From ea56b814bdefc8be8534253bce00ce19f4a344aa Mon Sep 17 00:00:00 2001 From: XXXXRT666 <157766680+XXXXRT666@users.noreply.github.com> Date: Tue, 13 Aug 2024 16:31:12 +0800 Subject: [PATCH] Chores (#1422) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Make Gradio Great Again 附带vs2017下载链接 增加了各种数据集检查,若缺失会弹出warning 修复了warning乱弹的bug 修复了参考音频混合只能上传一条的bug 修复了下载G2PW Model出现import错误的bug 修复了Windows训练无N卡在预处理阶段的报错 --- GPT_SoVITS/download.py | 2 +- GPT_SoVITS/inference_webui.py | 13 +- GPT_SoVITS/prepare_datasets/1-get-text.py | 3 +- .../prepare_datasets/2-get-hubert-wav32k.py | 3 +- GPT_SoVITS/prepare_datasets/3-get-semantic.py | 3 +- GPT_SoVITS/utils.py | 6 +- README.md | 4 +- docs/cn/README.md | 4 +- docs/ja/README.md | 2 +- docs/ko/README.md | 2 +- docs/tr/README.md | 2 +- tools/i18n/locale/en_US.json | 12 +- tools/i18n/locale/es_ES.json | 14 +- tools/i18n/locale/fr_FR.json | 14 +- tools/i18n/locale/it_IT.json | 14 +- tools/i18n/locale/ja_JP.json | 14 +- tools/i18n/locale/ko_KR.json | 14 +- tools/i18n/locale/pt_BR.json | 14 +- tools/i18n/locale/ru_RU.json | 14 +- tools/i18n/locale/tr_TR.json | 14 +- tools/i18n/locale/zh_CN.json | 12 +- tools/i18n/locale/zh_HK.json | 14 +- tools/i18n/locale/zh_SG.json | 14 +- tools/i18n/locale/zh_TW.json | 14 +- tools/my_utils.py | 87 +++++- tools/uvr5/webui.py | 29 +- webui.py | 290 ++++++++++-------- 27 files changed, 447 insertions(+), 181 deletions(-) diff --git a/GPT_SoVITS/download.py b/GPT_SoVITS/download.py index b6393e2..e7c8c97 100644 --- a/GPT_SoVITS/download.py +++ b/GPT_SoVITS/download.py @@ -1,5 +1,5 @@ import os, sys now_dir = os.getcwd() sys.path.insert(0, now_dir) -from .text.g2pw import G2PWPinyin +from text.g2pw import G2PWPinyin g2pw = G2PWPinyin(model_dir="GPT_SoVITS/text/G2PWModel",model_source="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",v_to_u=False, neutral_tone_with_five=True) \ No newline at end of file diff --git a/GPT_SoVITS/inference_webui.py b/GPT_SoVITS/inference_webui.py index 878f8d8..0681712 100644 --- a/GPT_SoVITS/inference_webui.py +++ b/GPT_SoVITS/inference_webui.py @@ -695,13 +695,14 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app: with gr.Row(): inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath", scale=13) with gr.Column(scale=13): - ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True) + ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True,scale=1) gr.Markdown(html_left(i18n("使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开。
开启后无视填写的参考文本。"))) - prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="", lines=3, max_lines=3) - prompt_language = gr.Dropdown( - label=i18n("参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文"), scale=14 - ) - inp_refs = gr.File(label=i18n("可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。"),file_count="file_count",scale=13) + prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="", lines=5, max_lines=5,scale=1) + with gr.Column(scale=14): + prompt_language = gr.Dropdown( + label=i18n("参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文"), + ) + inp_refs = gr.File(label=i18n("可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。"),file_count="multiple") gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"),'h3')) with gr.Row(): with gr.Column(scale=13): diff --git a/GPT_SoVITS/prepare_datasets/1-get-text.py b/GPT_SoVITS/prepare_datasets/1-get-text.py index 7af6c10..bdeacc7 100644 --- a/GPT_SoVITS/prepare_datasets/1-get-text.py +++ b/GPT_SoVITS/prepare_datasets/1-get-text.py @@ -7,7 +7,8 @@ inp_wav_dir = os.environ.get("inp_wav_dir") exp_name = os.environ.get("exp_name") i_part = os.environ.get("i_part") all_parts = os.environ.get("all_parts") -os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES") +if "_CUDA_VISIBLE_DEVICES" in os.environ: + os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] opt_dir = os.environ.get("opt_dir") bert_pretrained_dir = os.environ.get("bert_pretrained_dir") import torch diff --git a/GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py b/GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py index 82f3c69..27b61f2 100644 --- a/GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py +++ b/GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py @@ -6,7 +6,8 @@ inp_wav_dir= os.environ.get("inp_wav_dir") exp_name= os.environ.get("exp_name") i_part= os.environ.get("i_part") all_parts= os.environ.get("all_parts") -os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES") +if "_CUDA_VISIBLE_DEVICES" in os.environ: + os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] from feature_extractor import cnhubert opt_dir= os.environ.get("opt_dir") cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir") diff --git a/GPT_SoVITS/prepare_datasets/3-get-semantic.py b/GPT_SoVITS/prepare_datasets/3-get-semantic.py index bbf7688..a29a662 100644 --- a/GPT_SoVITS/prepare_datasets/3-get-semantic.py +++ b/GPT_SoVITS/prepare_datasets/3-get-semantic.py @@ -4,7 +4,8 @@ inp_text = os.environ.get("inp_text") exp_name = os.environ.get("exp_name") i_part = os.environ.get("i_part") all_parts = os.environ.get("all_parts") -os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES") +if "_CUDA_VISIBLE_DEVICES" in os.environ: + os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] opt_dir = os.environ.get("opt_dir") pretrained_s2G = os.environ.get("pretrained_s2G") s2config_path = os.environ.get("s2config_path") diff --git a/GPT_SoVITS/utils.py b/GPT_SoVITS/utils.py index 7984b5a..177eda1 100644 --- a/GPT_SoVITS/utils.py +++ b/GPT_SoVITS/utils.py @@ -18,7 +18,7 @@ logging.getLogger("matplotlib").setLevel(logging.ERROR) MATPLOTLIB_FLAG = False -logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) +logging.basicConfig(stream=sys.stdout, level=logging.ERROR) logger = logging @@ -319,13 +319,13 @@ def check_git_hash(model_dir): def get_logger(model_dir, filename="train.log"): global logger logger = logging.getLogger(os.path.basename(model_dir)) - logger.setLevel(logging.DEBUG) + logger.setLevel(logging.ERROR) formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") if not os.path.exists(model_dir): os.makedirs(model_dir) h = logging.FileHandler(os.path.join(model_dir, filename)) - h.setLevel(logging.DEBUG) + h.setLevel(logging.ERROR) h.setFormatter(formatter) logger.addHandler(h) return logger diff --git a/README.md b/README.md index 5b40d5b..a0c0653 100644 --- a/README.md +++ b/README.md @@ -24,7 +24,7 @@ A Powerful Few-shot Voice Conversion and Text-to-Speech WebUI.

