if(idx==0):###第一次跑不能EOS否则没有了 if idx == 0:
logits = logits[:, :-1] ###刨除1024终止符号的概率 xy_attn_mask = None
samples = sample( logits = logits[:, :-1]
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
)[0] samples = sample(
# 本次生成的 semantic_ids 和之前的 y 构成新的 y logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
# print(samples.shape)#[1,1]#第一个1是bs )[0]
y = torch.concat([y, samples], dim=1)
y = torch.concat([y, samples], dim=1)
# 移除已经生成完毕的序列
reserved_idx_of_batch_for_y = None
if (self.EOS in torch.argmax(logits, dim=-1)) or \
(self.EOS in samples[:, 0]): ###如果生成到EOS则停止
l = samples[:, 0]==self.EOS
removed_idx_of_batch_for_y = torch.where(l==True)[0].tolist()
reserved_idx_of_batch_for_y = torch.where(l==False)[0]
# batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y]
for i in removed_idx_of_batch_for_y:
batch_index = batch_idx_map[i]
idx_list[batch_index] = idx - 1
y_list[batch_index] = y[i, :-1]
batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()]
# 只保留未生成完毕的序列
if reserved_idx_of_batch_for_y is not None:
# index = torch.LongTensor(batch_idx_map).to(y.device)
y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y)
if cache["y_emb"] is not None:
cache["y_emb"] = torch.index_select(cache["y_emb"], dim=0, index=reserved_idx_of_batch_for_y)
if cache["k"] is not None:
for i in range(self.num_layers):
# 因为kv转置了所以batch dim是1
cache["k"][i] = torch.index_select(cache["k"][i], dim=1, index=reserved_idx_of_batch_for_y)
cache["v"][i] = torch.index_select(cache["v"][i], dim=1, index=reserved_idx_of_batch_for_y)
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
print("use early stop num:", early_stop_num) print("use early stop num:", early_stop_num)
stop = True stop = True
if not (None in idx_list): if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
stop = True stop = True
if stop: if stop:
# if prompts.shape[1] == y.shape[1]:
# y = torch.concat([y, torch.zeros_like(samples)], dim=1)
# print("bad zero prediction")
if y.shape[1]==0: if y.shape[1]==0:
y = torch.concat([y, torch.zeros_like(samples)], dim=1) y = torch.concat([y, torch.zeros_like(samples)], dim=1)
print("bad zero prediction") print("bad zero prediction")
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]") print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
break break
####################### update next step ###################################
cache["first_infer"] = 0
if cache["y_emb"] is not None:
y_emb = torch.cat(
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], dim = 1
)
cache["y_emb"] = y_emb
y_pos = self.ar_audio_position(y_emb)
xy_pos = y_pos[:, -1:]
else:
y_emb = self.ar_audio_embedding(y[:, -1:])
cache["y_emb"] = y_emb
y_pos = self.ar_audio_position(y_emb)
xy_pos = y_pos
y_len = y_pos.shape[1]
###最右边一列(是错的) ####################### update next step ###################################
# xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device) y_emb = self.ar_audio_embedding(y[:, -1:])
# xy_attn_mask[:,-1]=False xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device)
###最下面一行(是对的)
xy_attn_mask = torch.zeros(
(1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
)
if (None in idx_list):
for i in range(x.shape[0]):
if idx_list[i] is None:
idx_list[i] = 1500-1 ###如果没有生成到EOS就用最大长度代替
if ref_free: if ref_free:
return y_list, [0]*x.shape[0] return y[:, :-1], 0
return y_list, idx_list return y[:, :-1], idx - 1

View File

@ -37,7 +37,6 @@ default:
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
flash_attn_enabled: true
custom: custom:
device: cuda device: cuda
@ -46,7 +45,6 @@ custom:
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
flash_attn_enabled: true
""" """
@ -66,6 +64,9 @@ def set_seed(seed:int):
# torch.backends.cudnn.deterministic = True # torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False # torch.backends.cudnn.benchmark = False
# torch.backends.cudnn.enabled = True # torch.backends.cudnn.enabled = True
# 开启后会影响精度
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
