Merge branch 'main' into mps

This commit is contained in:
RVC-Boss 2024-01-25 23:25:58 +08:00 committed by GitHub
commit edd807ffaa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 3063 additions and 138 deletions

View File

@ -0,0 +1,106 @@
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_lightning_module.py
import os, sys
now_dir = os.getcwd()
sys.path.append(now_dir)
from typing import Dict
import torch
from pytorch_lightning import LightningModule
from AR.models.t2s_model_onnx import Text2SemanticDecoder
from AR.modules.lr_schedulers import WarmupCosineLRSchedule
from AR.modules.optim import ScaledAdam
class Text2SemanticLightningModule(LightningModule):
def __init__(self, config, output_dir, is_train=True):
super().__init__()
self.config = config
self.top_k = 3
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
pretrained_s1 = config.get("pretrained_s1")
if pretrained_s1 and is_train:
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
print(
self.load_state_dict(
torch.load(pretrained_s1, map_location="cpu")["weight"]
)
)
if is_train:
self.automatic_optimization = False
self.save_hyperparameters()
self.eval_dir = output_dir / "eval"
self.eval_dir.mkdir(parents=True, exist_ok=True)
def training_step(self, batch: Dict, batch_idx: int):
opt = self.optimizers()
scheduler = self.lr_schedulers()
loss, acc = self.model.forward(
batch["phoneme_ids"],
batch["phoneme_ids_len"],
batch["semantic_ids"],
batch["semantic_ids_len"],
batch["bert_feature"],
)
self.manual_backward(loss)
if batch_idx > 0 and batch_idx % 4 == 0:
opt.step()
opt.zero_grad()
scheduler.step()
self.log(
"total_loss",
loss,
on_step=True,
on_epoch=True,
prog_bar=True,
sync_dist=True,
)
self.log(
"lr",
scheduler.get_last_lr()[0],
on_epoch=True,
prog_bar=True,
sync_dist=True,
)
self.log(
f"top_{self.top_k}_acc",
acc,
on_step=True,
on_epoch=True,
prog_bar=True,
sync_dist=True,
)
def validation_step(self, batch: Dict, batch_idx: int):
return
def configure_optimizers(self):
model_parameters = self.model.parameters()
parameters_names = []
parameters_names.append(
[name_param_pair[0] for name_param_pair in self.model.named_parameters()]
)
lm_opt = ScaledAdam(
model_parameters,
lr=0.01,
betas=(0.9, 0.95),
clipping_scale=2.0,
parameters_names=parameters_names,
show_dominant_parameters=False,
clipping_update_period=1000,
)
return {
"optimizer": lm_opt,
"lr_scheduler": {
"scheduler": WarmupCosineLRSchedule(
lm_opt,
init_lr=self.config["optimizer"]["lr_init"],
peak_lr=self.config["optimizer"]["lr"],
end_lr=self.config["optimizer"]["lr_end"],
warmup_steps=self.config["optimizer"]["warmup_steps"],
total_steps=self.config["optimizer"]["decay_steps"],
)
},
}

View File

@ -0,0 +1,337 @@
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_model.py
import torch
from tqdm import tqdm
from AR.modules.embedding_onnx import SinePositionalEmbedding
from AR.modules.embedding_onnx import TokenEmbedding
from AR.modules.transformer_onnx import LayerNorm
from AR.modules.transformer_onnx import TransformerEncoder
from AR.modules.transformer_onnx import TransformerEncoderLayer
from torch import nn
from torch.nn import functional as F
from torchmetrics.classification import MulticlassAccuracy
default_config = {
"embedding_dim": 512,
"hidden_dim": 512,
"num_head": 8,
"num_layers": 12,
"num_codebook": 8,
"p_dropout": 0.0,
"vocab_size": 1024 + 1,
"phoneme_vocab_size": 512,
"EOS": 1024,
}
inf_tensor_value = torch.FloatTensor([-float("Inf")]).float()
def logits_to_probs(
logits,
previous_tokens = None,
temperature: float = 1.0,
top_k = None,
top_p = None,
repetition_penalty: float = 1.0,
):
previous_tokens = previous_tokens.squeeze()
if previous_tokens is not None and repetition_penalty != 1.0:
previous_tokens = previous_tokens.long()
score = torch.gather(logits, dim=0, index=previous_tokens)
score = torch.where(
score < 0, score * repetition_penalty, score / repetition_penalty
)
logits.scatter_(dim=0, index=previous_tokens, src=score)
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.cumsum(
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
)
sorted_indices_to_remove = cum_probs > top_p
sorted_indices_to_remove[0] = False # keep at least one option
indices_to_remove = sorted_indices_to_remove.scatter(
dim=0, index=sorted_indices, src=sorted_indices_to_remove
)
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
logits = logits / max(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, inf_tensor_value, logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def multinomial_sample_one_no_sync(
probs_sort
): # Does multinomial sampling without a cuda synchronization
q = torch.randn_like(probs_sort)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def sample(
logits,
previous_tokens,
**sampling_kwargs,
):
probs = logits_to_probs(
logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
class OnnxEncoder(nn.Module):
def __init__(self, ar_text_embedding, bert_proj, ar_text_position):
super().__init__()
self.ar_text_embedding = ar_text_embedding
self.bert_proj = bert_proj
self.ar_text_position = ar_text_position
def forward(self, x, bert_feature):
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1, 2))
return self.ar_text_position(x)
class T2SFirstStageDecoder(nn.Module):
def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
top_k, early_stop_num, num_layers):
super().__init__()
self.ar_audio_embedding = ar_audio_embedding
self.ar_audio_position = ar_audio_position
self.h = h
self.ar_predict_layer = ar_predict_layer
self.loss_fct = loss_fct
self.ar_accuracy_metric = ar_accuracy_metric
self.top_k = top_k
self.early_stop_num = early_stop_num
self.num_layers = num_layers
def forward(self, x, prompt):
y = prompt
x_example = x[:,:,0] * 0.0
#N, 1, 512
cache = {
"all_stage": self.num_layers,
"k": None,
"v": None,
"y_emb": None,
"first_infer": 1,
"stage": 0,
}
y_emb = self.ar_audio_embedding(y)
cache["y_emb"] = y_emb
y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x, y_pos], dim=1)
y_example = y_pos[:,:,0] * 0.0
x_attn_mask = torch.matmul(x_example.transpose(0, 1) , x_example).bool()
y_attn_mask = torch.ones_like(torch.matmul(y_example.transpose(0, 1), y_example), dtype=torch.int64)
y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum(
torch.ones_like(y_example.transpose(0, 1), dtype=torch.int64), dim=0
)
y_attn_mask = y_attn_mask > 0
x_y_pad = torch.matmul(x_example.transpose(0, 1), y_example).bool()
y_x_pad = torch.matmul(y_example.transpose(0, 1), x_example).bool()
x_attn_mask_pad = torch.cat([x_attn_mask, torch.ones_like(x_y_pad)], dim=1)
y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
cache["k"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
.unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
cache["v"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
.unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
logits = self.ar_predict_layer(xy_dec[:, -1])
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
y = torch.concat([y, samples], dim=1)
return y, cache["k"], cache["v"], cache["y_emb"], x_example
class T2SStageDecoder(nn.Module):
def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
top_k, early_stop_num, num_layers):
super().__init__()
self.ar_audio_embedding = ar_audio_embedding
self.ar_audio_position = ar_audio_position
self.h = h
self.ar_predict_layer = ar_predict_layer
self.loss_fct = loss_fct
self.ar_accuracy_metric = ar_accuracy_metric
self.top_k = top_k
self.early_stop_num = early_stop_num
self.num_layers = num_layers
def forward(self, y, k, v, y_emb, x_example):
cache = {
"all_stage": self.num_layers,
"k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)),
"v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)),
"y_emb": y_emb,
"first_infer": 0,
"stage": 0,
}
y_emb = torch.cat(
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
)
cache["y_emb"] = y_emb
y_pos = self.ar_audio_position(y_emb)
xy_pos = y_pos[:, -1:]
y_example = y_pos[:,:,0] * 0.0
xy_attn_mask = torch.cat([x_example, y_example], dim=1)
xy_attn_mask = torch.zeros_like(xy_attn_mask, dtype=torch.bool)
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
logits = self.ar_predict_layer(xy_dec[:, -1])
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
y = torch.concat([y, samples], dim=1)
return y, cache["k"], cache["v"], cache["y_emb"], logits, samples
class Text2SemanticDecoder(nn.Module):
def __init__(self, config, norm_first=False, top_k=3):
super(Text2SemanticDecoder, self).__init__()
self.model_dim = config["model"]["hidden_dim"]
self.embedding_dim = config["model"]["embedding_dim"]
self.num_head = config["model"]["head"]
self.num_layers = config["model"]["n_layer"]
self.norm_first = norm_first
self.vocab_size = config["model"]["vocab_size"]
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
self.p_dropout = float(config["model"]["dropout"])
self.EOS = config["model"]["EOS"]
self.norm_first = norm_first
assert self.EOS == self.vocab_size - 1
self.bert_proj = nn.Linear(1024, self.embedding_dim)
self.ar_text_embedding = TokenEmbedding(self.embedding_dim, self.phoneme_vocab_size, self.p_dropout)
self.ar_text_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
self.ar_audio_embedding = TokenEmbedding(self.embedding_dim, self.vocab_size, self.p_dropout)
self.ar_audio_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
self.h = TransformerEncoder(
TransformerEncoderLayer(
d_model=self.model_dim,
nhead=self.num_head,
dim_feedforward=self.model_dim * 4,
dropout=0.1,
batch_first=True,
norm_first=norm_first,
),
num_layers=self.num_layers,
norm=LayerNorm(self.model_dim) if norm_first else None,
)
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
self.ar_accuracy_metric = MulticlassAccuracy(
self.vocab_size,
top_k=top_k,
average="micro",
multidim_average="global",
ignore_index=self.EOS,
)
self.top_k = torch.LongTensor([1])
self.early_stop_num = torch.LongTensor([-1])
def init_onnx(self):
self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position)
self.first_stage_decoder = T2SFirstStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h,
self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
self.num_layers)
self.stage_decoder = T2SStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h,
self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
self.num_layers)
def forward(self, x, prompts, bert_feature):
early_stop_num = self.early_stop_num
prefix_len = prompts.shape[1]
x = self.onnx_encoder(x, bert_feature)
y, k, v, y_emb, stage, x_example = self.first_stage_decoder(x, prompts)
stop = False
for idx in range(1, 1500):
enco = self.stage_decoder(y, k, v, y_emb, stage, x_example)
y, k, v, y_emb, stage, logits, samples = enco
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
stop = True
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
stop = True
if stop:
break
y[0, -1] = 0
return y, idx
def infer(self, x, prompts, bert_feature):
top_k = self.top_k
early_stop_num = self.early_stop_num
x = self.onnx_encoder(x, bert_feature)
y = prompts
prefix_len = y.shape[1]
x_len = x.shape[1]
x_example = x[:,:,0] * 0.0
x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example)
x_attn_mask = torch.zeros_like(x_attn_mask, dtype=torch.bool)
stop = False
cache = {
"all_stage": self.num_layers,
"k": [None] * self.num_layers,
"v": [None] * self.num_layers,
"y_emb": None,
"first_infer": 1,
"stage": 0,
}
for idx in range(1500):
if cache["first_infer"] == 1:
y_emb = self.ar_audio_embedding(y)
else:
y_emb = torch.cat(
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
)
cache["y_emb"] = y_emb
y_pos = self.ar_audio_position(y_emb)
if cache["first_infer"] == 1:
xy_pos = torch.concat([x, y_pos], dim=1)
else:
xy_pos = y_pos[:, -1:]
y_len = y_pos.shape[1]
if cache["first_infer"] == 1:
x_attn_mask_pad = F.pad(x_attn_mask, (0, y_len), value=True)
y_attn_mask = F.pad(
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0), value=False
)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
else:
xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool)
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
logits = self.ar_predict_layer(xy_dec[:, -1])
samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
stop = True
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
stop = True
if stop:
if prompts.shape[1] == y.shape[1]:
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
break
y = torch.concat([y, samples], dim=1)
cache["first_infer"] = 0
return y, idx