2. **Few-shot TTS:** Fine-tune the model with just 1 minute of training data for improved voice similarity and realism. -3. **Cross-lingual Support:** Inference in languages different from the training dataset, currently supporting English, Japanese, and Chinese. +3. **Cross-lingual Support:** Inference in languages different from the training dataset, currently supporting English, Japanese, Korean, Cantonese and Chinese. 4. **WebUI Tools:** Integrated tools include voice accompaniment separation, automatic training set segmentation, Chinese ASR, and text labeling, assisting beginners in creating training datasets and GPT/SoVITS models. @@ -99,7 +99,7 @@ conda install -c conda-forge 'ffmpeg<7' Download and place [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe) and [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe) in the GPT-SoVITS root. -Install [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/) (Korean TTS Only) +Install [Visual Studio 2017](https://aka.ms/vs/17/release/vc_redist.x86.exe) (Korean TTS Only) ##### MacOS Users ```bash diff --git a/docs/cn/README.md b/docs/cn/README.md index 8c86b48..d2f45b3 100644 --- a/docs/cn/README.md +++ b/docs/cn/README.md @@ -24,7 +24,7 @@ 2. **少样本 TTS:** 仅需 1 分钟的训练数据即可微调模型,提升声音相似度和真实感。 -3. **跨语言支持:** 支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 +3. **跨语言支持:** 支持与训练数据集不同语言的推理,目前支持英语、日语、韩语、粤语和中文。 4. **WebUI 工具:** 集成工具包括声音伴奏分离、自动训练集分割、中文自动语音识别(ASR)和文本标注,协助初学者创建训练数据集和 GPT/SoVITS 模型。 @@ -99,7 +99,7 @@ conda install -c conda-forge 'ffmpeg<7' 下载并将 [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe) 和 [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe) 放置在 GPT-SoVITS 根目录下。 -安装 [Visual Studio 2022](https://visualstudio.microsoft.com/zh-hans/downloads/) 环境(仅限韩语TTS) +安装 [Visual Studio 2017](https://aka.ms/vs/17/release/vc_redist.x86.exe) 环境(仅限韩语TTS) ##### MacOS 用户 ```bash diff --git a/docs/ja/README.md b/docs/ja/README.md index 35852a9..5d01fad 100644 --- a/docs/ja/README.md +++ b/docs/ja/README.md @@ -24,7 +24,7 @@ 2. **数ショット TTS:** わずか 1 分間のトレーニングデータでモデルを微調整し、音声の類似性とリアリズムを向上。 -3. **多言語サポート:** 現在、英語、日本語、中国語をサポートしています。 +3. **多言語サポート:** 現在、英語、日本語、韓語、粵語、中国語をサポートしています。 4. **WebUI ツール:** 統合されたツールには、音声伴奏の分離、トレーニングセットの自動セグメンテーション、中国語 ASR、テキストラベリングが含まれ、初心者がトレーニングデータセットと GPT/SoVITS モデルを作成するのを支援します。 diff --git a/docs/ko/README.md b/docs/ko/README.md index 31783cc..c0ac9a2 100644 --- a/docs/ko/README.md +++ b/docs/ko/README.md @@ -24,7 +24,7 @@ 2. **소량의 데이터 TTS:** 1분의 훈련 데이터만으로 모델을 미세 조정하여 음성 유사도와 실제감을 향상시킬 수 있습니다. -3. **다국어 지원:** 훈련 데이터셋과 다른 언어의 추론을 지원하며, 현재 영어, 일본어, 중국어를 지원합니다. +3. **다국어 지원:** 훈련 데이터셋과 다른 언어의 추론을 지원하며, 현재 영어, 일본어, 중국어, 광둥어, 한국어를 지원합니다. 4. **WebUI 도구:** 음성 반주 분리, 자동 훈련 데이터셋 분할, 중국어 자동 음성 인식(ASR) 및 텍스트 주석 등의 도구를 통합하여 초보자가 훈련 데이터셋과 GPT/SoVITS 모델을 생성하는 데 도움을 줍니다. diff --git a/docs/tr/README.md b/docs/tr/README.md index 32210c3..6eddaeb 100644 --- a/docs/tr/README.md +++ b/docs/tr/README.md @@ -24,7 +24,7 @@ Güçlü Birkaç Örnekli Ses Dönüştürme ve Metinden Konuşmaya Web Arayüz 2. **Birkaç Örnekli Metinden Konuşmaya:** Daha iyi ses benzerliği ve gerçekçiliği için modeli yalnızca 1 dakikalık eğitim verisiyle ince ayarlayın. -3. **Çapraz Dil Desteği:** Eğitim veri setinden farklı dillerde çıkarım, şu anda İngilizce, Japonca ve Çinceyi destekliyor. +3. **Çapraz Dil Desteği:** Eğitim veri setinden farklı dillerde çıkarım, şu anda İngilizce, Japonca, Çince, Kantonca ve Koreceyi destekliyor. 4. **Web Arayüzü Araçları:** Entegre araçlar arasında vokal eşliğinde ayırma, otomatik eğitim seti segmentasyonu, Çince ASR ve metin etiketleme bulunur ve yeni başlayanların eğitim veri setleri ve GPT/SoVITS modelleri oluşturmalarına yardımcı olur. diff --git a/tools/i18n/locale/en_US.json b/tools/i18n/locale/en_US.json index ab02320..283403f 100644 --- a/tools/i18n/locale/en_US.json +++ b/tools/i18n/locale/en_US.json @@ -174,5 +174,15 @@ "预训练的SSL模型路径": "Pretrained SSL model path", "预训练的SoVITS-D模型路径": "Pretrained SoVITS-D model path", "预训练的SoVITS-G模型路径": "Pretrained SoVITS-G model path", - "预训练的中文BERT模型路径": " Pretrained BERT model path" + "预训练的中文BERT模型路径": " Pretrained BERT model path", + "音频加载失败": "Failed to Load Audio", + "以下文件或文件夹不存在": "No Such File or Folder", + "路径不能为空": "Expected No Empty Path", + "请填入正确的List路径": "Please Fill in the Correct List Path", + "请填入正确的音频文件夹路径": "Please Fill in the Correct Audio Folder Path", + "路径错误": "Path Error", + "缺少音素数据集": "Missing Phoneme Dataset", + "缺少Hubert数据集": "Missing Hubert Dataset", + "缺少音频数据集": "Missing Audio Dataset", + "缺少语义数据集": "Missing Semantics Dataset" } diff --git a/tools/i18n/locale/es_ES.json b/tools/i18n/locale/es_ES.json index 7d3e64c..739582b 100644 --- a/tools/i18n/locale/es_ES.json +++ b/tools/i18n/locale/es_ES.json @@ -174,5 +174,15 @@ "预训练的SSL模型路径": "Ruta del modelo SSL preentrenado", "预训练的SoVITS-D模型路径": "Ruta del modelo SoVITS-D preentrenado", "预训练的SoVITS-G模型路径": "Ruta del modelo SoVITS-G preentrenado", - "预训练的中文BERT模型路径": "Ruta del modelo BERT en chino preentrenado" -} + "预训练的中文BERT模型路径": "Ruta del modelo BERT en chino preentrenado", + "音频加载失败": "Error al Cargar el Audio", + "以下文件或文件夹不存在": "No Existe Tal Archivo o Carpeta", + "路径不能为空": "Se Espera que la Ruta No Esté Vacía", + "请填入正确的List路径": "Por Favor, Introduzca la Ruta Correcta de la Lista", + "请填入正确的音频文件夹路径": "Por Favor, Introduzca la Ruta Correcta de la Carpeta de Audio", + "路径错误": "Error de Ruta", + "缺少音素数据集": "Falta el Conjunto de Datos de Fonemas", + "缺少Hubert数据集": "Falta el Conjunto de Datos de