except: except:
pass pass
return seed return seed
@ -78,7 +79,6 @@ class TTS_Config:
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth", "vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth",
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base", "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
"flash_attn_enabled": True
} }
configs:dict = None configs:dict = None
def __init__(self, configs: Union[dict, str]=None): def __init__(self, configs: Union[dict, str]=None):
@ -108,7 +108,6 @@ class TTS_Config:
self.device = self.configs.get("device", torch.device("cpu")) self.device = self.configs.get("device", torch.device("cpu"))
self.is_half = self.configs.get("is_half", False) self.is_half = self.configs.get("is_half", False)
self.flash_attn_enabled = self.configs.get("flash_attn_enabled", True)
self.t2s_weights_path = self.configs.get("t2s_weights_path", None) self.t2s_weights_path = self.configs.get("t2s_weights_path", None)
self.vits_weights_path = self.configs.get("vits_weights_path", None) self.vits_weights_path = self.configs.get("vits_weights_path", None)
self.bert_base_path = self.configs.get("bert_base_path", None) self.bert_base_path = self.configs.get("bert_base_path", None)
@ -141,7 +140,7 @@ class TTS_Config:
self.n_speakers:int = 300 self.n_speakers:int = 300
self.languages:list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"] self.languages:list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
# print(self)
def _load_configs(self, configs_path: str)->dict: def _load_configs(self, configs_path: str)->dict:
with open(configs_path, 'r') as f: with open(configs_path, 'r') as f:
@ -169,7 +168,6 @@ class TTS_Config:
"vits_weights_path" : self.vits_weights_path, "vits_weights_path" : self.vits_weights_path,
"bert_base_path" : self.bert_base_path, "bert_base_path" : self.bert_base_path,
"cnhuhbert_base_path": self.cnhuhbert_base_path, "cnhuhbert_base_path": self.cnhuhbert_base_path,
"flash_attn_enabled" : self.flash_attn_enabled
} }
return self.config return self.config
@ -289,8 +287,7 @@ class TTS:
dict_s1 = torch.load(weights_path, map_location=self.configs.device) dict_s1 = torch.load(weights_path, map_location=self.configs.device)
config = dict_s1["config"] config = dict_s1["config"]
self.configs.max_sec = config["data"]["max_sec"] self.configs.max_sec = config["data"]["max_sec"]
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False, t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
flash_attn_enabled=self.configs.flash_attn_enabled)
t2s_model.load_state_dict(dict_s1["weight"]) t2s_model.load_state_dict(dict_s1["weight"])
t2s_model = t2s_model.to(self.configs.device) t2s_model = t2s_model.to(self.configs.device)
t2s_model = t2s_model.eval() t2s_model = t2s_model.eval()
@ -435,8 +432,6 @@ class TTS:
device:torch.device=torch.device("cpu"), device:torch.device=torch.device("cpu"),
precision:torch.dtype=torch.float32, precision:torch.dtype=torch.float32,
): ):
# 但是这里不能套,反而会负优化
# with torch.no_grad():
_data:list = [] _data:list = []
index_and_len_list = [] index_and_len_list = []
for idx, item in enumerate(data): for idx, item in enumerate(data):
@ -484,8 +479,6 @@ class TTS:
norm_text_batch = [] norm_text_batch = []
bert_max_len = 0 bert_max_len = 0
phones_max_len = 0 phones_max_len = 0
# 但是这里也不能套,反而会负优化
# with torch.no_grad():
for item in item_list: for item in item_list:
if prompt_data is not None: if prompt_data is not None:
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\ all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\
@ -518,11 +511,11 @@ class TTS:
max_len = max(bert_max_len, phones_max_len) max_len = max(bert_max_len, phones_max_len)
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len) # phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