View File

@ -0,0 +1,178 @@
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
from typing import Optional
from typing import Tuple
import torch
from torch import Tensor
from torch.nn import Linear
from torch.nn import Module
from torch.nn.init import constant_
from torch.nn.init import xavier_normal_
from torch.nn.init import xavier_uniform_
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
from torch.nn.parameter import Parameter
from torch.nn import functional as F
from AR.modules.patched_mha_with_cache_onnx import multi_head_attention_forward_patched
class MultiheadAttention(Module):
__constants__ = ["batch_first"]
bias_k: Optional[torch.Tensor]
bias_v: Optional[torch.Tensor]
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
kdim=None,
vdim=None,
batch_first=False,
linear1_cls=Linear,
linear2_cls=Linear,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super(MultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.batch_first = batch_first
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
if add_bias_kv:
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
else:
self.bias_k = self.bias_v = None
if linear1_cls == Linear:
if not self._qkv_same_embed_dim:
self.q_proj_weight = Parameter(
torch.empty((embed_dim, embed_dim), **factory_kwargs)
)
self.k_proj_weight = Parameter(
torch.empty((embed_dim, self.kdim), **factory_kwargs)
)
self.v_proj_weight = Parameter(
torch.empty((embed_dim, self.vdim), **factory_kwargs)
)
self.register_parameter("in_proj_weight", None)
else:
self.in_proj_weight = Parameter(
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)
)
self.register_parameter("q_proj_weight", None)
self.register_parameter("k_proj_weight", None)
self.register_parameter("v_proj_weight", None)
if bias:
self.in_proj_bias = Parameter(
torch.empty(3 * embed_dim, **factory_kwargs)
)
else:
self.register_parameter("in_proj_bias", None)
self.out_proj = NonDynamicallyQuantizableLinear(
embed_dim, embed_dim, bias=bias, **factory_kwargs
)
self._reset_parameters()
else:
if not self._qkv_same_embed_dim:
raise NotImplementedError
else:
self.in_proj_linear = linear1_cls(
embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs
)
self.in_proj_weight = self.in_proj_linear.weight
self.register_parameter("q_proj_weight", None)
self.register_parameter("k_proj_weight", None)
self.register_parameter("v_proj_weight", None)
if bias:
self.in_proj_bias = self.in_proj_linear.bias
else:
self.register_parameter("in_proj_bias", None)
self.out_proj = linear2_cls(
embed_dim, embed_dim, bias=bias, **factory_kwargs
)
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
self.add_zero_attn = add_zero_attn
def _reset_parameters(self):
if self._qkv_same_embed_dim:
xavier_uniform_(self.in_proj_weight)
else:
xavier_uniform_(self.q_proj_weight)
xavier_uniform_(self.k_proj_weight)
xavier_uniform_(self.v_proj_weight)
if self.in_proj_bias is not None:
constant_(self.in_proj_bias, 0.0)
constant_(self.out_proj.bias, 0.0)
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
def __setstate__(self, state):
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
if "_qkv_same_embed_dim" not in state:
state["_qkv_same_embed_dim"] = True
super(MultiheadAttention, self).__setstate__(state)
def forward(
self,
query: Tensor,
key: Tensor,
value: Tensor,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
average_attn_weights: bool = True,
cache=None,
) -> Tuple[Tensor, Optional[Tensor]]:
any_nested = query.is_nested or key.is_nested or value.is_nested
query = key = value = query.transpose(1, 0)
attn_output = multi_head_attention_forward_patched(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight,
self.in_proj_bias,
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout,
self.out_proj.weight,
self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask,
average_attn_weights=average_attn_weights,
cache=cache,
)
return attn_output.transpose(1, 0)

View File

@ -0,0 +1,63 @@
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
import math
import torch
from torch import nn
class TokenEmbedding(nn.Module):
def __init__(
self,
embedding_dim: int,
vocab_size: int,
dropout: float = 0.0,
):
super().__init__()
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.dropout = torch.nn.Dropout(p=dropout)
self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
@property
def weight(self) -> torch.Tensor:
return self.word_embeddings.weight
def embedding(self, index: int) -> torch.Tensor:
return self.word_embeddings.weight[index : index + 1]
def forward(self, x: torch.Tensor):
x = self.word_embeddings(x)
x = self.dropout(x)
return x
class SinePositionalEmbedding(nn.Module):
def __init__(
self,
embedding_dim: int,
dropout: float = 0.0,
scale: bool = False,
alpha: bool = False,
):
super().__init__()
self.embedding_dim = embedding_dim
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
self.dropout = torch.nn.Dropout(p=dropout)
self.reverse = False
self.div_term = torch.exp(torch.arange(0, self.embedding_dim, 2) * -(math.log(10000.0) / self.embedding_dim))
def extend_pe(self, x):
position = torch.cumsum(torch.ones_like(x[:,:,0]), dim=1).transpose(0, 1)
scpe = (position * self.div_term).unsqueeze(0)
pe = torch.cat([torch.sin(scpe), torch.cos(scpe)]).permute(1, 2, 0)
pe = pe.contiguous().view(1, -1, self.embedding_dim)
return pe
def forward(self, x: torch.Tensor) -> torch.Tensor:
pe = self.extend_pe(x)
output = x.unsqueeze(-1) if x.ndim == 2 else x
output = output * self.x_scale + self.alpha * pe
return self.dropout(output)

View File

@ -0,0 +1,92 @@
from torch.nn.functional import *
from torch.nn.functional import (
_mha_shape_check,
_canonical_mask,
_none_or_dtype,
_in_projection_packed,
)
def multi_head_attention_forward_patched(
query,
key,
value,
embed_dim_to_check: int,
num_heads: int,
in_proj_weight,
in_proj_bias: Optional[Tensor],
bias_k: Optional[Tensor],
bias_v: Optional[Tensor],
add_zero_attn: bool,
dropout_p: float,
out_proj_weight: Tensor,
out_proj_bias: Optional[Tensor],
training: bool = True,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
use_separate_proj_weight: bool = False,
q_proj_weight: Optional[Tensor] = None,
k_proj_weight: Optional[Tensor] = None,
v_proj_weight: Optional[Tensor] = None,
static_k: Optional[Tensor] = None,
static_v: Optional[Tensor] = None,
average_attn_weights: bool = True,
is_causal: bool = False,
cache=None,
) -> Tuple[Tensor, Optional[Tensor]]:
# set up shape vars
_, _, embed_dim = query.shape
attn_mask = _canonical_mask(
mask=attn_mask,
mask_name="attn_mask",
other_type=None,
other_name="",
target_type=query.dtype,
check_other=False,
)
head_dim = embed_dim // num_heads
proj_qkv = linear(query, in_proj_weight, in_proj_bias)
proj_qkv = proj_qkv.unflatten(-1, (3, query.size(-1))).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
q, k, v = proj_qkv[0], proj_qkv[1], proj_qkv[2]
if cache["first_infer"] == 1:
cache["k"][cache["stage"]] = k
cache["v"][cache["stage"]] = v
else:
cache["k"][cache["stage"]] = torch.cat([cache["k"][cache["stage"]][:-1], k], 0)
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]][:-1], v], 0)
k = cache["k"][cache["stage"]]
v = cache["v"][cache["stage"]]
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
attn_mask = _canonical_mask(
mask=attn_mask,
mask_name="attn_mask",
other_type=None,
other_name="",
target_type=q.dtype,
check_other=False,
)
attn_mask = attn_mask.unsqueeze(0)
q = q.view(-1, num_heads, head_dim).transpose(0, 1)
k = k.view(-1, num_heads, head_dim).transpose(0, 1)
v = v.view(-1, num_heads, head_dim).transpose(0, 1)
dropout_p = 0.0
attn_mask = attn_mask.unsqueeze(0)
q = q.view(num_heads, -1, head_dim).unsqueeze(0)
k = k.view(num_heads, -1, head_dim).unsqueeze(0)
v = v.view(num_heads, -1, head_dim).unsqueeze(0)
attn_output = scaled_dot_product_attention(
q, k, v, attn_mask, dropout_p, is_causal
)
attn_output = (
attn_output.permute(2, 0, 1, 3).contiguous().view(-1, embed_dim)
)
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
attn_output = attn_output.view(-1, 1, attn_output.size(1))
return attn_output

View File

@ -0,0 +1,292 @@
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
import copy
import numbers
from functools import partial
from typing import Any
from typing import Callable
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import torch
from AR.modules.activation_onnx import MultiheadAttention
from AR.modules.scaling import BalancedDoubleSwish
from torch import nn
from torch import Tensor
from torch.nn import functional as F
_shape_t = Union[int, List[int], torch.Size]
class LayerNorm(nn.Module):
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
normalized_shape: Tuple[int, ...]
eps: float
elementwise_affine: bool
def __init__(
self,
normalized_shape: _shape_t,
eps: float = 1e-5,
elementwise_affine: bool = True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super(LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
# mypy error: incompatible types in assignment
normalized_shape = (normalized_shape,) # type: ignore[assignment]
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = nn.Parameter(
torch.empty(self.normalized_shape, **factory_kwargs)
)
self.bias = nn.Parameter(
torch.empty(self.normalized_shape, **factory_kwargs)
)
else:
self.register_parameter("weight", None)
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self) -> None:
if self.elementwise_affine:
nn.init.ones_(self.weight)
nn.init.zeros_(self.bias)
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
if isinstance(input, tuple):
input, embedding = input
return (
F.layer_norm(
input,
self.normalized_shape,
self.weight,
self.bias,
self.eps,
),
embedding,
)
assert embedding is None
return F.layer_norm(
input, self.normalized_shape, self.weight, self.bias, self.eps
)
def extra_repr(self) -> str:
return (
"{normalized_shape}, eps={eps}, "
"elementwise_affine={elementwise_affine}".format(**self.__dict__)
)
class IdentityNorm(nn.Module):
def __init__(
self,
d_model: int,
eps: float = 1e-5,
device=None,
dtype=None,
) -> None:
super(IdentityNorm, self).__init__()
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
if isinstance(input, tuple):
return input
assert embedding is None
return input
class TransformerEncoder(nn.Module):
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
Args:
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
norm: the layer normalization component (optional).
enable_nested_tensor: if True, input will automatically convert to nested tensor
(and convert back on output). This will improve the overall performance of
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
Examples::
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> out = transformer_encoder(src)
"""
__constants__ = ["norm"]
def __init__(self, encoder_layer, num_layers, norm=None):
super(TransformerEncoder, self).__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(
self,
src: Tensor,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
return_layer_states: bool = False,
cache=None,
) -> Tensor:
output = src
for mod in self.layers:
output = mod(
output,
src_mask=mask,
src_key_padding_mask=src_key_padding_mask,
cache=cache,
)
if self.norm is not None:
output = self.norm(output)
return output
class TransformerEncoderLayer(nn.Module):
__constants__ = ["batch_first", "norm_first"]
def __init__(
self,
d_model: int,
nhead: int,
dim_feedforward: int = 2048,
dropout: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
batch_first: bool = False,
norm_first: bool = False,
device=None,
dtype=None,
linear1_self_attention_cls: nn.Module = nn.Linear,
linear2_self_attention_cls: nn.Module = nn.Linear,
linear1_feedforward_cls: nn.Module = nn.Linear,
linear2_feedforward_cls: nn.Module = nn.Linear,
layer_norm_cls: nn.Module = LayerNorm,
layer_norm_eps: float = 1e-5,
adaptive_layer_norm=False,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super(TransformerEncoderLayer, self).__init__()
self.self_attn = MultiheadAttention(
d_model, # 512 16
nhead,
dropout=dropout,
batch_first=batch_first,
linear1_cls=linear1_self_attention_cls,
linear2_cls=linear2_self_attention_cls,
**factory_kwargs,
)
self.linear1 = linear1_feedforward_cls(
d_model, dim_feedforward, **factory_kwargs
)
self.dropout = nn.Dropout(dropout)
self.linear2 = linear2_feedforward_cls(
dim_feedforward, d_model, **factory_kwargs
)
self.norm_first = norm_first
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
if isinstance(activation, str):
activation = _get_activation_fn(activation)
elif isinstance(activation, partial):
activation = activation(d_model)
elif activation == BalancedDoubleSwish:
activation = BalancedDoubleSwish(d_model)
self.activation = activation
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
if layer_norm_cls == IdentityNorm:
norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
else:
norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
if adaptive_layer_norm:
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
else:
self.norm1 = norm1
self.norm2 = norm2
def __setstate__(self, state):
super(TransformerEncoderLayer, self).__setstate__(state)
if not hasattr(self, "activation"):
self.activation = F.relu
def forward(
self,
src: Tensor,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
cache=None,
) -> Tensor:
x = src
stage_embedding = None
x = self.norm1(
x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
stage_embedding,
)
x = self.norm2(x + self._ff_block(x), stage_embedding)
return x
def _sa_block(
self,
x: Tensor,
attn_mask: Optional[Tensor],
key_padding_mask: Optional[Tensor],
cache=None,
) -> Tensor:
x = self.self_attn(
x,
x,
x,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
need_weights=False,
cache=cache,
)
return self.dropout1(x)
def _ff_block(self, x: Tensor) -> Tensor:
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
return self.dropout2(x)
class AdaptiveLayerNorm(nn.Module):
r"""Adaptive Layer Normalization"""
def __init__(self, d_model, norm) -> None:
super(AdaptiveLayerNorm, self).__init__()
self.project_layer = nn.Linear(d_model, 2 * d_model)
self.norm = norm
self.d_model = d_model
self.eps = self.norm.eps
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
if isinstance(input, tuple):
input, embedding = input
weight, bias = torch.split(
self.project_layer(embedding),
split_size_or_sections=self.d_model,
dim=-1,
)
return (weight * self.norm(input) + bias, embedding)
weight, bias = torch.split(
self.project_layer(embedding),
split_size_or_sections=self.d_model,
dim=-1,
)
return weight * self.norm(input) + bias
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])