Hubert", + "缺少音频数据集": "Falta el Conjunto de Datos de Audio", + "缺少语义数据集": "Falta el Conjunto de Datos Semánticos" +} \ No newline at end of file diff --git a/tools/i18n/locale/fr_FR.json b/tools/i18n/locale/fr_FR.json index 8763a25..3ee2c3c 100644 --- a/tools/i18n/locale/fr_FR.json +++ b/tools/i18n/locale/fr_FR.json @@ -174,5 +174,15 @@ "预训练的SSL模型路径": "Chemin du modèle SSL pré-entraîné", "预训练的SoVITS-D模型路径": "Chemin du modèle SoVITS-D pré-entraîné", "预训练的SoVITS-G模型路径": "Chemin du modèle SoVITS-G pré-entraîné", - "预训练的中文BERT模型路径": "Chemin du modèle BERT chinois pré-entraîné" -} + "预训练的中文BERT模型路径": "Chemin du modèle BERT chinois pré-entraîné", + "音频加载失败": "Échec du Chargement de l'Audio", + "以下文件或文件夹不存在": "Aucun Fichier ou Dossier de ce Type", + "路径不能为空": "Chemin Non Vide Attendu", + "请填入正确的List路径": "Veuillez Remplir le Chemin Correct de la Liste", + "请填入正确的音频文件夹路径": "Veuillez Remplir le Chemin Correct du Dossier Audio", + "路径错误": "Erreur de Chemin", + "缺少音素数据集": "Jeu de Données de Phonèmes Manquant", + "缺少Hubert数据集": "Jeu de Données Hubert Manquant", + "缺少音频数据集": "Jeu de Données Audio Manquant", + "缺少语义数据集": "Jeu de Données Sémantiques Manquant" +} \ No newline at end of file diff --git a/tools/i18n/locale/it_IT.json b/tools/i18n/locale/it_IT.json index 5203e44..f4b8897 100644 --- a/tools/i18n/locale/it_IT.json +++ b/tools/i18n/locale/it_IT.json @@ -174,5 +174,15 @@ "预训练的SSL模型路径": "Percorso del modello SSL preaddestrato", "预训练的SoVITS-D模型路径": "Percorso del modello preaddestrato SoVITS-D", "预训练的SoVITS-G模型路径": "Percorso del modello preaddestrato SoVITS-G", - "预训练的中文BERT模型路径": "Percorso del modello BERT cinese preaddestrato" -} + "预训练的中文BERT模型路径": "Percorso del modello BERT cinese preaddestrato", + "音频加载失败": "Caricamento Audio Fallito", + "以下文件或文件夹不存在": "Nessun File o Cartella di Questo Tipo", + "路径不能为空": "Percorso Vuoto Non Consentito", + "请填入正确的List路径": "Si Prega di Inserire il Percorso Corretto della Lista", + "请填入正确的音频文件夹路径": "Si Prega di Inserire il Percorso Corretto della Cartella Audio", + "路径错误": "Errore di Percorso", + "缺少音素数据集": "Dataset di Fonemi Mancante", + "缺少Hubert数据集": "Dataset di Hubert Mancante", + "缺少音频数据集": "Dataset Audio Mancante", + "缺少语义数据集": "Dataset Semantico Mancante" +} \ No newline at end of file diff --git a/tools/i18n/locale/ja_JP.json b/tools/i18n/locale/ja_JP.json index 719ae07..5edd3eb 100644 --- a/tools/i18n/locale/ja_JP.json +++ b/tools/i18n/locale/ja_JP.json @@ -174,5 +174,15 @@ "预训练的SSL模型路径": "事前にトレーニングされたSSLモデルのパス", "预训练的SoVITS-D模型路径": "事前にトレーニングされたSoVITS-Dモデルのパス", "预训练的SoVITS-G模型路径": "事前にトレーニングされたSoVITS-Gモデルのパス", - "预训练的中文BERT模型路径": "事前にトレーニングされた中文BERTモデルのパス" -} + "预训练的中文BERT模型路径": "事前にトレーニングされた中文BERTモデルのパス", + "音频加载失败": "音声の読み込みに失敗しました", + "以下文件或文件夹不存在": "そのようなファイルまたはフォルダは存在しません", + "路径不能为空": "空のパスは予期されていません", + "请填入正确的List路径": "正しいリストパスを入力してください", + "请填入正确的音频文件夹路径": "正しいオーディオフォルダパスを入力してください", + "路径错误": "パスエラー", + "缺少音素数据集": "音素データセットが欠落しています", + "缺少Hubert数据集": "Hubertデータセットが欠落しています", + "缺少音频数据集": "オーディオデータセットが欠落しています", + "缺少语义数据集": "セマンティクスデータセットが欠落しています" +} \ No newline at end of file diff --git a/tools/i18n/locale/ko_KR.json b/tools/i18n/locale/ko_KR.json index ba36046..062ffd0 100644 --- a/tools/i18n/locale/ko_KR.json +++ b/tools/i18n/locale/ko_KR.json @@ -174,5 +174,15 @@ "预训练的SSL模型路径": "사전 훈련된 SSL 모델 경로", "预训练的SoVITS-D模型路径": "사전 훈련된 SoVITS-D 모델 경로", "预训练的SoVITS-G模型路径": "사전 훈련된 SoVITS-G 모델 경로", - "预训练的中文BERT模型路径": "사전 훈련된 중국어 BERT 모델 경로" -} + "预训练的中文BERT模型路径": "사전 훈련된 중국어 BERT 모델 경로", + "音频加载失败": "오디오 로드 실패", + "以下文件或文件夹不存在": "해당 파일이나 폴더가 없습니다", + "路径不能为空": "경로가 비어 있을 수 없습니다", + "请填入正确的List路径": "올바른 리스트 경로를 입력하세요", + "请填入正确的音频文件夹路径": "올바른 오디오 폴더 경로를 입력하세요", + "路径错误": "경로 오류", + "缺少音素数据集": "음소 데이터셋이 없습니다", + "缺少Hubert数据集": "Hubert 데이터셋이 없습니다", + "缺少音频数据集": "오디오 데이터셋이 없습니다", + "缺少语义数据集": "의미론 데이터셋이 없습니다" +} \ No newline at end of file diff --git a/tools/i18n/locale/pt_BR.json b/tools/i18n/locale/pt_BR.json index 5b2ac5f..3fd1899 100644 --- a/tools/i18n/locale/pt_BR.json +++ b/tools/i18n/locale/pt_BR.json @@ -174,5 +174,15 @@ "预训练的SSL模型路径": "Caminho do modelo SSL pre-train", "预训练的SoVITS-D模型路径": "Caminho do modelo SoVITS-D pre-train", "预训练的SoVITS-G模型路径": "Caminho do modelo SoVITS-G pre-train", - "预训练的中文BERT模型路径": "Caminho do modelo BERT chinês pre-train" -} + "预训练的中文BERT模型路径": "Caminho do modelo BERT chinês pre-train", + "音频加载失败": "Falha ao Carregar o Áudio", + "以下文件或文件夹不存在": "Nenhum Arquivo ou Pasta Encontrado", + "路径不能为空": "Esperado Caminho Não Vazio", + "请填入正确的List路径": "Por Favor, Insira o Caminho Correto da Lista", + "请填入正确的音频文件夹路径": "Por Favor, Insira o Caminho Correto da Pasta de Áudio", + "路径错误": "Erro de Caminho", + "缺少音素数据集": "Conjunto de Dados de Fonemas Ausente", + "缺少Hubert数据集": "Conjunto de Dados Hubert Ausente", + "缺少音频数据集": "Conjunto de Dados de Áudio Ausente", + "缺少语义数据集": "Conjunto de Dados Semânticos Ausente" +} \ No newline at end of file diff --git a/tools/i18n/locale/ru_RU.json b/tools/i18n/locale/ru_RU.json index ea44606..c8046ec 100644 --- a/tools/i18n/locale/ru_RU.json +++ b/tools/i18n/locale/ru_RU.json @@ -174,5 +174,15 @@ "预训练的SSL模型路径": "Путь к предварительно обученной модели SSL", "预训练的SoVITS-D模型路径": "Путь к предварительно обученной модели SoVITS-D", "预训练的SoVITS-G模型路径": "Путь к предварительно обученной модели SoVITS-G", - "预训练的中文BERT模型路径": "Путь к предварительно обученной китайской модели BERT" -} + "预训练的中文BERT模型路径": "Путь к предварительно обученной китайской модели BERT", + "音频加载失败": "Не удалось загрузить