#### 直接对phones和bert_features进行pad。padding策略会影响T2S模型生成的结果但不直接影响复读概率。影响复读概率的主要因素是mask的策略 #### 直接对phones和bert_features进行pad。padding策略会影响T2S模型生成的结果但不直接影响复读概率。影响复读概率的主要因素是mask的策略
all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len) # all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
all_bert_features_batch = all_bert_features_list # all_bert_features_batch = all_bert_features_list
all_bert_features_batch = torch.zeros(len(item_list), 1024, max_len, dtype=precision, device=device) # all_bert_features_batch = torch.zeros((len(all_bert_features_list), 1024, max_len), dtype=precision, device=device)
for idx, item in enumerate(all_bert_features_list): # for idx, item in enumerate(all_bert_features_list):
all_bert_features_batch[idx, :, : item.shape[-1]] = item # all_bert_features_batch[idx, :, : item.shape[-1]] = item
# #### 先对phones进行embedding、对bert_features进行project再pad到相同长度padding策略会影响T2S模型生成的结果但不直接影响复读概率。影响复读概率的主要因素是mask的策略 # #### 先对phones进行embedding、对bert_features进行project再pad到相同长度padding策略会影响T2S模型生成的结果但不直接影响复读概率。影响复读概率的主要因素是mask的策略
# all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list] # all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list]
@ -539,7 +532,8 @@ class TTS:
"all_phones": all_phones_batch, "all_phones": all_phones_batch,
"all_phones_len": torch.LongTensor(all_phones_len_list).to(device), "all_phones_len": torch.LongTensor(all_phones_len_list).to(device),
"all_bert_features": all_bert_features_batch, "all_bert_features": all_bert_features_batch,
"norm_text": norm_text_batch "norm_text": norm_text_batch,
"max_len": max_len,
} }
_data.append(batch) _data.append(batch)
@ -569,7 +563,6 @@ class TTS:
''' '''
self.stop_flag = True self.stop_flag = True
# 使用装饰器
@torch.no_grad() @torch.no_grad()
def run(self, inputs:dict): def run(self, inputs:dict):
""" """
@ -594,6 +587,8 @@ class TTS:
"speed_factor":1.0, # float. control the speed of the synthesized audio. "speed_factor":1.0, # float. control the speed of the synthesized audio.
"fragment_interval":0.3, # float. to control the interval of the audio fragment. "fragment_interval":0.3, # float. to control the interval of the audio fragment.
"seed": -1, # int. random seed for reproducibility. "seed": -1, # int. random seed for reproducibility.
"parallel_infer": True, # bool. whether to use parallel inference.
"repetition_penalty": 1.35 # float. repetition penalty for T2S model.
} }
returns: returns:
tuple[int, np.ndarray]: sampling rate and audio data. tuple[int, np.ndarray]: sampling rate and audio data.
@ -618,9 +613,17 @@ class TTS:
seed = inputs.get("seed", -1) seed = inputs.get("seed", -1)
seed = -1 if seed in ["", None] else seed seed = -1 if seed in ["", None] else seed
actual_seed = set_seed(seed) actual_seed = set_seed(seed)
parallel_infer = inputs.get("parallel_infer", True)
repetition_penalty = inputs.get("repetition_penalty", 1.35)
if parallel_infer:
print(i18n("并行推理模式已开启"))
self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_batch_infer_with_flash_attn
else:
print(i18n("并行推理模式已关闭"))
self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_0307
if return_fragment: if return_fragment:
# split_bucket = False
print(i18n("分段返回模式已开启")) print(i18n("分段返回模式已开启"))
if split_bucket: if split_bucket:
split_bucket = False split_bucket = False
@ -740,12 +743,13 @@ class TTS:
all_phoneme_lens:torch.LongTensor = item["all_phones_len"] all_phoneme_lens:torch.LongTensor = item["all_phones_len"]
all_bert_features:torch.LongTensor = item["all_bert_features"] all_bert_features:torch.LongTensor = item["all_bert_features"]
norm_text:str = item["norm_text"] norm_text:str = item["norm_text"]
max_len = item["max_len"]
print(i18n("前端处理后的文本(每句):"), norm_text) print(i18n("前端处理后的文本(每句):"), norm_text)
if no_prompt_text : if no_prompt_text :
prompt = None prompt = None
else: else:
prompt = self.prompt_cache["prompt_semantic"].expand(all_phoneme_ids.shape[0], -1).to(self.configs.device) prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device)
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel( pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