View File

@ -0,0 +1,365 @@
import math
import torch
from torch import nn
from torch.nn import functional as F
from module import commons
from module.modules import LayerNorm
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
def forward(self, x):
x = x.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
return x.transpose(1, -1)
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
class Encoder(nn.Module):
def __init__(
self,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size=1,
p_dropout=0.0,
window_size=4,
isflow=True,
**kwargs
):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.window_size = window_size
# if isflow:
# cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1)
# self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
# self.cond_layer = weight_norm(cond_layer, name='weight')
# self.gin_channels = 256
self.cond_layer_idx = self.n_layers
if "gin_channels" in kwargs:
self.gin_channels = kwargs["gin_channels"]
if self.gin_channels != 0:
self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
# vits2 says 3rd block, so idx is 2 by default
self.cond_layer_idx = (
kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2
)
logging.debug(self.gin_channels, self.cond_layer_idx)
assert (
self.cond_layer_idx < self.n_layers
), "cond_layer_idx should be less than n_layers"
self.drop = nn.Dropout(p_dropout)
self.attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for i in range(self.n_layers):
self.attn_layers.append(
MultiHeadAttention(
hidden_channels,
hidden_channels,
n_heads,
p_dropout=p_dropout,
window_size=window_size,
)
)
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(
FFN(
hidden_channels,
hidden_channels,
filter_channels,
kernel_size,
p_dropout=p_dropout,
)
)
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask, g=None):
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
for i in range(self.n_layers):
if i == self.cond_layer_idx and g is not None:
g = self.spk_emb_linear(g.transpose(1, 2))
g = g.transpose(1, 2)
x = x + g
x = x * x_mask
y = self.attn_layers[i](x, x, attn_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = self.norm_layers_2[i](x + y)
x = x * x_mask
return x
class MultiHeadAttention(nn.Module):
def __init__(
self,
channels,
out_channels,
n_heads,
p_dropout=0.0,
window_size=None,
heads_share=True,
block_length=None,
proximal_bias=False,
proximal_init=False,
):
super().__init__()
assert channels % n_heads == 0
self.channels = channels
self.out_channels = out_channels
self.n_heads = n_heads
self.p_dropout = p_dropout
self.window_size = window_size
self.heads_share = heads_share
self.block_length = block_length
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
self.attn = None
self.k_channels = channels // n_heads
self.conv_q = nn.Conv1d(channels, channels, 1)
self.conv_k = nn.Conv1d(channels, channels, 1)
self.conv_v = nn.Conv1d(channels, channels, 1)
self.conv_o = nn.Conv1d(channels, out_channels, 1)
self.drop = nn.Dropout(p_dropout)
if window_size is not None:
n_heads_rel = 1 if heads_share else n_heads
rel_stddev = self.k_channels**-0.5
self.emb_rel_k = nn.Parameter(
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
* rel_stddev
)
self.emb_rel_v = nn.Parameter(
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
* rel_stddev
)
nn.init.xavier_uniform_(self.conv_q.weight)
nn.init.xavier_uniform_(self.conv_k.weight)
nn.init.xavier_uniform_(self.conv_v.weight)
if proximal_init:
with torch.no_grad():
self.conv_k.weight.copy_(self.conv_q.weight)
self.conv_k.bias.copy_(self.conv_q.bias)
def forward(self, x, c, attn_mask=None):
q = self.conv_q(x)
k = self.conv_k(c)
v = self.conv_v(c)
x, self.attn = self.attention(q, k, v, mask=attn_mask)
x = self.conv_o(x)
return x
def attention(self, query, key, value, mask=None):
# reshape [b, d, t] -> [b, n_h, t, d_k]
b, d, t_s, _ = (*key.size(), query.size(2))
query = query.view(b, self.n_heads, self.k_channels, -1).transpose(2, 3)
key = key.view(b, self.n_heads, self.k_channels, -1).transpose(2, 3)
value = value.view(b, self.n_heads, self.k_channels, -1).transpose(2, 3)
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
if self.window_size is not None:
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
rel_logits = self._matmul_with_relative_keys(
query / math.sqrt(self.k_channels), key_relative_embeddings
)
scores_local = self._relative_position_to_absolute_position(rel_logits)
scores = scores + scores_local
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e4)
if self.block_length is not None:
block_mask = (
torch.ones_like(scores)
.triu(-self.block_length)
.tril(self.block_length)
)
scores = scores.masked_fill(block_mask == 0, -1e4)
p_attn = F.softmax(scores, dim=-1)
p_attn = self.drop(p_attn)
output = torch.matmul(p_attn, value)
if self.window_size is not None:
relative_weights = self._absolute_position_to_relative_position(p_attn)
value_relative_embeddings = self._get_relative_embeddings(
self.emb_rel_v, t_s
)
output = output + self._matmul_with_relative_values(
relative_weights, value_relative_embeddings
)
output = (
output.transpose(2, 3).contiguous().view(b, d, -1)
)
return output, p_attn
def _matmul_with_relative_values(self, x, y):
"""
x: [b, h, l, m]
y: [h or 1, m, d]
ret: [b, h, l, d]
"""
ret = torch.matmul(x, y.unsqueeze(0))
return ret
def _matmul_with_relative_keys(self, x, y):
"""
x: [b, h, l, d]
y: [h or 1, m, d]
ret: [b, h, l, m]
"""
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
return ret
def _get_relative_embeddings(self, relative_embeddings, length):
max_relative_position = 2 * self.window_size + 1
# Pad first before slice to avoid using cond ops.
pad_length = max(length - (self.window_size + 1), 0)
slice_start_position = max((self.window_size + 1) - length, 0)
slice_end_position = slice_start_position + 2 * length - 1
if pad_length > 0:
padded_relative_embeddings = F.pad(
relative_embeddings,
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
)
else:
padded_relative_embeddings = relative_embeddings
used_relative_embeddings = padded_relative_embeddings[
:, slice_start_position:slice_end_position
]
return used_relative_embeddings
def _relative_position_to_absolute_position(self, x):
"""
x: [b, h, l, 2*l-1]
ret: [b, h, l, l]
"""
batch, heads, length, _ = x.size()
# Concat columns of pad to shift from relative to absolute indexing.
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
# Concat extra elements so to add up to shape (len+1, 2*len-1).
x_flat = x.view([batch, heads, length * 2 * length])
x_flat = F.pad(
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
)
# Reshape and slice out the padded elements.
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
:, :, :length, length - 1 :
]
return x_final
def _absolute_position_to_relative_position(self, x):
"""
x: [b, h, l, l]
ret: [b, h, l, 2*l-1]
"""
batch, heads, length, _ = x.size()
# padd along column
x = F.pad(
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
)
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
# add 0's in the beginning that will skew the elements after reshape
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
return x_final
def _attention_bias_proximal(self, length):
"""Bias for self-attention to encourage attention to close positions.
Args:
length: an integer scalar.
Returns:
a Tensor with shape [1, 1, length, length]
"""
r = torch.arange(length, dtype=torch.float32)
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
class FFN(nn.Module):
def __init__(
self,
in_channels,
out_channels,
filter_channels,
kernel_size,
p_dropout=0.0,
activation=None,
causal=False,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.activation = activation
self.causal = causal
if causal:
self.padding = self._causal_padding
else:
self.padding = self._same_padding
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
self.drop = nn.Dropout(p_dropout)
def forward(self, x, x_mask):
x = self.conv_1(self.padding(x * x_mask))
if self.activation == "gelu":
x = x * torch.sigmoid(1.702 * x)
else:
x = torch.relu(x)
x = self.drop(x)
x = self.conv_2(self.padding(x * x_mask))
return x * x_mask
def _causal_padding(self, x):
if self.kernel_size == 1:
return x
pad_l = self.kernel_size - 1
pad_r = 0
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(x, commons.convert_pad_shape(padding))
return x
def _same_padding(self, x):
if self.kernel_size == 1:
return x
pad_l = (self.kernel_size - 1) // 2
pad_r = self.kernel_size // 2
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(x, commons.convert_pad_shape(padding))
return x