аудио", + "以下文件或文件夹不存在": "Такого файла или папки не существует", + "路径不能为空": "Ожидается, что путь не будет пустым", + "请填入正确的List路径": "Пожалуйста, укажите правильный путь к списку", + "请填入正确的音频文件夹路径": "Пожалуйста, укажите правильный путь к папке с аудио", + "路径错误": "Ошибка пути", + "缺少音素数据集": "Отсутствует набор данных фонем", + "缺少Hubert数据集": "Отсутствует набор данных Hubert", + "缺少音频数据集": "Отсутствует набор данных аудио", + "缺少语义数据集": "Отсутствует семантический набор данных" +} \ No newline at end of file diff --git a/tools/i18n/locale/tr_TR.json b/tools/i18n/locale/tr_TR.json index c9e0cc2..733e3c8 100644 --- a/tools/i18n/locale/tr_TR.json +++ b/tools/i18n/locale/tr_TR.json @@ -174,5 +174,15 @@ "预训练的SSL模型路径": "Ön eğitilmiş SSL model yolu", "预训练的SoVITS-D模型路径": "Ön eğitilmiş SoVITS-D model yolu", "预训练的SoVITS-G模型路径": "Ön eğitilmiş SoVITS-G model yolu", - "预训练的中文BERT模型路径": "Ön eğitilmiş Çince BERT model yolu" -} + "预训练的中文BERT模型路径": "Ön eğitilmiş Çince BERT model yolu", + "音频加载失败": "Ses Yüklenemedi", + "以下文件或文件夹不存在": "Böyle Bir Dosya veya Klasör Yok", + "路径不能为空": "Boş Yol Beklenmiyor", + "请填入正确的List路径": "Lütfen Doğru Liste Yolunu Girin", + "请填入正确的音频文件夹路径": "Lütfen Doğru Ses Klasörü Yolunu Girin", + "路径错误": "Yol Hatası", + "缺少音素数据集": "Fonem Veri Seti Eksik", + "缺少Hubert数据集": "Hubert Veri Seti Eksik", + "缺少音频数据集": "Ses Veri Seti Eksik", + "缺少语义数据集": "Anlamsal Veri Seti Eksik" +} \ No newline at end of file diff --git a/tools/i18n/locale/zh_CN.json b/tools/i18n/locale/zh_CN.json index 49eccf9..2ee0334 100644 --- a/tools/i18n/locale/zh_CN.json +++ b/tools/i18n/locale/zh_CN.json @@ -174,5 +174,15 @@ "预训练的SSL模型路径": "预训练的SSL模型路径", "预训练的SoVITS-D模型路径": "预训练的SoVITS-D模型路径", "预训练的SoVITS-G模型路径": "预训练的SoVITS-G模型路径", - "预训练的中文BERT模型路径": "预训练的中文BERT模型路径" + "预训练的中文BERT模型路径": "预训练的中文BERT模型路径", + "音频加载失败": "音频加载失败", + "以下文件或文件夹不存在": "以下文件或文件夹不存在", + "路径不能为空": "路径不能为空", + "请填入正确的List路径": "请填入正确的List路径", + "请填入正确的音频文件夹路径": "请填入正确的音频文件夹路径", + "路径错误": "路径错误", + "缺少音素数据集": "缺少音素数据集", + "缺少Hubert数据集": "缺少Hubert数据集", + "缺少音频数据集": "缺少音频数据集", + "缺少语义数据集": "缺少语义数据集" } diff --git a/tools/i18n/locale/zh_HK.json b/tools/i18n/locale/zh_HK.json index c70f6ee..65fd51c 100644 --- a/tools/i18n/locale/zh_HK.json +++ b/tools/i18n/locale/zh_HK.json @@ -174,5 +174,15 @@ "预训练的SSL模型路径": "預訓練的SSL模型路徑", "预训练的SoVITS-D模型路径": "預訓練的SoVITS-D模型路徑", "预训练的SoVITS-G模型路径": "預訓練的SoVITS-G模型路徑", - "预训练的中文BERT模型路径": "預訓練的中文BERT模型路徑" -} + "预训练的中文BERT模型路径": "預訓練的中文BERT模型路徑", + "音频加载失败": "無法加載音頻", + "以下文件或文件夹不存在": "沒有此文件或文件夾", + "路径不能为空": "路徑不應該為空", + "请填入正确的List路径": "請填寫正確的列表路徑", + "请填入正确的音频文件夹路径": "請填寫正確的音頻文件夾路徑", + "路径错误": "路徑錯誤", + "缺少音素数据集": "缺少音素數據集", + "缺少Hubert数据集": "缺少Hubert數據集", + "缺少音频数据集": "缺少音頻數據集", + "缺少语义数据集": "缺少語義數據集" +} \ No newline at end of file diff --git a/tools/i18n/locale/zh_SG.json b/tools/i18n/locale/zh_SG.json index 3ed0801..ada878d 100644 --- a/tools/i18n/locale/zh_SG.json +++ b/tools/i18n/locale/zh_SG.json @@ -174,5 +174,15 @@ "预训练的SSL模型路径": "預訓練的SSL模型路徑", "预训练的SoVITS-D模型路径": "預訓練的SoVITS-D模型路徑", "预训练的SoVITS-G模型路径": "預訓練的SoVITS-G模型路徑", - "预训练的中文BERT模型路径": "預訓練的中文BERT模型路徑" -} + "预训练的中文BERT模型路径": "預訓練的中文BERT模型路徑", + "音频加载失败": "無法加載音頻", + "以下文件或文件夹不存在": "沒有此文件或文件夾", + "路径不能为空": "路徑不應該為空", + "请填入正确的List路径": "請填寫正確的列表路徑", + "请填入正确的音频文件夹路径": "請填寫正確的音頻文件夾路徑", + "路径错误": "路徑錯誤", + "缺少音素数据集": "缺少音素數據集", + "缺少Hubert数据集": "缺少Hubert數據集", + "缺少音频数据集": "缺少音頻數據集", + "缺少语义数据集": "缺少語義數據集" +} \ No newline at end of file diff --git a/tools/i18n/locale/zh_TW.json b/tools/i18n/locale/zh_TW.json index 9e63896..13c09ec 100644 --- a/tools/i18n/locale/zh_TW.json +++ b/tools/i18n/locale/zh_TW.json @@ -174,5 +174,15 @@ "预训练的SSL模型路径": "預訓練的SSL模型路徑", "预训练的SoVITS-D模型路径": "預訓練的SoVITS-D模型路徑", "预训练的SoVITS-G模型路径": "預訓練的SoVITS-G模型路徑", - "预训练的中文BERT模型路径": "預訓練的中文BERT模型路徑" -} + "预训练的中文BERT模型路径": "預訓練的中文BERT模型路徑", + "音频加载失败": "無法加載音頻", + "以下文件或文件夹不存在": "沒有此文件或文件夾", + "路径不能为空": "路徑不應該為空", + "请填入正确的List路径": "請填寫正確的列表路徑", + "请填入正确的音频文件夹路径": "請填寫正確的音頻文件夾路徑", + "路径错误": "路徑錯誤", + "缺少音素数据集": "缺少音素數據集", + "缺少Hubert数据集": "缺少Hubert數據集", + "缺少音频数据集": "缺少音頻數據集", + "缺少语义数据集": "缺少語義數據集" +} \ No newline at end of file diff --git a/tools/my_utils.py b/tools/my_utils.py index 53544f8..cdb95e0 100644 --- a/tools/my_utils.py +++ b/tools/my_utils.py @@ -1,7 +1,10 @@ import platform,os,traceback import ffmpeg import numpy as np - +import gradio as gr +from tools.i18n.i18n import I18nAuto +import pandas as pd +i18n = I18nAuto(language=os.environ.get('language','Auto')) def load_audio(file, sr): try: @@ -20,7 +23,7 @@ def load_audio(file, sr): ) except Exception as e: traceback.print_exc() - raise RuntimeError(f"Failed to load audio: {e}") + raise RuntimeError(i18n("音频加载失败")) return np.frombuffer(out, np.float32).flatten() @@ -30,3 +33,83 @@ def clean_path(path_str:str): return clean_path(path_str[0:-1]) path_str = path_str.replace('/', os.sep).replace('\\', os.sep) return path_str.strip(" ").strip('\'').strip("\n").strip('"').strip(" ").strip("\u202a") + + +def check_for_existance(file_list:list=None,is_train=False,is_dataset_processing=False): + files_status=[] + if is_train == True and file_list: + file_list.append(os.path.join(file_list[0],'2-name2text.txt')) + file_list.append(os.path.join(file_list[0],'3-bert')) + file_list.append(os.path.join(file_list[0],'4-cnhubert')) + file_list.append(os.path.join(file_list[0],'5-wav32k')) + file_list.append(os.path.join(file_list[0],'6-name2semantic.tsv')) + for file in file_list: + if os.path.exists(file):files_status.append(True) + else:files_status.append(False) + if sum(files_status)!