@ -758,6 +762,8 @@ class TTS:
top_p=top_p, top_p=top_p,
temperature=temperature, temperature=temperature,
early_stop_num=self.configs.hz * self.configs.max_sec, early_stop_num=self.configs.hz * self.configs.max_sec,
max_len=max_len,
repetition_penalty=repetition_penalty,
) )
t4 = ttime() t4 = ttime()
t_34 += t4 - t3 t_34 += t4 - t3

View File

@ -2,7 +2,6 @@ custom:
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
device: cuda device: cuda
flash_attn_enabled: true
is_half: true is_half: true
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
@ -10,7 +9,6 @@ default:
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
device: cpu device: cpu
flash_attn_enabled: true
is_half: false is_half: false
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth

View File

@ -93,7 +93,8 @@ def inference(text, text_lang,
text_split_method, batch_size, text_split_method, batch_size,
speed_factor, ref_text_free, speed_factor, ref_text_free,
split_bucket,fragment_interval, split_bucket,fragment_interval,
seed, keep_random seed, keep_random, parallel_infer,
repetition_penalty
): ):
seed = -1 if keep_random else seed seed = -1 if keep_random else seed
@ -114,6 +115,8 @@ def inference(text, text_lang,
"return_fragment":False, "return_fragment":False,
"fragment_interval":fragment_interval, "fragment_interval":fragment_interval,
"seed":actual_seed, "seed":actual_seed,
"parallel_infer": parallel_infer,
"repetition_penalty": repetition_penalty,
} }
for item in tts_pipeline.run(inputs): for item in tts_pipeline.run(inputs):
yield item, actual_seed yield item, actual_seed
@ -199,6 +202,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=5,interactive=True) top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=5,interactive=True)
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True) top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True)
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True) temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True)
repetition_penalty = gr.Slider(minimum=0,maximum=2,step=0.05,label=i18n("重复惩罚"),value=1.35,interactive=True)
with gr.Column(): with gr.Column():
how_to_cut = gr.Radio( how_to_cut = gr.Radio(
label=i18n("怎么切"), label=i18n("怎么切"),
@ -207,9 +211,11 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
interactive=True, interactive=True,
) )
with gr.Row(): with gr.Row():
split_bucket = gr.Checkbox(label=i18n("数据分桶(可能会降低一点计算量,选就对了)"), value=True, interactive=True, show_label=True) parallel_infer = gr.Checkbox(label=i18n("并行推理(速度更快,但可能增大复读概率)"), value=True, interactive=True, show_label=True)
split_bucket = gr.Checkbox(label=i18n("数据分桶(并行推理时会降低一点计算量)"), value=True, interactive=True, show_label=True)
seed = gr.Number(label=i18n("随机种子"),value=-1) seed = gr.Number(label=i18n("随机种子"),value=-1)
keep_random = gr.Checkbox(label=i18n("保持随机"), value=True, interactive=True, show_label=True) keep_random = gr.Checkbox(label=i18n("保持随机"), value=True, interactive=True, show_label=True)
# with gr.Column(): # with gr.Column():
output = gr.Audio(label=i18n("输出的语音")) output = gr.Audio(label=i18n("输出的语音"))
with gr.Row(): with gr.Row():
@ -226,7 +232,8 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
how_to_cut, batch_size, how_to_cut, batch_size,
speed_factor, ref_text_free, speed_factor, ref_text_free,
split_bucket,fragment_interval, split_bucket,fragment_interval,
seed, keep_random seed, keep_random, parallel_infer,
repetition_penalty
], ],
[output, seed], [output, seed],
) )

View File

@ -22,7 +22,7 @@ POST:
```json ```json
{ {
"text": "", # str.(required) text to be synthesized "text": "", # str.(required) text to be synthesized
"text_lang": "", # str.(required) language of the text to be synthesized "text_lang": "", # str.(required) language of the text to be synthesized
"ref_audio_path": "", # str.(required) reference audio path. "ref_audio_path": "", # str.(required) reference audio path.