View File

@ -0,0 +1,920 @@
import copy
import math
import torch
from torch import nn
from torch.nn import functional as F
from module import commons
from module import modules
from module import attentions_onnx as attentions
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from module.commons import init_weights, get_padding
from module.mrte_model import MRTE
from module.quantize import ResidualVectorQuantizer
from text import symbols
from torch.cuda.amp import autocast
class StochasticDurationPredictor(nn.Module):
def __init__(
self,
in_channels,
filter_channels,
kernel_size,
p_dropout,
n_flows=4,
gin_channels=0,
):
super().__init__()
filter_channels = in_channels # it needs to be removed from future version.
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.n_flows = n_flows
self.gin_channels = gin_channels
self.log_flow = modules.Log()
self.flows = nn.ModuleList()
self.flows.append(modules.ElementwiseAffine(2))
for i in range(n_flows):
self.flows.append(
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
)
self.flows.append(modules.Flip())
self.post_pre = nn.Conv1d(1, filter_channels, 1)
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
self.post_convs = modules.DDSConv(
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
)
self.post_flows = nn.ModuleList()
self.post_flows.append(modules.ElementwiseAffine(2))
for i in range(4):
self.post_flows.append(
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
)
self.post_flows.append(modules.Flip())
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
self.convs = modules.DDSConv(
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
x = torch.detach(x)
x = self.pre(x)
if g is not None:
g = torch.detach(g)
x = x + self.cond(g)
x = self.convs(x, x_mask)
x = self.proj(x) * x_mask
if not reverse:
flows = self.flows
assert w is not None
logdet_tot_q = 0
h_w = self.post_pre(w)
h_w = self.post_convs(h_w, x_mask)
h_w = self.post_proj(h_w) * x_mask
e_q = (
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
* x_mask
)
z_q = e_q
for flow in self.post_flows:
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
logdet_tot_q += logdet_q
z_u, z1 = torch.split(z_q, [1, 1], 1)
u = torch.sigmoid(z_u) * x_mask
z0 = (w - u) * x_mask
logdet_tot_q += torch.sum(
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
)
logq = (
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
- logdet_tot_q
)
logdet_tot = 0
z0, logdet = self.log_flow(z0, x_mask)
logdet_tot += logdet
z = torch.cat([z0, z1], 1)
for flow in flows:
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
logdet_tot = logdet_tot + logdet
nll = (
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
- logdet_tot
)
return nll + logq # [b]
else:
flows = list(reversed(self.flows))
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
z = (
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
* noise_scale
)
for flow in flows:
z = flow(z, x_mask, g=x, reverse=reverse)
z0, z1 = torch.split(z, [1, 1], 1)
logw = z0
return logw
class DurationPredictor(nn.Module):
def __init__(
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
):
super().__init__()
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.gin_channels = gin_channels
self.drop = nn.Dropout(p_dropout)
self.conv_1 = nn.Conv1d(
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
)
self.norm_1 = modules.LayerNorm(filter_channels)
self.conv_2 = nn.Conv1d(
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
)
self.norm_2 = modules.LayerNorm(filter_channels)
self.proj = nn.Conv1d(filter_channels, 1, 1)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
def forward(self, x, x_mask, g=None):
x = torch.detach(x)
if g is not None:
g = torch.detach(g)
x = x + self.cond(g)
x = self.conv_1(x * x_mask)
x = torch.relu(x)
x = self.norm_1(x)
x = self.drop(x)
x = self.conv_2(x * x_mask)
x = torch.relu(x)
x = self.norm_2(x)
x = self.drop(x)
x = self.proj(x * x_mask)
return x * x_mask
class TextEncoder(nn.Module):
def __init__(
self,
out_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
latent_channels=192,
):
super().__init__()
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.latent_channels = latent_channels
self.ssl_proj = nn.Conv1d(768, hidden_channels, 1)
self.encoder_ssl = attentions.Encoder(
hidden_channels,
filter_channels,
n_heads,
n_layers // 2,
kernel_size,
p_dropout,
)
self.encoder_text = attentions.Encoder(
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
)
self.text_embedding = nn.Embedding(len(symbols), hidden_channels)
self.mrte = MRTE()
self.encoder2 = attentions.Encoder(
hidden_channels,
filter_channels,
n_heads,
n_layers // 2,
kernel_size,
p_dropout,
)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, y, text, ge):
y_mask = torch.ones_like(y[:1,:1,:])
y = self.ssl_proj(y * y_mask) * y_mask
y = self.encoder_ssl(y * y_mask, y_mask)
text_mask = torch.ones_like(text).to(y.dtype).unsqueeze(0)
text = self.text_embedding(text).transpose(1, 2)
text = self.encoder_text(text * text_mask, text_mask)
y = self.mrte(y, y_mask, text, text_mask, ge)
y = self.encoder2(y * y_mask, y_mask)
stats = self.proj(y) * y_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return y, m, logs, y_mask
def extract_latent(self, x):
x = self.ssl_proj(x)
quantized, codes, commit_loss, quantized_list = self.quantizer(x)
return codes.transpose(0, 1)
def decode_latent(self, codes, y_mask, refer, refer_mask, ge):
quantized = self.quantizer.decode(codes)
y = self.vq_proj(quantized) * y_mask
y = self.encoder_ssl(y * y_mask, y_mask)
y = self.mrte(y, y_mask, refer, refer_mask, ge)
y = self.encoder2(y * y_mask, y_mask)
stats = self.proj(y) * y_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return y, m, logs, y_mask, quantized
class ResidualCouplingBlock(nn.Module):
def __init__(
self,
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
n_flows=4,
gin_channels=0,
):
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.n_flows = n_flows
self.gin_channels = gin_channels
self.flows = nn.ModuleList()
for i in range(n_flows):
self.flows.append(
modules.ResidualCouplingLayer(
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=gin_channels,
mean_only=True,
)
)
self.flows.append(modules.Flip())
def forward(self, x, x_mask, g=None, reverse=False):
if not reverse:
for flow in self.flows:
x, _ = flow(x, x_mask, g=g, reverse=reverse)
else:
for flow in reversed(self.flows):
x = flow(x, x_mask, g=g, reverse=reverse)
return x
class PosteriorEncoder(nn.Module):
def __init__(
self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = modules.WN(
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=gin_channels,
)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths, g=None):
if g != None:
g = g.detach()
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
x.dtype
)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
return z, m, logs, x_mask
class WNEncoder(nn.Module):
def __init__(
self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = modules.WN(
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=gin_channels,
)
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.norm = modules.LayerNorm(out_channels)
def forward(self, x, x_lengths, g=None):
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
x.dtype
)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
out = self.proj(x) * x_mask
out = self.norm(out)
return out
class Generator(torch.nn.Module):
def __init__(
self,
initial_channel,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels=0,
):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.conv_pre = Conv1d(
initial_channel, upsample_initial_channel, 7, 1, padding=3
)
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(
weight_norm(
ConvTranspose1d(
upsample_initial_channel // (2**i),
upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(
zip(resblock_kernel_sizes, resblock_dilation_sizes)
):
self.resblocks.append(resblock(ch, k, d))
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
self.ups.apply(init_weights)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
def forward(self, x, g=None):
x = self.conv_pre(x)
if g is not None:
x = x + self.cond(g)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, modules.LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print("Removing weight norm...")
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.use_spectral_norm = use_spectral_norm
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList(
[
norm_f(
Conv2d(
1,
32,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
),
norm_f(
Conv2d(
32,
128,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
),
norm_f(
Conv2d(
128,
512,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
),
norm_f(
Conv2d(
512,
1024,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
),
norm_f(
Conv2d(
1024,
1024,
(kernel_size, 1),
1,
padding=(get_padding(kernel_size, 1), 0),
)
),
]
)
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList(
[
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
]
)
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(MultiPeriodDiscriminator, self).__init__()
periods = [2, 3, 5, 7, 11]
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
discs = discs + [
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
]
self.discriminators = nn.ModuleList(discs)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
y_d_gs.append(y_d_g)
fmap_rs.append(fmap_r)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class ReferenceEncoder(nn.Module):
"""
inputs --- [N, Ty/r, n_mels*r] mels
outputs --- [N, ref_enc_gru_size]
"""
def __init__(self, spec_channels, gin_channels=0):
super().__init__()
self.spec_channels = spec_channels
ref_enc_filters = [32, 32, 64, 64, 128, 128]
K = len(ref_enc_filters)
filters = [1] + ref_enc_filters
convs = [
weight_norm(
nn.Conv2d(
in_channels=filters[i],
out_channels=filters[i + 1],
kernel_size=(3, 3),
stride=(2, 2),
padding=(1, 1),
)
)
for i in range(K)
]
self.convs = nn.ModuleList(convs)
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)])
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
self.gru = nn.GRU(
input_size=ref_enc_filters[-1] * out_channels,
hidden_size=256 // 2,
batch_first=True,
)
self.proj = nn.Linear(128, gin_channels)
def forward(self, inputs):
N = inputs.size(0)
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
for conv in self.convs:
out = conv(out)
# out = wn(out)
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
T = out.size(1)
N = out.size(0)
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
self.gru.flatten_parameters()
memory, out = self.gru(out) # out --- [1, N, 128]
return self.proj(out.squeeze(0)).unsqueeze(-1)
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
for i in range(n_convs):
L = (L - kernel_size + 2 * pad) // stride + 1
return L
class Quantizer_module(torch.nn.Module):
def __init__(self, n_e, e_dim):
super(Quantizer_module, self).__init__()
self.embedding = nn.Embedding(n_e, e_dim)
self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e)
def forward(self, x):
d = (
torch.sum(x**2, 1, keepdim=True)
+ torch.sum(self.embedding.weight**2, 1)
- 2 * torch.matmul(x, self.embedding.weight.T)
)
min_indicies = torch.argmin(d, 1)
z_q = self.embedding(min_indicies)
return z_q, min_indicies
class Quantizer(torch.nn.Module):
def __init__(self, embed_dim=512, n_code_groups=4, n_codes=160):
super(Quantizer, self).__init__()
assert embed_dim % n_code_groups == 0
self.quantizer_modules = nn.ModuleList(
[
Quantizer_module(n_codes, embed_dim // n_code_groups)
for _ in range(n_code_groups)
]
)
self.n_code_groups = n_code_groups
self.embed_dim = embed_dim
def forward(self, xin):
# B, C, T
B, C, T = xin.shape
xin = xin.transpose(1, 2)
x = xin.reshape(-1, self.embed_dim)
x = torch.split(x, self.embed_dim // self.n_code_groups, dim=-1)
min_indicies = []
z_q = []
for _x, m in zip(x, self.quantizer_modules):
_z_q, _min_indicies = m(_x)
z_q.append(_z_q)
min_indicies.append(_min_indicies) # B * T,
z_q = torch.cat(z_q, -1).reshape(xin.shape)
loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean(
(z_q - xin.detach()) ** 2
)
z_q = xin + (z_q - xin).detach()
z_q = z_q.transpose(1, 2)
codes = torch.stack(min_indicies, -1).reshape(B, T, self.n_code_groups)
return z_q, loss, codes.transpose(1, 2)
def embed(self, x):
# idx: N, 4, T
x = x.transpose(1, 2)
x = torch.split(x, 1, 2)
ret = []
for q, embed in zip(x, self.quantizer_modules):
q = embed.embedding(q.squeeze(-1))
ret.append(q)
ret = torch.cat(ret, -1)
return ret.transpose(1, 2) # N, C, T
class CodePredictor(nn.Module):
def __init__(
self,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
n_q=8,
dims=1024,
ssl_dim=768,
):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.vq_proj = nn.Conv1d(ssl_dim, hidden_channels, 1)
self.ref_enc = modules.MelStyleEncoder(
ssl_dim, style_vector_dim=hidden_channels
)
self.encoder = attentions.Encoder(
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
)
self.out_proj = nn.Conv1d(hidden_channels, (n_q - 1) * dims, 1)
self.n_q = n_q
self.dims = dims
def forward(self, x, x_mask, refer, codes, infer=False):
x = x.detach()
x = self.vq_proj(x * x_mask) * x_mask
g = self.ref_enc(refer, x_mask)
x = x + g
x = self.encoder(x * x_mask, x_mask)
x = self.out_proj(x * x_mask) * x_mask
logits = x.reshape(x.shape[0], self.n_q - 1, self.dims, x.shape[-1]).transpose(
2, 3
)
target = codes[1:].transpose(0, 1)
if not infer:
logits = logits.reshape(-1, self.dims)
target = target.reshape(-1)
loss = torch.nn.functional.cross_entropy(logits, target)
return loss
else:
_, top10_preds = torch.topk(logits, 10, dim=-1)
correct_top10 = torch.any(top10_preds == target.unsqueeze(-1), dim=-1)
top3_acc = 100 * torch.mean(correct_top10.float()).detach().cpu().item()
print("Top-10 Accuracy:", top3_acc, "%")
pred_codes = torch.argmax(logits, dim=-1)
acc = 100 * torch.mean((pred_codes == target).float()).detach().cpu().item()
print("Top-1 Accuracy:", acc, "%")
return pred_codes.transpose(0, 1)
class SynthesizerTrn(nn.Module):
"""
Synthesizer for Training
"""
def __init__(
self,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
n_speakers=0,
gin_channels=0,
use_sdp=True,
semantic_frame_rate=None,
freeze_quantizer=None,
**kwargs
):
super().__init__()
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.n_speakers = n_speakers
self.gin_channels = gin_channels
self.use_sdp = use_sdp
self.enc_p = TextEncoder(
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
)
self.dec = Generator(
inter_channels,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels=gin_channels,
)
self.enc_q = PosteriorEncoder(
spec_channels,
inter_channels,
hidden_channels,
5,
1,
16,
gin_channels=gin_channels,
)
self.flow = ResidualCouplingBlock(
inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels
)
self.ref_enc = modules.MelStyleEncoder(
spec_channels, style_vector_dim=gin_channels
)
ssl_dim = 768
self.ssl_dim = ssl_dim
assert semantic_frame_rate in ["25hz", "50hz"]
self.semantic_frame_rate = semantic_frame_rate
if semantic_frame_rate == "25hz":
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
else:
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
self.quantizer = ResidualVectorQuantizer(dimension=ssl_dim, n_q=1, bins=1024)
if freeze_quantizer:
self.ssl_proj.requires_grad_(False)
self.quantizer.requires_grad_(False)
# self.enc_p.text_embedding.requires_grad_(False)
# self.enc_p.encoder_text.requires_grad_(False)
# self.enc_p.mrte.requires_grad_(False)
def forward(self, codes, text, refer):
refer_mask = torch.ones_like(refer[:1,:1,:])
ge = self.ref_enc(refer * refer_mask, refer_mask)
y_lengths = torch.LongTensor([codes.size(2) * 2]).to(codes.device)
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
quantized = self.quantizer.decode(codes)
if self.semantic_frame_rate == "25hz":
dquantized = torch.cat([quantized, quantized]).permute(1, 2, 0)
quantized = dquantized.contiguous().view(1, self.ssl_dim, -1)
x, m_p, logs_p, y_mask = self.enc_p(
quantized, text, ge
)
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p)
z = self.flow(z_p, y_mask, g=ge, reverse=True)
o = self.dec((z * y_mask)[:, :, :], g=ge)
return o
def extract_latent(self, x):
ssl = self.ssl_proj(x)
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
return codes.transpose(0, 1)

314
GPT_SoVITS/onnx_export.py Normal file
View File

@ -0,0 +1,314 @@
from module.models_onnx import SynthesizerTrn, symbols
from AR.models.t2s_lightning_module_onnx import Text2SemanticLightningModule
import torch
import torchaudio
from torch import nn
from feature_extractor import cnhubert
cnhubert_base_path = "pretrained_models/chinese-hubert-base"
cnhubert.cnhubert_base_path=cnhubert_base_path
ssl_model = cnhubert.get_model()
from text import cleaned_text_to_sequence
import soundfile
from my_utils import load_audio
import os
import json
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
hann_window = torch.hann_window(win_size).to(
dtype=y.dtype, device=y.device
)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window,
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=False,
)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
class T2SEncoder(nn.Module):
def __init__(self, t2s, vits):
super().__init__()
self.encoder = t2s.onnx_encoder
self.vits = vits
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content):
codes = self.vits.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
bert = torch.cat([ref_bert.transpose(0, 1), text_bert.transpose(0, 1)], 1)
all_phoneme_ids = torch.cat([ref_seq, text_seq], 1)
bert = bert.unsqueeze(0)
prompt = prompt_semantic.unsqueeze(0)
return self.encoder(all_phoneme_ids, bert), prompt
class T2SModel(nn.Module):
def __init__(self, t2s_path, vits_model):
super().__init__()
dict_s1 = torch.load(t2s_path, map_location="cpu")
self.config = dict_s1["config"]
self.t2s_model = Text2SemanticLightningModule(self.config, "ojbk", is_train=False)
self.t2s_model.load_state_dict(dict_s1["weight"])
self.t2s_model.eval()
self.vits_model = vits_model.vq_model
self.hz = 50
self.max_sec = self.config["data"]["max_sec"]
self.t2s_model.model.top_k = torch.LongTensor([self.config["inference"]["top_k"]])
self.t2s_model.model.early_stop_num = torch.LongTensor([self.hz * self.max_sec])
self.t2s_model = self.t2s_model.model
self.t2s_model.init_onnx()
self.onnx_encoder = T2SEncoder(self.t2s_model, self.vits_model)
self.first_stage_decoder = self.t2s_model.first_stage_decoder
self.stage_decoder = self.t2s_model.stage_decoder
#self.t2s_model = torch.jit.script(self.t2s_model)
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content):
early_stop_num = self.t2s_model.early_stop_num
#[1,N] [1,N] [N, 1024] [N, 1024] [1, 768, N]
x, prompts = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
prefix_len = prompts.shape[1]
#[1,N,512] [1,N]
y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
stop = False
for idx in range(1, 1500):
#[1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N]
enco = self.stage_decoder(y, k, v, y_emb, x_example)
y, k, v, y_emb, logits, samples = enco
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
stop = True
if torch.argmax(logits, dim=-1)[0] == self.t2s_model.EOS or samples[0, 0] == self.t2s_model.EOS:
stop = True
if stop:
break
y[0, -1] = 0
return y[:, -idx:].unsqueeze(0)
def export(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name, dynamo=False):
#self.onnx_encoder = torch.jit.script(self.onnx_encoder)
if dynamo:
export_options = torch.onnx.ExportOptions(dynamic_shapes=True)
onnx_encoder_export_output = torch.onnx.dynamo_export(
self.onnx_encoder,
(ref_seq, text_seq, ref_bert, text_bert, ssl_content),
export_options=export_options
)
onnx_encoder_export_output.save(f"onnx/{project_name}/{project_name}_t2s_encoder.onnx")
return
torch.onnx.export(
self.onnx_encoder,
(ref_seq, text_seq, ref_bert, text_bert, ssl_content),
f"onnx/{project_name}/{project_name}_t2s_encoder.onnx",
input_names=["ref_seq", "text_seq", "ref_bert", "text_bert", "ssl_content"],
output_names=["x", "prompts"],
dynamic_axes={
"ref_seq": [1],
"text_seq": [1],
"ref_bert": [0],
"text_bert": [0],
"ssl_content": [2],
},
opset_version=16
)
x, prompts = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
torch.exp
torch.onnx.export(
self.first_stage_decoder,
(x, prompts),
f"onnx/{project_name}/{project_name}_t2s_fsdec.onnx",
input_names=["x", "prompts"],
output_names=["y", "k", "v", "y_emb", "x_example"],
dynamic_axes={
"x": [1],
"prompts": [1],
},
verbose=True,
opset_version=16
)
y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
torch.onnx.export(
self.stage_decoder,
(y, k, v, y_emb, x_example),
f"onnx/{project_name}/{project_name}_t2s_sdec.onnx",
input_names=["iy", "ik", "iv", "iy_emb", "ix_example"],
output_names=["y", "k", "v", "y_emb", "logits", "samples"],
dynamic_axes={
"iy": [1],
"ik": [1],
"iv": [1],
"iy_emb": [1],
"ix_example": [1],
},
verbose=True,
opset_version=16
)
class VitsModel(nn.Module):
def __init__(self, vits_path):
super().__init__()
dict_s2 = torch.load(vits_path,map_location="cpu")
self.hps = dict_s2["config"]
self.hps = DictToAttrRecursive(self.hps)
self.hps.model.semantic_frame_rate = "25hz"
self.vq_model = SynthesizerTrn(
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
n_speakers=self.hps.data.n_speakers,
**self.hps.model
)
self.vq_model.eval()
self.vq_model.load_state_dict(dict_s2["weight"], strict=False)
def forward(self, text_seq, pred_semantic, ref_audio):
refer = spectrogram_torch(
ref_audio,
self.hps.data.filter_length,
self.hps.data.sampling_rate,
self.hps.data.hop_length,
self.hps.data.win_length,
center=False
)
return self.vq_model(pred_semantic, text_seq, refer)[0, 0]
class GptSoVits(nn.Module):
def __init__(self, vits, t2s):
super().__init__()
self.vits = vits
self.t2s = t2s
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content):
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
return self.vits(text_seq, pred_semantic, ref_audio)
def export(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content, project_name):
self.t2s.export(ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name)
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
torch.onnx.export(
self.vits,
(text_seq, pred_semantic, ref_audio),
f"onnx/{project_name}/{project_name}_vits.onnx",
input_names=["text_seq", "pred_semantic", "ref_audio"],
output_names=["audio"],
dynamic_axes={
"text_seq": [1],
"pred_semantic": [2],
"ref_audio": [1],
},
opset_version=17
)
class SSLModel(nn.Module):
def __init__(self):
super().__init__()
self.ssl = ssl_model
def forward(self, ref_audio_16k):
return self.ssl.model(ref_audio_16k)["last_hidden_state"].transpose(1, 2)
def export(vits_path, gpt_path, project_name):
vits = VitsModel(vits_path)
gpt = T2SModel(gpt_path, vits)
gpt_sovits = GptSoVits(vits, gpt)
ssl = SSLModel()
ref_seq = torch.LongTensor([cleaned_text_to_sequence(["n", "i2", "h", "ao3", ",", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])])
text_seq = torch.LongTensor([cleaned_text_to_sequence(["w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])])
ref_bert = torch.randn((ref_seq.shape[1], 1024)).float()
text_bert = torch.randn((text_seq.shape[1], 1024)).float()
ref_audio = torch.randn((1, 48000 * 5)).float()
# ref_audio = torch.tensor([load_audio("rec.wav", 48000)]).float()
ref_audio_16k = torchaudio.functional.resample(ref_audio,48000,16000).float()
ref_audio_sr = torchaudio.functional.resample(ref_audio,48000,vits.hps.data.sampling_rate).float()
try:
os.mkdir(f"onnx/{project_name}")
except:
pass
ssl_content = ssl(ref_audio_16k).float()
a = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content).detach().cpu().numpy()
# soundfile.write("out.wav", a, vits.hps.data.sampling_rate)
gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, project_name)
MoeVSConf = {
"Folder" : f"{project_name}",
"Name" : f"{project_name}",
"Type" : "GPT-SoVits",
"Rate" : vits.hps.data.sampling_rate,
"NumLayers": gpt.t2s_model.num_layers,
"EmbeddingDim": gpt.t2s_model.embedding_dim,
"Dict": "BasicDict",
"BertPath": "chinese-roberta-wwm-ext-large",
"Symbol": symbols,
"AddBlank": False
}
MoeVSConfJson = json.dumps(MoeVSConf)
with open(f"onnx/{project_name}.json", 'w') as MoeVsConfFile:
json.dump(MoeVSConf, MoeVsConfFile, indent = 4)
if __name__ == "__main__":
try:
os.mkdir("onnx")
except:
pass
gpt_path = "pt_model/koharu-e20.ckpt"
vits_path = "pt_model/koharu_e20_s4960.pth"
exp_path = "koharu"
export(vits_path, gpt_path, exp_path)
# soundfile.write("out.wav", a, vits.hps.data.sampling_rate)