=len(files_status): + if is_train: + for file,status in zip(file_list,files_status): + if status:pass + else:gr.Warning(file) + gr.Warning(i18n('以下文件或文件夹不存在')) + return False + elif is_dataset_processing: + if files_status[0]: + return True + elif not files_status[0]: + gr.Warning(file_list[0]) + elif not files_status[1] and file_list[1]: + gr.Warning(file_list[1]) + gr.Warning(i18n('以下文件或文件夹不存在')) + return False + else: + if file_list[0]: + gr.Warning(file_list[0]) + gr.Warning(i18n('以下文件或文件夹不存在')) + else: + gr.Warning(i18n('路径不能为空')) + return False + return True + +def check_details(path_list=None,is_train=False,is_dataset_processing=False): + if is_dataset_processing: + list_path, audio_path = path_list + if (not list_path.endswith('.list')): + gr.Warning(i18n('请填入正确的List路径')) + return + if audio_path: + if not os.path.isdir(audio_path): + gr.Warning(i18n('请填入正确的音频文件夹路径')) + return + with open(list_path,"r",encoding="utf8")as f: + line=f.readline().strip("\n").split("\n") + wav_name, _, __, ___ = line[0].split("|") + wav_name=clean_path(wav_name) + if (audio_path != "" and audio_path != None): + wav_name = os.path.basename(wav_name) + wav_path = "%s/%s"%(audio_path, wav_name) + else: + wav_path=wav_name + if os.path.exists(wav_path): + ... + else: + gr.Warning(i18n('路径错误')) + return + if is_train: + path_list.append(os.path.join(path_list[0],'2-name2text.txt')) + path_list.append(os.path.join(path_list[0],'4-cnhubert')) + path_list.append(os.path.join(path_list[0],'5-wav32k')) + path_list.append(os.path.join(path_list[0],'6-name2semantic.tsv')) + phone_path, hubert_path, wav_path, semantic_path = path_list[1:] + with open(phone_path,'r',encoding='utf-8') as f: + if f.read(1):... + else:gr.Warning(i18n('缺少音素数据集')) + if os.listdir(hubert_path):... + else:gr.Warning(i18n('缺少Hubert数据集')) + if os.listdir(wav_path):... + else:gr.Warning(i18n('缺少音频数据集')) + df = pd.read_csv( + semantic_path, delimiter="\t", encoding="utf-8" + ) + if len(df) >= 1:... + else:gr.Warning(i18n('缺少语义数据集')) diff --git a/tools/uvr5/webui.py b/tools/uvr5/webui.py index 60dfdaa..d216f6b 100644 --- a/tools/uvr5/webui.py +++ b/tools/uvr5/webui.py @@ -25,6 +25,16 @@ is_half=eval(sys.argv[2]) webui_port_uvr5=int(sys.argv[3]) is_share=eval(sys.argv[4]) +def html_left(text, label='p'): + return f"""
+ <{label} style="margin: 0; padding: 0;">{text} +
""" + +def html_center(text, label='p'): + return f"""
+ <{label} style="margin: 0; padding: 0;">{text} +
""" + def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0): infos = [] try: @@ -116,11 +126,11 @@ with gr.Blocks(title="UVR5 WebUI") as app: value= i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.") ) - with gr.Tabs(): - with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")): - with gr.Group(): + with gr.Group(): + gr.Markdown(html_center(i18n("伴奏人声分离&去混响&去回声"),'h2')) + with gr.Group(): gr.Markdown( - value=i18n("人声伴奏分离批量处理, 使用UVR5模型。") + "
" + \ + value=html_left(i18n("人声伴奏分离批量处理, 使用UVR5模型。") + "
" + \ i18n("合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。")+ "
" + \ i18n("模型分为三类:") + "
" + \ i18n("1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点;") + "
" + \ @@ -131,10 +141,11 @@ with gr.Blocks(title="UVR5 WebUI") as app: i18n("去混响/去延迟,附:") + "
" + \ i18n("1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;") + "
" + \ i18n("2、MDX-Net-Dereverb模型挺慢的;") + "
" + \ - i18n("3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。") + i18n("3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"),'h4') ) with gr.Row(): with gr.Column(): + model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names) dir_wav_input = gr.Textbox( label=i18n("输入待处理音频文件夹路径"), placeholder="C:\\Users\\Desktop\\todo-songs", @@ -143,7 +154,6 @@ with gr.Blocks(title="UVR5 WebUI") as app: file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") ) with gr.Column(): - model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names) agg = gr.Slider( minimum=0, maximum=20, @@ -165,8 +175,11 @@ with gr.Blocks(title="UVR5 WebUI") as app: value="flac", interactive=True, ) - but2 = gr.Button(i18n("转换"), variant="primary") - vc_output4 = gr.Textbox(label=i18n("输出信息")) + with gr.Column(): + with gr.Row(): + but2 = gr.Button(i18n("转换"), variant="primary") + with gr.Row(): + vc_output4 = gr.Textbox(label=i18n("输出信息"),lines=3) but2.click( uvr, [ diff --git a/webui.py b/webui.py index 74a2f6a..d483a67 100644 --- a/webui.py +++ b/webui.py @@ -25,6 +25,7 @@ if(os.path.exists(tmp)): print(str(e)) pass import site +import traceback site_packages_roots = [] for path in site.getsitepackages(): if "packages" in path: @@ -38,14 +39,13 @@ for site_packages_root in site_packages_roots: try: with open("%s/users.pth" % (site_packages_root), "w") as f: f.write( - "%s\n%s/tools\n%s/tools/damo_asr\n%s/GPT_SoVITS\n%s/tools/uvr5" + "%s\n%s/tools\n%s/tools/asr\n%s/GPT_SoVITS\n%s/tools/uvr5" % (now_dir, now_dir, now_dir, now_dir, now_dir) ) break - except PermissionError: - pass + except PermissionError as e: + traceback.print_exc() from tools import my_utils -import traceback import shutil import pdb from subprocess import Popen @@ -56,11 +56,13 @@ language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else "Auto" os.environ["language"]=language i18n = I18nAuto(language=language) from scipy.io import wavfile -from tools.my_utils import load_audio +from tools.my_utils import load_audio, check_for_existance, check_details