"prompt_text": "", # str.(optional) prompt text for the reference audio "prompt_text": "", # str.(optional) prompt text for the reference audio
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio "prompt_lang": "", # str.(required) language of the prompt text for the reference audio
@ -32,12 +32,14 @@ POST:
"text_split_method": "cut5", # str.(optional) text split method, see text_segmentation_method.py for details. "text_split_method": "cut5", # str.(optional) text split method, see text_segmentation_method.py for details.
"batch_size": 1, # int.(optional) batch size for inference "batch_size": 1, # int.(optional) batch size for inference
"batch_threshold": 0.75, # float.(optional) threshold for batch splitting. "batch_threshold": 0.75, # float.(optional) threshold for batch splitting.
"split_bucket": true, # bool.(optional) whether to split the batch into multiple buckets. "split_bucket": true, # bool.(optional) whether to split the batch into multiple buckets.
"speed_factor":1.0, # float.(optional) control the speed of the synthesized audio. "speed_factor":1.0, # float.(optional) control the speed of the synthesized audio.
"fragment_interval":0.3, # float.(optional) to control the interval of the audio fragment. "fragment_interval":0.3, # float.(optional) to control the interval of the audio fragment.
"seed": -1, # int.(optional) random seed for reproducibility. "seed": -1, # int.(optional) random seed for reproducibility.
"media_type": "wav", # str.(optional) media type of the output audio, support "wav", "raw", "ogg", "aac". "media_type": "wav", # str.(optional) media type of the output audio, support "wav", "raw", "ogg", "aac".
"streaming_mode": false, # bool.(optional) whether to return a streaming response. "streaming_mode": false, # bool.(optional) whether to return a streaming response.
"parallel_infer": True, # bool.(optional) whether to use parallel inference.
"repetition_penalty": 1.35 # float.(optional) repetition penalty for T2S model.
} }
``` ```
@ -159,6 +161,8 @@ class TTS_Request(BaseModel):
seed:int = -1 seed:int = -1
media_type:str = "wav" media_type:str = "wav"
streaming_mode:bool = False streaming_mode:bool = False
parallel_infer:bool = True
repetition_penalty:float = 1.35
### modify from https://github.com/RVC-Boss/GPT-SoVITS/pull/894/files ### modify from https://github.com/RVC-Boss/GPT-SoVITS/pull/894/files
def pack_ogg(io_buffer:BytesIO, data:np.ndarray, rate:int): def pack_ogg(io_buffer:BytesIO, data:np.ndarray, rate:int):
@ -287,6 +291,8 @@ async def tts_handle(req:dict):
"seed": -1, # int. random seed for reproducibility. "seed": -1, # int. random seed for reproducibility.
"media_type": "wav", # str. media type of the output audio, support "wav", "raw", "ogg", "aac". "media_type": "wav", # str. media type of the output audio, support "wav", "raw", "ogg", "aac".
"streaming_mode": False, # bool. whether to return a streaming response. "streaming_mode": False, # bool. whether to return a streaming response.
"parallel_infer": True, # bool.(optional) whether to use parallel inference.
"repetition_penalty": 1.35 # float.(optional) repetition penalty for T2S model.
} }
returns: returns:
StreamingResponse: audio stream response. StreamingResponse: audio stream response.
@ -354,6 +360,8 @@ async def tts_get_endpoint(
seed:int = -1, seed:int = -1,
media_type:str = "wav", media_type:str = "wav",
streaming_mode:bool = False, streaming_mode:bool = False,
parallel_infer:bool = True,
repetition_penalty:float = 1.35
): ):
req = { req = {
"text": text, "text": text,
@ -373,6 +381,8 @@ async def tts_get_endpoint(
"seed":seed, "seed":seed,
"media_type":media_type, "media_type":media_type,
"streaming_mode":streaming_mode, "streaming_mode":streaming_mode,
"parallel_infer":parallel_infer,
"repetition_penalty":float(repetition_penalty)
} }
return await tts_handle(req) return await tts_handle(req)