159
api.py
View File

@ -1,3 +1,107 @@
"""
# api.py usage
` python api.py -dr "123.wav" -dt "一二三。" -dl "zh" `
## 执行参数:
`-s` - `SoVITS模型路径, 可在 config.py 中指定`
`-g` - `GPT模型路径, 可在 config.py 中指定`
调用请求缺少参考音频时使用
`-dr` - `默认参考音频路径`
`-dt` - `默认参考音频文本`
`-dl` - `默认参考音频语种, "中文","英文","日文","zh","en","ja"`
`-d` - `推理设备, "cuda","cpu"`
`-a` - `绑定地址, 默认"127.0.0.1"`
`-p` - `绑定端口, 默认9880, 可在 config.py 中指定`
`-fp` - `覆盖 config.py 使用全精度`
`-hp` - `覆盖 config.py 使用半精度`
`-hb` - `cnhubert路径`
`-b` - `bert路径`
## 调用:
### 推理
endpoint: `/`
使用执行参数指定的参考音频:
GET:
`http://127.0.0.1:9880?text=先帝创业未半而中道崩殂今天下三分益州疲弊此诚危急存亡之秋也&text_language=zh`
POST:
```json
{
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。",
"text_language": "zh"
}
```
手动指定当次推理所使用的参考音频:
GET:
`http://127.0.0.1:9880?refer_wav_path=123.wav&prompt_text=一二三&prompt_language=zh&text=先帝创业未半而中道崩殂今天下三分益州疲弊此诚危急存亡之秋也&text_language=zh`
POST:
```json
{
"refer_wav_path": "123.wav",
"prompt_text": "一二三。",
"prompt_language": "zh",
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。",
"text_language": "zh"
}
```
RESP:
成功: 直接返回 wav 音频流 http code 200
失败: 返回包含错误信息的 json, http code 400
### 更换默认参考音频
endpoint: `/change_refer`
key与推理端一样
GET:
`http://127.0.0.1:9880/change_refer?refer_wav_path=123.wav&prompt_text=一二三&prompt_language=zh`
POST:
```json
{
"refer_wav_path": "123.wav",
"prompt_text": "一二三。",
"prompt_language": "zh"
}
```
RESP:
成功: json, http code 200
失败: json, 400
### 命令控制
endpoint: `/control`
command:
"restart": 重新运行
"exit": 结束运行
GET:
`http://127.0.0.1:9880/control?command=restart`
POST:
```json
{
"command": "restart"
}
```
RESP:
"""
import argparse
import os
import signal
@ -30,14 +134,14 @@ parser = argparse.ArgumentParser(description="GPT-SoVITS api")
parser.add_argument("-s", "--sovits_path", type=str, default=g_config.sovits_path, help="SoVITS模型路径")
parser.add_argument("-g", "--gpt_path", type=str, default=g_config.gpt_path, help="GPT模型路径")
parser.add_argument("-dr", "--default_refer_path", type=str, default="",
help="默认参考音频路径, 请求缺少参考音频时调用")
parser.add_argument("-dr", "--default_refer_path", type=str, default="", help="默认参考音频路径")
parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本")
parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种")
parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu / mps")
parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880")
parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1")
parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880")
parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度")
parser.add_argument("-hp", "--half_precision", action="store_true", default=False, help="覆盖config.is_half为True, 使用半精度")
# bool值的用法为 `python ./api.py -fp ...`
@ -175,7 +279,7 @@ vq_model.eval()
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
hz = 50
max_sec = config['data']['max_sec']
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False)
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if is_half:
t2s_model = t2s_model.half()
@ -284,9 +388,17 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language)
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16)
def handle_control(command):
if command == "restart":
os.execl(g_config.python_exec, g_config.python_exec, *sys.argv)
elif command == "exit":
os.kill(os.getpid(), signal.SIGTERM)
exit(0)
def handle_change(path, text, language):
if is_empty(path, text, language):
raise HTTPException(status_code=400, detail='缺少任意一项以下参数: "path", "text", "language"')
return JSONResponse({"code": 400, "message": '缺少任意一项以下参数: "path", "text", "language"'}, status_code=400)
if path != "" or path is not None:
default_refer.path = path
@ -303,13 +415,7 @@ def handle_change(path, text, language):
return JSONResponse({"code": 0, "message": "Success"}, status_code=200)
def handle(command, refer_wav_path, prompt_text, prompt_language, text, text_language):
if command == "/restart":
os.execl(g_config.python_exec, g_config.python_exec, *sys.argv)
elif command == "/exit":
os.kill(os.getpid(), signal.SIGTERM)
exit(0)
def handle(refer_wav_path, prompt_text, prompt_language, text, text_language):
if (
refer_wav_path == "" or refer_wav_path is None
or prompt_text == "" or prompt_text is None
@ -321,7 +427,7 @@ def handle(command, refer_wav_path, prompt_text, prompt_language, text, text_lan
default_refer.language,
)
if not default_refer.is_ready():
raise HTTPException(status_code=400, detail="未指定参考音频且接口无预设")
return JSONResponse({"code": 400, "message": "未指定参考音频且接口无预设"}, status_code=400)
with torch.no_grad():
gen = get_tts_wav(
@ -341,30 +447,40 @@ def handle(command, refer_wav_path, prompt_text, prompt_language, text, text_lan
app = FastAPI()
@app.post("/control")
async def control(request: Request):
json_post_raw = await request.json()
return handle_control(json_post_raw.get("command"))
@app.get("/control")
async def control(command: str = None):
return handle_control(command)
@app.post("/change_refer")
async def change_refer(request: Request):
json_post_raw = await request.json()
return handle_change(
json_post_raw.get("path"),
json_post_raw.get("text"),
json_post_raw.get("language")
json_post_raw.get("refer_wav_path"),
json_post_raw.get("prompt_text"),
json_post_raw.get("prompt_language")
)
@app.get("/change_refer")
async def change_refer(
path: str = None,
text: str = None,
language: str = None
refer_wav_path: str = None,
prompt_text: str = None,
prompt_language: str = None
):
return handle_change(path, text, language)
return handle_change(refer_wav_path, prompt_text, prompt_language)
@app.post("/")
async def tts_endpoint(request: Request):
json_post_raw = await request.json()
return handle(
json_post_raw.get("command"),
json_post_raw.get("refer_wav_path"),
json_post_raw.get("prompt_text"),
json_post_raw.get("prompt_language"),
@ -375,14 +491,13 @@ async def tts_endpoint(request: Request):
@app.get("/")
async def tts_endpoint(
command: str = None,
refer_wav_path: str = None,
prompt_text: str = None,
prompt_language: str = None,
text: str = None,
text_language: str = None,
):
return handle(command, refer_wav_path, prompt_text, prompt_language, text, text_language)
return handle(refer_wav_path, prompt_text, prompt_language, text, text_language)
if __name__ == "__main__":

View File

@ -1,2 +1,4 @@
runtime\python.exe webui.py
@echo off
chcp 65001
"%~dp0\runtime\python.exe" "%~dp0\webui.py"
pause