from multiprocessing import cpu_count # os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu -import gradio.analytics as analytics -analytics.version_check = lambda:None +try: + import gradio.analytics as analytics + analytics.version_check = lambda:None +except:... import gradio as gr n_cpu=cpu_count() @@ -195,34 +197,35 @@ def kill_process(pid): kill_proc_tree(pid) -def change_label(if_label,path_list): +def change_label(path_list): global p_label - if(if_label==True and p_label==None): + if(p_label==None): + check_for_existance([path_list]) path_list=my_utils.clean_path(path_list) cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s --is_share %s'%(python_exec,path_list,webui_port_subfix,is_share) - yield i18n("打标工具WebUI已开启") + yield i18n("打标工具WebUI已开启"), {'__type__':'update','visible':False}, {'__type__':'update','visible':True} print(cmd) p_label = Popen(cmd, shell=True) - elif(if_label==False and p_label!=None): + elif(p_label!=None): kill_process(p_label.pid) p_label=None - yield i18n("打标工具WebUI已关闭") + yield i18n("打标工具WebUI已关闭"), {'__type__':'update','visible':True}, {'__type__':'update','visible':False} -def change_uvr5(if_uvr5): +def change_uvr5(): global p_uvr5 - if(if_uvr5==True and p_uvr5==None): + if(p_uvr5==None): cmd = '"%s" tools/uvr5/webui.py "%s" %s %s %s'%(python_exec,infer_device,is_half,webui_port_uvr5,is_share) - yield i18n("UVR5已开启") + yield i18n("UVR5已开启"), {'__type__':'update','visible':False}, {'__type__':'update','visible':True} print(cmd) p_uvr5 = Popen(cmd, shell=True) - elif(if_uvr5==False and p_uvr5!=None): + elif(p_uvr5!=None): kill_process(p_uvr5.pid) p_uvr5=None - yield i18n("UVR5已关闭") + yield i18n("UVR5已关闭"), {'__type__':'update','visible':True}, {'__type__':'update','visible':False} -def change_tts_inference(if_tts,bert_path,cnhubert_base_path,gpu_number,gpt_path,sovits_path): +def change_tts_inference(bert_path,cnhubert_base_path,gpu_number,gpt_path,sovits_path): global p_tts_inference - if(if_tts==True and p_tts_inference==None): + if(p_tts_inference==None): os.environ["gpt_path"]=gpt_path if "/" in gpt_path else "%s/%s"%(GPT_weight_root,gpt_path) os.environ["sovits_path"]=sovits_path if "/"in sovits_path else "%s/%s"%(SoVITS_weight_root,sovits_path) os.environ["cnhubert_base_path"]=cnhubert_base_path @@ -232,13 +235,13 @@ def change_tts_inference(if_tts,bert_path,cnhubert_base_path,gpu_number,gpt_path os.environ["infer_ttswebui"]=str(webui_port_infer_tts) os.environ["is_share"]=str(is_share) cmd = '"%s" GPT_SoVITS/inference_webui.py "%s"'%(python_exec, language) - yield i18n("TTS推理进程已开启") + yield i18n("TTS推理进程已开启"), {'__type__':'update','visible':False}, {'__type__':'update','visible':True} print(cmd) p_tts_inference = Popen(cmd, shell=True) - elif(if_tts==False and p_tts_inference!=None): + elif(p_tts_inference!=None): kill_process(p_tts_inference.pid) p_tts_inference=None - yield i18n("TTS推理进程已关闭") + yield i18n("TTS推理进程已关闭"), {'__type__':'update','visible':True}, {'__type__':'update','visible':False} from tools.asr.config import asr_dict def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang, asr_precision): @@ -246,7 +249,7 @@ def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang, asr_ if(p_asr==None): asr_inp_dir=my_utils.clean_path(asr_inp_dir) asr_opt_dir=my_utils.clean_path(asr_opt_dir) - check_for_exists([asr_inp_dir]) + check_for_existance([asr_inp_dir]) cmd = f'"{python_exec}" tools/asr/{asr_dict[asr_model]["path"]}' cmd += f' -i "{asr_inp_dir}"' cmd += f' -o "{asr_opt_dir}"' @@ -277,7 +280,7 @@ def open_denoise(denoise_inp_dir, denoise_opt_dir): if(p_denoise==None): denoise_inp_dir=my_utils.clean_path(denoise_inp_dir) denoise_opt_dir=my_utils.clean_path(denoise_opt_dir) - check_for_exists([denoise_inp_dir]) + check_for_existance([denoise_inp_dir]) cmd = '"%s" tools/cmd-denoise.py -i "%s" -o "%s" -p %s'%(python_exec,denoise_inp_dir,denoise_opt_dir,"float16"if is_half==True else "float32") yield "语音降噪任务开启:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"} @@ -306,7 +309,8 @@ def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_s data=json.loads(data) s2_dir="%s/%s"%(exp_root,exp_name) os.makedirs("%s/logs_s2"%(s2_dir),exist_ok=True) - check_for_exists([s2_dir],is_train=True) + if check_for_existance([s2_dir],is_train=True): + check_details([s2_dir],is_train=True) if(is_half==False): data["train"]["fp16_run"]=False batch_size=max(1,batch_size//2) @@ -353,7 +357,8 @@ def open1Bb(batch_size,total_epoch,exp_name,if_dpo,if_save_latest,if_save_every_ data=yaml.load(data, Loader=yaml.FullLoader) s1_dir="%s/%s"%(exp_root,exp_name) os.makedirs("%s/logs_s1"%(s1_dir),exist_ok=True) - check_for_exists([s1_dir],is_train=True) + if check_for_existance([s1_dir],is_train=True): + check_details([s1_dir],is_train=True) if(is_half==False): data["train"]["precision"]="32" batch_size = max(1, batch_size // 2) @@ -398,7 +403,7 @@ def open_slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_k global ps_slice inp = my_utils.clean_path(inp) opt_root = my_utils.clean_path(opt_root) - check_for_exists([inp]) + check_for_existance([inp]) if(os.path.exists(inp)==False): yield "输入路径不存在", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} return @@ -437,7 +442,8 @@ def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir): global ps1a inp_text = my_utils.clean_path(inp_text) inp_wav_dir = my_utils.clean_path(inp_wav_dir) - check_for_exists([inp_text,inp_wav_dir], is_dataset_processing=True) + if