View File

@ -1,135 +1,276 @@
{
">=3则使用对harvest音高识别的结果使用中值滤波数值为滤波半径使用可以削弱哑音": "Si >=3 : appliquer un filtrage médian aux résultats de la reconnaissance de la hauteur de récolte. La valeur représente le rayon du filtre et peut réduire la respiration.",
"A模型权重": "Poids (w) pour le modèle A :",
"A模型路径": "Chemin d'accès au modèle A :",
"B模型路径": "Chemin d'accès au modèle B :",
"很遗憾您这没有能用的显卡来支持您训练": "Malheureusement, votre carte graphique n'est pas compatible avec l'entraînement.",
"UVR5已开启": "UVR5 est activé",
"UVR5已关闭": "UVR5 est désactivé",
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.": "Ce logiciel est open source sous la licence MIT. L'auteur n'a aucun contrôle sur le logiciel. Les utilisateurs et les diffuseurs du son exporté par le logiciel en assument l'entière responsabilité. <br>Si vous n'acceptez pas ces termes, vous ne pouvez ni utiliser ni citer aucun code ou fichier à l'intérieur du package. Voir <b>LICENSE</b> dans le répertoire racine pour plus de détails.",
"0-前置数据集获取工具": "0-Outil de récupération de jeu de données préalable",
"0a-UVR5人声伴奏分离&去混响去延迟工具": "0a-Outil de séparation de la voix humaine et de l'accompagnement UVR5 & suppression de la réverbération et du retard",
"是否开启UVR5-WebUI": "Activer UVR5-WebUI",
"UVR5进程输出信息": "Informations de processus UVR5",
"0b-语音切分工具": "0b-Outil de découpage vocal",
"音频自动切分输入路径,可文件可文件夹": "Chemin d'entrée automatique de découpage audio, peut être un fichier ou un dossier",
"切分后的子音频的输出根目录": "Répertoire racine de sortie des sous-audios après découpage",
"threshold:音量小于这个值视作静音的备选切割点": "seuil: le volume inférieur à cette valeur est considéré comme un point de coupe silencieux alternatif",
"min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值": "min_length: longueur minimale de chaque segment, si le premier segment est trop court, il est continué avec le segment suivant jusqu'à dépasser cette valeur",
"min_interval:最短切割间隔": "min_interval: intervalle de coupe minimum",
"hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)": "hop_size: comment calculer la courbe de volume, plus petit pour une précision plus élevée mais une charge de calcul plus élevée (ce n'est pas une meilleure précision)",
"max_sil_kept:切完后静音最多留多长": "max_sil_kept: durée maximale de silence après la coupe",
"开启语音切割": "Activer le découpage vocal",
"终止语音切割": "Arrêter le découpage vocal",
"max:归一化后最大值多少": "max: valeur maximale après normalisation",
"alpha_mix:混多少比例归一化后音频进来": "alpha_mix: proportion d'audio normalisé mélangé",
"切割使用的进程数": "Nombre de processus utilisés pour le découpage",
"语音切割进程输出信息": "Informations de processus de découpage vocal",
"0c-中文批量离线ASR工具": "0c-Outil chinois de transcription automatique hors ligne en masse",
"开启离线批量ASR": "Activer la transcription automatique hors ligne en masse",
"终止ASR进程": "Arrêter le processus ASR",
"批量ASR(中文only)输入文件夹路径": "Chemin du dossier d'entrée pour la transcription automatique hors ligne en masse (chinois uniquement)",
"ASR进程输出信息": "Informations de processus ASR",
"0d-语音文本校对标注工具": "0d-Outil de correction et d'annotation de texte vocal",
"是否开启打标WebUI": "Activer l'interface Web d'annotation",
"打标数据标注文件路径": "Chemin du fichier d'annotation des données annotées",
"打标工具进程输出信息": "Informations de processus de l'outil d'annotation",
"1-GPT-SoVITS-TTS": "1-GPT-SoVITS-TTS",
"*实验/模型名": "*Nom de l'expérience/modèle",
"显卡信息": "Informations sur la carte graphique",
"预训练的SoVITS-G模型路径": "Chemin du modèle SoVITS-G pré-entraîné",
"预训练的SoVITS-D模型路径": "Chemin du modèle SoVITS-D pré-entraîné",
"预训练的GPT模型路径": "Chemin du modèle GPT pré-entraîné",
"1A-训练集格式化工具": "1A-Outil de formatage du jeu de données d'entraînement",
"输出logs/实验名目录下应有23456开头的文件和文件夹": "Les fichiers et dossiers commençant par 23456 devraient être présents dans le répertoire logs/nom de l'expérience",
"*文本标注文件": "*Fichier d'annotation de texte",
"*训练集音频文件目录": "*Répertoire des fichiers audio d'entraînement",
"训练集音频文件目录 拼接 list文件里波形对应的文件名。": "Répertoire des fichiers audio d'entraînement - concaténer avec les noms de fichiers correspondants dans le fichier de liste",
"1Aa-文本内容": "1Aa-Contenu du texte",
"GPU卡号以-分割,每个卡号一个进程": "Numéro de carte GPU séparé par des tirets, un processus par numéro de carte",
"预训练的中文BERT模型路径": "Chemin du modèle BERT chinois pré-entraîné",
"开启文本获取": "Activer l'extraction de texte",
"终止文本获取进程": "Arrêter le processus d'extraction de texte",
"文本进程输出信息": "Informations de processus de texte",
"1Ab-SSL自监督特征提取": "1Ab-Extraction de caractéristiques auto-supervisée SSL",
"预训练的SSL模型路径": "Chemin du modèle SSL pré-entraîné",
"开启SSL提取": "Activer l'extraction SSL",
"终止SSL提取进程": "Arrêter le processus d'extraction SSL",
"SSL进程输出信息": "Informations de processus SSL",
"1Ac-语义token提取": "1Ac-Extraction de jetons sémantiques",
"开启语义token提取": "Activer l'extraction de jetons sémantiques",
"终止语义token提取进程": "Arrêter le processus d'extraction de jetons sémantiques",
"语义token提取进程输出信息": "Informations de processus d'extraction de jetons sémantiques",
"1Aabc-训练集格式化一键三连": "1Aabc-Formatage en un clic du jeu de données d'entraînement",
"开启一键三连": "Activer l'un clic trois connexions",
"终止一键三连": "Arrêter l'un clic trois connexions",
"一键三连进程输出信息": "Informations de processus de l'un clic trois connexions",
"1B-微调训练": "1B-Entraînement fin",
"1Ba-SoVITS训练。用于分享的模型文件输出在SoVITS_weights下。": "1Ba-Entraînement SoVITS. Les fichiers de modèle destinés au partage sont enregistrés sous SoVITS_weights.",
"每张显卡的batch_size": "Taille de lot par carte graphique",
"总训练轮数total_epoch不建议太高": "Nombre total d'époques d'entraînement, pas recommandé d'être trop élevé",
"文本模块学习率权重": "Poids du taux d'apprentissage du module de texte",
"保存频率save_every_epoch": "Fréquence de sauvegarde (sauvegarder à chaque époque)",
"是否仅保存最新的ckpt文件以节省硬盘空间": "Sauvegarder uniquement le dernier fichier ckpt pour économiser de l'espace disque",
"是否在每次保存时间点将最终小模型保存至weights文件夹": "Sauvegarder le petit modèle final dans le dossier weights à chaque point de sauvegarde",
"开启SoVITS训练": "Activer l'entraînement SoVITS",
"终止SoVITS训练": "Arrêter l'entraînement SoVITS",
"SoVITS训练进程输出信息": "Informations de processus d'entraînement SoVITS",
"1Bb-GPT训练。用于分享的模型文件输出在GPT_weights下。": "1Bb-Entraînement GPT. Les fichiers de modèle destinés au partage sont enregistrés sous GPT_weights.",
"总训练轮数total_epoch": "Nombre total d'époques d'entraînement",
"开启GPT训练": "Activer l'entraînement GPT",
"终止GPT训练": "Arrêter l'entraînement GPT",
"GPT训练进程输出信息": "Informations de processus d'entraînement GPT",
"1C-推理": "1C-Inférence",
"选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模体验5秒Zero Shot TTS用。": "Choisissez le modèle entraîné stocké sous SoVITS_weights et GPT_weights. Par défaut, l'un d'eux est un modèle de base pour l'expérience de TTS Zero Shot de 5 secondes.",
"*GPT模型列表": "*Liste des modèles GPT",
"*SoVITS模型列表": "*Liste des modèles SoVITS",
"GPU卡号,只能填1个整数": "Numéro de carte GPU, ne peut contenir qu'un seul entier",
"刷新模型路径": "Actualiser le chemin du modèle",
"是否开启TTS推理WebUI": "Activer l'interface Web d'inférence TTS",
"TTS推理WebUI进程输出信息": "Informations de processus de l'interface Web d'inférence TTS",
"2-GPT-SoVITS-变声": "2-GPT-SoVITS-Modification de la voix",
"施工中,请静候佳音": "En construction, veuillez attendre patiemment",
"TTS推理进程已开启": "Le processus d'inférence TTS est en cours",
"TTS推理进程已关闭": "Le processus d'inférence TTS est terminé",
"打标工具WebUI已开启": "L'interface Web de l'outil d'annotation est en cours",
"打标工具WebUI已关闭": "L'interface Web de l'outil d'annotation est terminée",
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. 如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.": "Ce logiciel est open source sous la licence MIT. L'auteur n'a aucun contrôle sur le logiciel. Les utilisateurs et les diffuseurs du son exporté par le logiciel en assument l'entière responsabilité. Si vous n'acceptez pas ces termes, vous ne pouvez ni utiliser ni citer aucun code ou fichier à l'intérieur du package. Voir LICENSE dans le répertoire racine pour plus de détails.",
"*请上传并填写参考信息": "*Veuillez télécharger et remplir les informations de référence",
"*请填写需要合成的目标文本": "*Veuillez remplir le texte cible à synthétiser",
"ASR任务开启%s": "Tâche ASR activée : %s",
"GPT训练完成": "Entraînement GPT terminé",
"GPT训练开始%s": "Entraînement GPT commencé : %s",
"SSL提取进程执行中": "Processus d'extraction SSL en cours",
"SSL提取进程结束": "Processus d'extraction SSL terminé",
"SoVITS训练完成": "Entraînement SoVITS terminé",
"SoVITS训练开始%s": "Entraînement SoVITS commencé : %s",
"一键三连中途报错": "Erreur intermédiaire dans la séquence d'un clic trois connexions",
"一键三连进程结束": "Processus de séquence d'un clic trois connexions terminé",
"中文": "Chinois",
"凑50字一切": "Assembler 50 mots tout",
"凑五句一切": "Assembler cinq phrases tout",
"切分后文本": "Texte après découpage",
"切割执行中": "Découpage en cours",
"切割结束": "Découpage terminé",
"参考音频的文本": "Texte de l'audio de référence",
"参考音频的语种": "Langue de l'audio de référence",
"合成语音": "Synthèse vocale",
"后续将支持混合语种编码文本输入。": "Prise en charge ultérieure du codage de texte avec des langues mixtes.",
"已有正在进行的ASR任务需先终止才能开启下一次任务": "Une tâche ASR est déjà en cours. Vous devez d'abord l'arrêter avant de démarrer une nouvelle tâche.",
"已有正在进行的GPT训练任务需先终止才能开启下一次任务": "Une tâche d'entraînement GPT est déjà en cours. Vous devez d'abord l'arrêter avant de démarrer une nouvelle tâche.",
"已有正在进行的SSL提取任务需先终止才能开启下一次任务": "Une tâche d'extraction SSL est déjà en cours. Vous devez d'abord l'arrêter avant de démarrer une nouvelle tâche.",
"已有正在进行的SoVITS训练任务需先终止才能开启下一次任务": "Une tâche d'entraînement SoVITS est déjà en cours. Vous devez d'abord l'arrêter avant de démarrer une nouvelle tâche.",
"已有正在进行的一键三连任务,需先终止才能开启下一次任务": "Une tâche d'une séquence d'un clic trois connexions est déjà en cours. Vous devez d'abord l'arrêter avant de démarrer une nouvelle tâche.",
"已有正在进行的切割任务,需先终止才能开启下一次任务": "Une tâche de découpage est déjà en cours. Vous devez d'abord l'arrêter avant de démarrer une nouvelle tâche.",
"已有正在进行的文本任务,需先终止才能开启下一次任务": "Une tâche de texte est déjà en cours. Vous devez d'abord l'arrêter avant de démarrer une nouvelle tâche.",
"已有正在进行的语义token提取任务需先终止才能开启下一次任务": "Une tâche d'extraction de jetons sémantiques est déjà en cours. Vous devez d'abord l'arrêter avant de démarrer une nouvelle tâche.",
"已终止ASR进程": "Processus ASR arrêté",
"已终止GPT训练": "Entraînement GPT arrêté",
"已终止SoVITS训练": "Entraînement SoVITS arrêté",
"已终止所有1a进程": "Tous les processus 1a ont été arrêtés",
"已终止所有1b进程": "Tous les processus 1b ont été arrêtés",
"已终止所有一键三连进程": "Tous les processus d'une séquence d'un clic trois connexions ont été arrêtés",
"已终止所有切割进程": "Tous les processus de découpage ont été arrêtés",
"已终止所有语义token进程": "Tous les processus de jetons sémantiques ont été arrêtés",
"按中文句号。切": "Couper selon les points en chinois.",
"文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。": "Outil de découpage de texte. Un texte trop long peut ne pas donner un bon résultat, donc il est recommandé de le couper d'abord s'il est trop long. La synthèse se fera en séparant le texte par les sauts de ligne puis en les assemblant.",
"文本进程执行中": "Processus de texte en cours",
"文本进程结束": "Processus de texte terminé",
"日文": "Japonais",
"英文": "Anglais",
"语义token提取进程执行中": "Processus d'extraction de jetons sémantiques en cours",
"语义token提取进程结束": "Processus d'extraction de jetons sémantiques terminé",
"请上传参考音频": "Veuillez télécharger l'audio de référence",
"输入路径不存在": "Le chemin d'entrée n'existe pas",
"输入路径存在但既不是文件也不是文件夹": "Le chemin d'entrée existe mais n'est ni un fichier ni un dossier",
"输出的语音": "Audio de sortie",
"进度1a-done": "Progression : 1a-done",
"进度1a-done, 1b-ing": "Progression : 1a-done, 1b-ing",
"进度1a-ing": "Progression : 1a-ing",
"进度1a1b-done": "Progression : 1a1b-done",
"进度1a1b-done, 1cing": "Progression : 1a1b-done, 1cing",
"进度all-done": "Progression : all-done",
"需要合成的切分前文本": "Texte préalable à la synthèse",
"需要合成的文本": "Texte à synthétiser",
"需要合成的语种": "Langue de synthèse requise",
">=3则使用对harvest音高识别的结果使用中值滤波数值为滤波半径使用可以削弱哑音": "Si >= 3, utilisez le résultat de la reconnaissance de hauteur de récolte avec un filtre médian, la valeur est le rayon du filtre, son utilisation peut atténuer les sons sourds",
"A模型权重": "Poids du modèle A",
"A模型路径": "Chemin du modèle A",
"B模型路径": "Chemin du modèle B",
"E:\\语音音频+标注\\米津玄师\\src": "E:\\语音音频+标注\\米津玄师\\src",
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "Fichier de courbe F0 (facultatif). Une hauteur par ligne. Remplace la fréquence fondamentale par défaut et la modulation de la hauteur :",
"Index Rate": "Taux d'indexation",
"Onnx导出": "Exporter en ONNX",
"Onnx输出路径": "Chemin d'exportation ONNX :",
"RVC模型路径": "Chemin du modèle RVC :",
"ckpt处理": "Traitement des fichiers .ckpt",
"harvest进程数": "Nombre de processus CPU utilisés pour l'algorithme de reconnaissance de la hauteur (pitch) dans le cadre de la récolte (harvest).",
"index文件路径不可包含中文": "Le chemin du fichier d'index ne doit pas contenir de caractères chinois.",
"pth文件路径不可包含中文": "Le chemin du fichier .pth ne doit pas contenir de caractères chinois.",
"rmvpe卡号配置以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程": "Configuration des numéros de carte RMVPE : séparez les index GPU par des tirets \"-\", par exemple, 0-0-1 pour utiliser 2 processus sur GPU0 et 1 processus sur GPU1.",
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "Étape 1 : Remplissez la configuration expérimentale. Les données expérimentales sont stockées dans le dossier 'logs', avec chaque expérience ayant un dossier distinct. Entrez manuellement le chemin du nom de l'expérience, qui contient la configuration expérimentale, les journaux et les fichiers de modèle entraînés.",
"step1:正在处理数据": "Étape 1 : Traitement des données en cours.",
"step2:正在提取音高&正在提取特征": "Étape 2 : Extraction de la hauteur et extraction des caractéristiques en cours.",
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "Étape 2a : Parcours automatique de tous les fichiers du dossier d'entraînement qui peuvent être décodés en fichiers audio et réalisation d'une normalisation par tranches. Génère 2 dossiers wav dans le répertoire de l'expérience. Actuellement, seule la formation avec un seul chanteur/locuteur est prise en charge.",
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "Étape 2b : Utilisez le CPU pour extraire la hauteur (si le modèle le permet), utilisez le GPU pour extraire les caractéristiques (sélectionnez l'index du GPU) :",
"step3: 填写训练设置, 开始训练模型和索引": "Étape 3 : Remplissez les paramètres d'entraînement et démarrez l'entraînement du modèle ainsi que l'indexation.",
"step3a:正在训练模型": "Étape 3a : L'entraînement du modèle a commencé.",
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "Fichier de courbe F0, optionnel, une ligne par hauteur de ton, remplace F0 et la hauteur de ton par défaut",
"Index Rate": "Taux d'index",
"Onnx导出": "Exportation Onnx",
"Onnx输出路径": "Chemin d'exportation Onnx",
"RVC模型路径": "Chemin du modèle RVC",
"ckpt处理": "Traitement des points de contrôle",
"harvest进程数": "Nombre de processus de récolte",
"index文件路径不可包含中文": "Le chemin du fichier d'index ne peut pas contenir de caractères chinois",
"pth文件路径不可包含中文": "Le chemin du fichier pth ne peut pas contenir de caractères chinois",
"rmvpe卡号配置以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程": "Configuration des numéros de carte rmvpe : séparez les numéros de carte utilisés en entrée par des tirets, par exemple 0-0-1 signifie 2 processus sur la carte 0 et 1 processus sur la carte 1",
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "Étape 1 : Remplissez la configuration de l'expérience. Les données de l'expérience sont stockées dans le dossier logs, chaque expérience a son propre dossier. Vous devez entrer manuellement le chemin du nom de l'expérience, qui contient la configuration de l'expérience, les journaux et les fichiers de modèle entraînés.",
"step1:正在处理数据": "Étape 1 : Traitement des données en cours",
"step2:正在提取音高&正在提取特征": "Étape 2 : Extraction de la hauteur tonale et des caractéristiques en cours",
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "Étape 2a : Parcours automatique de tous les fichiers décodables en audio dans le dossier d'entraînement et normalisation par découpage. Deux dossiers wav sont générés dans le répertoire de l'expérience. Actuellement, seule la formation individuelle est prise en charge.",
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "Étape 2b : Extraction de la hauteur tonale avec le CPU (si le modèle a une hauteur tonale) et extraction des caractéristiques avec le GPU (choisissez le numéro de la carte)",
"step3: 填写训练设置, 开始训练模型和索引": "Étape 3 : Remplissez les paramètres d'entraînement et commencez l'entraînement du modèle et de l'index",
"step3a:正在训练模型": "Étape 3a : Entraînement du modèle en cours",
"一键训练": "Entraînement en un clic",
"也可批量输入音频文件, 二选一, 优先读文件夹": "Il est également possible d'importer plusieurs fichiers audio. Si un chemin de dossier existe, cette entrée est ignorée.",
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声不带和声的音频选这个对主人声保留比HP5更好。内置HP2和HP3两个模型HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点 <br>2、仅保留主人声带和声的音频选这个对主人声可能有削弱。内置HP5一个模型 <br> 3、去混响、去延迟模型by FoxJoy<br>(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>&emsp;(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底DeReverb额外去除混响可去除单声道混响但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍<br>2、MDX-Net-Dereverb模型挺慢的<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。": "Traitement en lot pour la séparation de la voix et de l'accompagnement vocal à l'aide du modèle UVR5.<br>Exemple d'un format de chemin de dossier valide : D:\\chemin\\vers\\dossier\\d'entrée (copiez-le depuis la barre d'adresse du gestionnaire de fichiers).<br>Le modèle est divisé en trois catégories :<br>1. Préserver la voix : Choisissez cette option pour l'audio sans harmonies. Elle préserve la voix mieux que HP5. Il comprend deux modèles intégrés : HP2 et HP3. HP3 peut légèrement laisser passer l'accompagnement mais préserve légèrement mieux la voix que HP2.<br>2. Préserver uniquement la voix principale : Choisissez cette option pour l'audio avec harmonies. Cela peut affaiblir la voix principale. Il comprend un modèle intégré : HP5.<br>3. Modèles de suppression de la réverbération et du délai (par FoxJoy) :<br>(1) MDX-Net : Le meilleur choix pour la suppression de la réverbération stéréo, mais ne peut pas supprimer la réverbération mono.<br>(234) DeEcho : Supprime les effets de délai. Le mode Aggressive supprime plus efficacement que le mode Normal. DeReverb supprime également la réverbération et peut supprimer la réverbération mono, mais pas très efficacement pour les contenus à haute fréquence fortement réverbérés.<br>Notes sur la suppression de la réverbération et du délai :<br>1. Le temps de traitement pour le modèle DeEcho-DeReverb est environ deux fois plus long que pour les autres deux modèles DeEcho.<br>2. Le modèle MDX-Net-Dereverb est assez lent.<br>3. La configuration la plus propre recommandée est d'appliquer d'abord MDX-Net, puis DeEcho-Aggressive.",
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "Entrez le(s) index GPU séparé(s) par '-', par exemple, 0-1-2 pour utiliser les GPU 0, 1 et 2 :",
"伴奏人声分离&去混响&去回声": "Séparation des voix/accompagnement et suppression de la réverbération",
"使用模型采样率": "使用模型采样率",
"使用设备采样率": "使用设备采样率",
"保存名": "Nom de sauvegarde :",
"保存的文件名, 默认空为和源文件同名": "Nom du fichier de sauvegarde (par défaut : identique au nom du fichier source) :",
"保存的模型名不带后缀": "Nom du modèle enregistré (sans extension) :",
"保存频率save_every_epoch": "Fréquence de sauvegarde (save_every_epoch) :",
"保护清辅音和呼吸声防止电音撕裂等artifact拉满0.5不开启,调低加大保护力度但可能降低索引效果": "Protéger les consonnes sourdes et les bruits de respiration pour éviter les artefacts tels que le déchirement dans la musique électronique. Réglez à 0,5 pour désactiver. Diminuez la valeur pour renforcer la protection, mais cela peut réduire la précision de l'indexation :",
"也可批量输入音频文件, 二选一, 优先读文件夹": "Également possible d'entrer en lot des fichiers audio, au choix, privilégiez la lecture du dossier",
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "Numéros de carte utilisés en entrée séparés par des tirets, par exemple 0-1-2 Utilisez les cartes 0, 1 et 2",
"伴奏人声分离&去混响&去回声": "Séparation de la voix et de l'accompagnement, suppression de la réverbération et de l'écho",
"使用模型采样率": "Taux d'échantillonnage du modèle",
"使用设备采样率": "Taux d'échantillonnage de l'appareil",
"保存名": "Nom de sauvegarde",
"保存的文件名, 默认空为和源文件同名": "Nom de fichier sauvegardé, par défaut vide pour avoir le même nom que le fichier source",
"保存的模型名不带后缀": "Nom du modèle sauvegardé sans suffixe",
"保护清辅音和呼吸声防止电音撕裂等artifact拉满0.5不开启,调低加大保护力度但可能降低索引效果": "Protéger les consonnes claires et les sons de respiration, éviter les artefacts tels que le déchirement du son électronique, tirer à 0.5 pour désactiver, diminuer pour augmenter la protection mais cela peut réduire l'efficacité de l'indexation",
"修改": "Modifier",
"修改模型信息(仅支持weights文件夹下提取的小模型文件)": "Modifier les informations du modèle (uniquement pris en charge pour les petits fichiers de modèle extraits du dossier 'weights')",
"修改模型信息(仅支持weights文件夹下提取的小模型文件)": "Modifier les informations du modèle (uniquement pour les petits fichiers de modèle extraits sous le dossier weights)",
"停止音频转换": "Arrêter la conversion audio",
"全流程结束!": "Toutes les étapes ont été terminées !",
"刷新音色列表和索引路径": "Actualiser la liste des voix et le vers l'index.",
"加载模型": "Charger le modèle.",
"加载预训练底模D路径": "Charger le chemin du modèle de base pré-entraîné D :",
"加载预训练底模G路径": "Charger le chemin du modèle de base pré-entraîné G :",
"单次推理": "单次推理",
"卸载音色省显存": "Décharger la voix pour économiser la mémoire GPU.",
"变调(整数, 半音数量, 升八度12降八度-12)": "Transposer (entier, nombre de demi-tons, monter d'une octave : 12, descendre d'une octave : -12) :",
"后处理重采样至最终采样率0为不进行重采样": "Rééchantillonner l'audio de sortie en post-traitement à la fréquence d'échantillonnage finale. Réglez sur 0 pour ne pas effectuer de rééchantillonnage :",
"全流程结束!": "Processus complet terminé !",
"刷新音色列表和索引路径": "Actualiser la liste des timbres et les chemins d'index",
"加载模型": "Charger le modèle",
"加载预训练底模D路径": "Charger le chemin du modèle de base pré-entraîné D",
"加载预训练底模G路径": "Charger le chemin du modèle de base pré-entraîné G",
"单次推理": "Inférence unique",
"卸载音色省显存": "Décharger le timbre pour économiser la mémoire vidéo",
"变调(整数, 半音数量, 升八度12降八度-12)": "Changer la tonalité (entier, quantité de demi-tons, monter d'une octave 12, descendre d'une octave -12)",
"后处理重采样至最终采样率0为不进行重采样": "Re-échantillonnage en post-traitement à la fréquence d'échantillonnage finale, 0 pour ne pas effectuer de re-échantillonnage",
"否": "Non",
"启用相位声码器": "启用相位声码器",
"启用相位声码器": "Activer le codeur de phase",
"响应阈值": "Seuil de réponse",
"响度因子": "Facteur de volume sonore",
"处理数据": "Traitement des données",
"导出Onnx模型": "Exporter le modèle au format ONNX.",
"导出文件格式": "Format de fichier d'exportation",
"常见问题解答": "FAQ (Foire Aux Questions)",
"处理数据": "Traiter les données",
"导出Onnx模型": "Exporter le modèle Onnx",
"导出文件格式": "Format d'exportation du fichier",
"常见问题解答": "Questions fréquemment posées",
"常规设置": "Paramètres généraux",
"开始音频转换": "Démarrer la conversion audio.",
"很遗憾您这没有能用的显卡来支持您训练": "Malheureusement, il n'y a pas de GPU compatible disponible pour prendre en charge votre entrainement.",
"开始音频转换": "Démarrer la conversion audio",
"性能设置": "Paramètres de performance",
"总训练轮数total_epoch": "Nombre total d'époques d'entraînement (total_epoch) :",
"批量推理": "批量推理",
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "Conversion en lot. Entrez le dossier contenant les fichiers audio à convertir ou téléchargez plusieurs fichiers audio. Les fichiers audio convertis seront enregistrés dans le dossier spécifié (par défaut : 'opt').",
"指定输出主人声文件夹": "Spécifiez le dossier de sortie pour les fichiers de voix :",
"指定输出文件夹": "Spécifiez le dossier de sortie :",
"指定输出非主人声文件夹": "Spécifiez le dossier de sortie pour l'accompagnement :",
"批量推理": "Inférence en lot",
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "Conversion en lot, entrez le dossier audio à convertir, ou téléchargez plusieurs fichiers audio, les fichiers convertis seront enregistrés dans le dossier spécifié (opt par défaut).",
"指定输出主人声文件夹": "Spécifier le dossier de sortie pour la voix principale",
"指定输出文件夹": "Spécifier le dossier de sortie",
"指定输出非主人声文件夹": "Spécifier le dossier de sortie pour la non-voix principale",
"推理时间(ms):": "Temps d'inférence (ms) :",
"推理音色": "Voix pour l'inférence",
"推理音色": "Timbre d'inférence",
"提取": "Extraire",
"提取音高和处理数据使用的CPU进程数": "Nombre de processus CPU utilisés pour l'extraction de la hauteur et le traitement des données :",
"提取音高和处理数据使用的CPU进程数": "Nombre de processus CPU utilisés pour extraire la hauteur tonale et traiter les données",
"是": "Oui",
"是否仅保存最新的ckpt文件以节省硬盘空间": "Enregistrer uniquement le dernier fichier '.ckpt' pour économiser de l'espace disque :",
"是否在每次保存时间点将最终小模型保存至weights文件夹": "Enregistrer un petit modèle final dans le dossier 'weights' à chaque point de sauvegarde :",
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": "Mettre en cache tous les ensembles d'entrainement dans la mémoire GPU. Mettre en cache de petits ensembles de données (moins de 10 minutes) peut accélérer l'entrainement, mais mettre en cache de grands ensembles de données consommera beaucoup de mémoire GPU et peut ne pas apporter beaucoup d'amélioration de vitesse :",
"显卡信息": "Informations sur la carte graphique (GPU)",
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.": "Ce logiciel est open source sous la licence MIT. L'auteur n'a aucun contrôle sur le logiciel. Les utilisateurs qui utilisent le logiciel et distribuent les sons exportés par le logiciel en sont entièrement responsables. <br>Si vous n'acceptez pas cette clause, vous ne pouvez pas utiliser ou faire référence à aucun code ni fichier contenu dans le package logiciel. Consultez le fichier <b>Agreement-LICENSE.txt</b> dans le répertoire racine pour plus de détails.",
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": "Mettre en cache ou non tous les ensembles d'entraînement dans la mémoire vidéo. Pour les petites données de moins de 10 minutes, la mise en cache peut accélérer l'entraînement, mais pour les grandes données, la mise en cache peut épuiser la mémoire vidéo sans améliorer considérablement la vitesse.",
"查看": "Voir",
"查看模型信息(仅支持weights文件夹下提取的小模型文件)": "Afficher les informations sur le modèle (uniquement pour les petits fichiers de modèle extraits du dossier \"weights\")",
"检索特征占比": "Rapport de recherche de caractéristiques (contrôle l'intensité de l'accent, un rapport trop élevé provoque des artefacts) :",
"查看模型信息(仅支持weights文件夹下提取的小模型文件)": "Voir les informations du modèle (uniquement pour les petits fichiers de modèle extraits sous le dossier weights)",
"检索特征占比": "Pourcentage des caractéristiques extraites",
"模型": "Modèle",
"模型推理": "Inférence du modèle",
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况": "Extraction du modèle (saisissez le chemin d'accès au modèle du grand fichier dans le dossier \"logs\"). Cette fonction est utile si vous souhaitez arrêter l'entrainement à mi-chemin et extraire et enregistrer manuellement un petit fichier de modèle, ou si vous souhaitez tester un modèle intermédiaire :",
"模型是否带音高指导": "Indique si le modèle dispose d'un guidage en hauteur :",
"模型是否带音高指导(唱歌一定要, 语音可以不要)": "Indique si le modèle dispose d'un système de guidage de la hauteur (obligatoire pour le chant, facultatif pour la parole) :",
"模型是否带音高指导,1是0否": "Le modèle dispose-t-il d'un guide de hauteur (1 : oui, 0 : non) ?",
"模型版本型号": "Version de l'architecture du modèle :",
"模型融合, 可用于测试音色融合": "Fusion de modèles, peut être utilisée pour tester la fusion de timbres",
"模型路径": "Le chemin vers le modèle :",
"每张显卡的batch_size": "Taille du batch par GPU :",
"淡入淡出长度": "Longueur de la transition",
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况": "Extraction du modèle (saisissez le chemin du modèle volumineux sous le dossier logs), utilisé lorsque l'entraînement est à mi-chemin, que vous ne voulez pas continuer l'entraînement, que le modèle n'a pas été automatiquement extrait et sauvegardé en tant que petit fichier, ou que vous souhaitez tester le modèle intermédiaire.",
"模型是否带音高指导": "Le modèle inclut-il un guidage en hauteur tonale",
"模型是否带音高指导(唱歌一定要, 语音可以不要)": "Le modèle inclut-il un guidage en hauteur tonale (nécessaire pour le chant, facultatif pour la parole)",
"模型是否带音高指导,1是0否": "Le modèle inclut-il un guidage en hauteur tonale, 1 pour oui, 0 pour non",
"模型版本型号": "Numéro de version du modèle",
"模型融合, 可用于测试音色融合": "Fusion de modèles, utilisée pour tester la fusion des timbres",
"模型路径": "Chemin du modèle",
"淡入淡出长度": "Longueur du fondu enchaîné",
"版本": "Version",
"特征提取": "Extraction des caractéristiques",
"特征检索库文件路径,为空则使用下拉的选择结果": "Chemin d'accès au fichier d'index des caractéristiques. Laisser vide pour utiliser le résultat sélectionné dans la liste déroulante :",
"男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ": "Il est recommandé d'utiliser la clé +12 pour la conversion homme-femme et la clé -12 pour la conversion femme-homme. Si la plage sonore est trop large et que la voix est déformée, vous pouvez également l'ajuster vous-même à la plage appropriée.",
"目标采样率": "Taux d'échantillonnage cible :",
"算法延迟(ms):": "Délais algorithmiques (ms):",
"自动检测index路径,下拉式选择(dropdown)": "Détecter automatiquement le chemin d'accès à l'index et le sélectionner dans la liste déroulante :",
"特征检索库文件路径,为空则使用下拉的选择结果": "Chemin du fichier de bibliothèque de recherche de caractéristiques, laisser vide pour utiliser le résultat de la liste déroulante",
"男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ": "Recommandation pour la transformation homme vers femme +12 clés, femme vers homme -12 clés, ajustez vous-même si l'étendue du son explose et provoque une distorsion de la voix.",
"目标采样率": "Taux d'échantillonnage cible",
"算法延迟(ms):": "Retard de l'algorithme (ms):",
"自动检测index路径,下拉式选择(dropdown)": "Détection automatique du chemin de l'index, choix dans la liste déroulante",
"融合": "Fusion",
"要改的模型信息": "Informations sur le modèle à modifier :",
"要置入的模型信息": "Informations sur le modèle à placer :",
"训练": "Entraîner",
"要改的模型信息": "Informations du modèle à modifier",
"要置入的模型信息": "Informations du modèle à insérer",
"训练": "Entraînement",
"训练模型": "Entraîner le modèle",
"训练特征索引": "Entraîner l'index des caractéristiques",
"训练结束, 您可查看控制台训练日志或实验文件夹下的train.log": "Entraînement terminé. Vous pouvez consulter les rapports d'entraînement dans la console ou dans le fichier 'train.log' situé dans le dossier de l'expérience.",
"请指定说话人id": "Veuillez spécifier l'ID de l'orateur ou du chanteur :",
"请选择index文件": "Veuillez sélectionner le fichier d'index",
"请选择pth文件": "Veuillez sélectionner le fichier pth",
"请选择说话人id": "Sélectionner l'ID de l'orateur ou du chanteur :",
"转换": "Convertir",
"输入实验名": "Saisissez le nom de l'expérience :",
"输入待处理音频文件夹路径": "Entrez le chemin du dossier audio à traiter :",
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)": "Entrez le chemin du dossier audio à traiter (copiez-le depuis la barre d'adresse du gestionnaire de fichiers) :",
"输入待处理音频文件路径(默认是正确格式示例)": "Entrez le chemin d'accès du fichier audio à traiter (par défaut, l'exemple de format correct) :",
"输入源音量包络替换输出音量包络融合比例越靠近1越使用输出包络": "Ajustez l'échelle de l'enveloppe de volume. Plus il est proche de 0, plus il imite le volume des voix originales. Cela peut aider à masquer les bruits et à rendre le volume plus naturel lorsqu'il est réglé relativement bas. Plus le volume est proche de 1, plus le volume sera fort et constant :",
"输入监听": "Moniteur vocal d'entrée",
"输入训练文件夹路径": "Indiquez le chemin d'accès au dossier d'entraînement :",
"输入设备": "Dispositif d'entrée",
"输入降噪": "Réduction du bruit d'entrée",
"输出信息": "Informations sur la sortie",
"输出变声": "Sortie voix convertie",
"输出设备": "Dispositif de sortie",
"输出降噪": "Réduction du bruit de sortie",
"输出音频(右下角三个点,点了可以下载)": "Exporter l'audio (cliquer sur les trois points dans le coin inférieur droit pour télécharger)",
"选择.index文件": "Sélectionner le fichier .index",
"选择.pth文件": "Sélectionner le fichier .pth",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU": "Sélection de l'algorithme d'extraction de la hauteur, les voix d'entrée peuvent être accélérées avec pm, harvest a de bonnes basses mais est très lent, crepe est bon mais consomme beaucoup de ressources GPU.",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU": "Sélectionnez l'algorithme d'extraction de la hauteur de ton (\"pm\" : extraction plus rapide mais parole de moindre qualité ; \"harvest\" : meilleure basse mais extrêmement lente ; \"crepe\" : meilleure qualité mais utilisation intensive du GPU), \"rmvpe\" : meilleure qualité et peu d'utilisation du GPU.",
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU": "Sélection de l'algorithme d'extraction de la hauteur : la chanson d'entrée peut être traitée plus rapidement par pm, avec une voix de haute qualité mais un CPU médiocre, par dio, harvest est meilleur mais plus lent, rmvpe est le meilleur, mais consomme légèrement le CPU/GPU.",
"采样率:": "采样率:",
"采样长度": "Longueur de l'échantillon",
"重载设备列表": "Recharger la liste des dispositifs",
"音调设置": "Réglages de la hauteur",
"音频设备(请使用同种类驱动)": "Périphérique audio (veuillez utiliser le même type de pilote)",
"音高算法": "algorithme de détection de la hauteur",
"额外推理时长": "Temps d'inférence supplémentaire"
"训练结束, 您可查看控制台训练日志或实验文件夹下的train.log": "Entraînement terminé, vous pouvez consulter les journaux d'entraînement de la console ou le fichier train.log dans le dossier d'expérience",
"请指定说话人id": "Veuillez spécifier l'ID du locuteur",
"请选择index文件": "Veuillez choisir le fichier d'index",
"请选择pth文件": "Veuillez choisir le fichier pth",
"请选择说话人id": "Veuillez choisir l'ID du locuteur",
"转换": "Conversion",
"输入实验名": "Nom de l'expérience d'entrée",
"输入待处理音频文件夹路径": "Entrez le chemin du dossier audio à traiter",
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)": "Entrez le chemin du dossier audio à traiter (copiez-le depuis la barre d'adresse du gestionnaire de fichiers)",
"输入待处理音频文件路径(默认是正确格式示例)": "Entrez le chemin du fichier audio à traiter (par défaut, c'est un exemple de format correct)",
"输入源音量包络替换输出音量包络融合比例越靠近1越使用输出包络": "Entrez le taux de fusion pour remplacer l'enveloppe de volume source par l'enveloppe de volume de sortie, plus proche de 1, plus l'enveloppe de sortie est utilisée",
"输入监听": "Entrée d'écoute",
"输入训练文件夹路径": "Entrez le chemin du dossier d'entraînement",
"输入设备": "Entrée de l'appareil",
"输入降噪": "Entrée de réduction du bruit",
"输出信息": "Sortie d'information",
"输出变声": "Sortie de la transformation de la voix",
"输出设备": "Sortie de l'appareil",
"输出降噪": "Sortie de réduction du bruit",
"输出音频(右下角三个点,点了可以下载)": "Sortie audio (trois points en bas à droite, cliquez pour télécharger)",
"选择.index文件": "Choisissez le fichier .index",
"选择.pth文件": "Choisissez le fichier .pth",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU": "Choisissez l'algorithme d'extraction de hauteur tonale, vous pouvez utiliser pm pour accélérer l'entrée de la voix, harvest est bon pour les basses mais très lent, crepe a un bon effet mais utilise le GPU",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU": "Choisissez l'algorithme d'extraction de hauteur tonale, vous pouvez utiliser pm pour accélérer l'entrée de la voix, harvest est bon pour les basses mais très lent, crepe a un bon effet mais utilise le GPU, rmvpe a le meilleur effet et utilise légèrement le GPU",
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU": "Choisissez l'algorithme d'extraction de hauteur tonale : utilisez pm pour accélérer l'entrée de la voix, une voix de haute qualité mais nécessite une meilleure CPU ; utilisez dio pour accélérer, harvest a une meilleure qualité mais est lent, rmvpe a le meilleur effet et utilise légèrement la CPU/GPU",
"采样率:": "Taux d'échantillonnage:",
"采样长度": "Longueur d'échantillonnage",
"重载设备列表": "Recharger la liste des appareils",
"音调设置": "Paramètres de tonalité",
"音频设备(请使用同种类驱动)": "Appareil audio (veuillez utiliser un pilote de même type)",
"音高算法": "Algorithme de hauteur tonale",
"额外推理时长": "Durée d'inférence supplémentaire"
}

View File

@ -59,7 +59,7 @@ if_gpu_ok = False
if torch.cuda.is_available() or ngpu != 0:
for i in range(ngpu):
gpu_name = torch.cuda.get_device_name(i)
if any(value in gpu_name.upper()for value in ["10","16","20","30","40","A2","A3","A4","P4","A50","500","A60","70","80","90","M4","T4","TITAN","L"]):
if any(value in gpu_name.upper()for value in ["10","16","20","30","40","A2","A3","A4","P4","A50","500","A60","70","80","90","M4","T4","TITAN","L","4060"]):
# A10#A100#V100#A40#P40#M40#K80#A4500
if_gpu_ok = True # 至少有一张能用的N卡
gpu_infos.append("%s\t%s" % (i, gpu_name))