check_for_existance([inp_text,inp_wav_dir], is_dataset_processing=True): + check_details([inp_text,inp_wav_dir], is_dataset_processing=True) if (ps1a == []): opt_dir="%s/%s"%(exp_root,exp_name) config={ @@ -499,7 +505,8 @@ def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir): global ps1b inp_text = my_utils.clean_path(inp_text) inp_wav_dir = my_utils.clean_path(inp_wav_dir) - check_for_exists([inp_text,inp_wav_dir], is_dataset_processing=True) + if check_for_existance([inp_text,inp_wav_dir], is_dataset_processing=True): + check_details([inp_text,inp_wav_dir], is_dataset_processing=True) if (ps1b == []): config={ "inp_text":inp_text, @@ -547,7 +554,8 @@ ps1c=[] def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path): global ps1c inp_text = my_utils.clean_path(inp_text) - check_for_exists([inp_text,''], is_dataset_processing=True) + if check_for_existance([inp_text,''], is_dataset_processing=True): + check_details([inp_text,''], is_dataset_processing=True) if (ps1c == []): opt_dir="%s/%s"%(exp_root,exp_name) config={ @@ -606,7 +614,8 @@ def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numb global ps1abc inp_text = my_utils.clean_path(inp_text) inp_wav_dir = my_utils.clean_path(inp_wav_dir) - check_for_exists([inp_text,inp_wav_dir]) + if check_for_existance([inp_text,inp_wav_dir], is_dataset_processing=True): + check_details([inp_text,inp_wav_dir], is_dataset_processing=True) if (ps1abc == []): opt_dir="%s/%s"%(exp_root,exp_name) try: @@ -743,38 +752,14 @@ def switch_version(version_): gr.Warning(i18n(f'未下载{version.upper()}模型')) return {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D")}, {'__type__':'update', 'value':pretrained_gpt_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_gpt_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2]} -def check_for_exists(file_list=None,is_train=False,is_dataset_processing=False): - missing_files=[] - if is_train == True and file_list: - file_list.append(os.path.join(file_list[0],'2-name2text.txt')) - file_list.append(os.path.join(file_list[0],'3-bert')) - file_list.append(os.path.join(file_list[0],'4-cnhubert')) - file_list.append(os.path.join(file_list[0],'5-wav32k')) - file_list.append(os.path.join(file_list[0],'6-name2semantic.tsv')) - for file in file_list: - if os.path.exists(file):pass - else:missing_files.append(file) - if missing_files: - if is_train: - for missing_file in missing_files: - if missing_file != '': - gr.Warning(missing_file) - gr.Warning(i18n('以下文件或文件夹不存在:')) - else: - for missing_file in missing_files: - if missing_file != '': - gr.Warning(missing_file) - if file_list[-1]==[''] and is_dataset_processing: - pass - else: - gr.Warning(i18n('以下文件或文件夹不存在:')) - if os.path.exists('GPT_SoVITS/text/G2PWModel'):... else: cmd = '"%s" GPT_SoVITS/download.py'%python_exec p = Popen(cmd, shell=True) p.wait() +def sync(text): + return {'__type__':'update','value':text} with gr.Blocks(title="GPT-SoVITS WebUI") as app: gr.Markdown( value= @@ -789,8 +774,11 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app: with gr.TabItem(i18n("0-前置数据集获取工具")):#提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标 gr.Markdown(value=i18n("0a-UVR5人声伴奏分离&去混响去延迟工具")) with gr.Row(): - if_uvr5 = gr.Checkbox(label=i18n("是否开启UVR5-WebUI"),show_label=True) - uvr5_info = gr.Textbox(label=i18n("UVR5进程输出信息")) + with gr.Column(scale=3): + with gr.Row(): + uvr5_info = gr.Textbox(label=i18n("UVR5进程输出信息")) + open_uvr5 = gr.Button(value=i18n("开启UVR5-WebUI"),variant="primary",visible=True) + close_uvr5 = gr.Button(value=i18n("关闭UVR5-WebUI"),variant="primary",visible=False) gr.Markdown(value=i18n("0b-语音切分工具")) with gr.Row(): with gr.Column(scale=3): @@ -805,9 +793,9 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app: max_sil_kept=gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"),value="500") with gr.Row(): _max=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("max:归一化后最大值多少"),value=0.9,interactive=True) - alpha=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("alpha_mix:混多少比例归一化后音频进来"),value=0.25,interactive=True) - n_process=gr.Slider(minimum=1,maximum=n_cpu,step=1,label=i18n("切割使用的进程数"),value=4,interactive=True) + alpha=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("alpha_mix:混多少比例归一化后音频进来"),value=0.25,interactive=True) with gr.Row(): + n_process=gr.Slider(minimum=1,maximum=n_cpu,step=1,label=i18n("切割使用的进程数"),value=4,interactive=True) slicer_info = gr.Textbox(label=i18n("语音切割进程输出信息")) open_slicer_button=gr.Button(i18n("开启语音切割"), variant="primary",visible=True) close_slicer_button=gr.Button(i18n("终止语音切割"), variant="primary",visible=False) @@ -890,60 +878,86 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app: gr.Markdown(value=i18n("0d-语音文本校对标注工具")) with gr.Row(): - if_label = gr.Checkbox(label=i18n("是否开启打标WebUI"),show_label=True) - path_list = gr.Textbox( - label=i18n(".list标注文件的路径"), - value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx.list", - interactive=True, - ) - label_info = gr.Textbox(label=i18n("打标工具进程输出信息")) - if_label.change(change_label, [if_label,path_list], [label_info]) - if_uvr5.change(change_uvr5, [if_uvr5], [uvr5_info]) + with gr.Column(scale=3): + with gr.Row(): + path_list = gr.Textbox( + label=i18n(".list标注文件的路径"), + value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx.list", + interactive=True, + ) + label_info = gr.Textbox(label=i18n("打标工具进程输出信息")) + + open_label = gr.Button(value=i18n("开启打标WebUI"),variant="primary",visible=True) + close_label = gr.Button(value=i18n("关闭打标WebUI"),variant="primary",visible=False) + open_label.click(change_label, [path_list], [label_info,open_label,close_label]) + close_label.click(change_label, [path_list], [label_info,open_label,close_label]) + open_uvr5.click(change_uvr5, [], [uvr5_info,open_uvr5,close_uvr5]) + close_uvr5.click(change_uvr5, [], [uvr5_info,open_uvr5,close_uvr5]) with gr.TabItem(i18n("1-GPT-SoVITS-TTS")): with gr.Row(): - exp_name = gr.Textbox(label=i18n("*实验/模型名"), value="xxx", interactive=True) - gpu_info = gr.Textbox(label=i18n("显卡信息"), value=gpu_info, visible=True, interactive=False) - version_checkbox = gr.Radio(label=i18n("版本"),value=version,choices=['v1','v2']) - pretrained_s2G = gr.Textbox(label=i18n("预训练的SoVITS-G模型路径"), value=pretrained_sovits_name[-int(version[-1])+2], interactive=True) - pretrained_s2D = gr.Textbox(label=i18n("预训练的SoVITS-D模型路径"), value=pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D"), interactive=True) - pretrained_s1 = gr.Textbox(label=i18n("预训练的GPT模型路径"), value=pretrained_gpt_name[-int(version[-1])+2], interactive=True) + with gr.Row(): + exp_name = gr.Textbox(label=i18n("*实验/模型名"), value="xxx", interactive=True) + gpu_info = gr.Textbox(label=i18n("显卡信息"), value=gpu_info, visible=True, interactive=False) + version_checkbox = gr.Radio(label=i18n("版本"),value=version,choices=['v1','v2']) + with gr.Row(): + pretrained_s2G = gr.Textbox(label=i18n("预训练的SoVITS-G模型路径"), value=pretrained_sovits_name[-int(version[-1])+2], interactive=True, lines=2, max_lines=3,scale=9) + pretrained_s2D = gr.Textbox(label=i18n("预训练的SoVITS-D模型路径"), value=pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D"), interactive=True, lines=2, max_lines=3,scale=9) + pretrained_s1 = gr.Textbox(label=i18n("预训练的GPT模型路径"), value=pretrained_gpt_name[-int(version[-1])+2], interactive=True, lines=2, max_lines=3,scale=10) with gr.TabItem(i18n("1A-训练集格式化工具")): gr.Markdown(value=i18n("输出logs/实验名目录下应有23456开头的文件和文件夹")) with gr.Row(): - inp_text = gr.Textbox(label=i18n("*文本标注文件"),value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list",interactive=True) - inp_wav_dir = gr.Textbox( - label=i18n("*训练集音频文件目录"), - # value=r"D:\RVC1006\GPT-SoVITS\raw\xxx", - interactive=True, - placeholder=i18n("填切割后音频所在目录!读取的音频文件完整路径=该目录-拼接-list文件里波形对应的文件名(不是全路径)。如果留空则使用.list文件里的绝对全路径。") - ) + with gr.Row(): + inp_text = gr.Textbox(label=i18n("*文本标注文件"),value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list",interactive=True,scale=10) + with gr.Row(): + inp_wav_dir = gr.Textbox( + label=i18n("*训练集音频文件目录"), + # value=r"D:\RVC1006\GPT-SoVITS\raw\xxx", + interactive=True, + placeholder=i18n("填切割后音频所在目录!读取的音频文件完整路径=该目录-拼接-list文件里波形对应的文件名(不是全路径)。如果留空则使用.list文件里的绝对全路径。"), scale=10 + ) gr.Markdown(value=i18n("1Aa-文本内容")) with gr.Row(): - gpu_numbers1a = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True) - bert_pretrained_dir = gr.Textbox(label=i18n("预训练的中文BERT模型路径"),value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",interactive=False) - button1a_open = gr.Button(i18n("开启文本获取"), variant="primary",visible=True) - button1a_close = gr.Button(i18n("终止文本获取进程"), variant="primary",visible=False) - info1a=gr.Textbox(label=i18n("文本进程输出信息")) + with gr.Row(): + gpu_numbers1a = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True) + with gr.Row(): + bert_pretrained_dir = gr.Textbox(label=i18n("预训练的中文BERT模型路径"),value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",interactive=False,lines=2) + with gr.Row(): + button1a_open = gr.Button(i18n("开启文本获取"), variant="primary",visible=True) + button1a_close = gr.Button(i18n("终止文本获取进程"), variant="primary",visible=False) + with gr.Row(): + info1a=gr.Textbox(label=i18n("文本进程输出信息")) gr.Markdown(value=i18n("1Ab-SSL自监督特征提取")) with gr.Row(): - gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True) - cnhubert_base_dir = gr.Textbox(label=i18n("预训练的SSL模型路径"),value="GPT_SoVITS/pretrained_models/chinese-hubert-base",interactive=False) - button1b_open = gr.Button(i18n("开启SSL提取"), variant="primary",visible=True) - button1b_close = gr.Button(i18n("终止SSL提取进程"), variant="primary",visible=False) - info1b=gr.Textbox(label=i18n("SSL进程输出信息")) + with gr.Row(): + gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True) + with gr.Row(): + cnhubert_base_dir = gr.Textbox(label=i18n("预训练的SSL模型路径"),value="GPT_SoVITS/pretrained_models/chinese-hubert-base",interactive=False,lines=2) + with gr.Row(): + button1b_open = gr.Button(i18n("开启SSL提取"), variant="primary",visible=True) + button1b_close = gr.Button(i18n("终止SSL提取进程"), variant="primary",visible=False) + with gr.Row(): + info1b=gr.Textbox(label=i18n("SSL进程输出信息")) gr.Markdown(value=i18n("1Ac-语义token提取")) with gr.Row(): - gpu_numbers1c = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True) - button1c_open = gr.Button(i18n("开启语义token提取"), variant="primary",visible=True) - button1c_close = gr.Button(i18n("终止语义token提取进程"), variant="primary",visible=False) - info1c=gr.Textbox(label=i18n("语义token提取进程输出信息")) + with gr.Row(): + gpu_numbers1c = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True) + with gr.Row(): + pretrained_s2G_ = gr.Textbox(label=i18n("预训练的SoVITS-G模型路径"), value=pretrained_sovits_name[-int(version[-1])+2], interactive=False,lines=2) + with gr.Row(): + button1c_open = gr.Button(i18n("开启语义token提取"), variant="primary",visible=True) + button1c_close = gr.Button(i18n("终止语义token提取进程"), variant="primary",visible=False) + with gr.Row(): + info1c=gr.Textbox(label=i18n("语义token提取进程输出信息")) gr.Markdown(value=i18n("1Aabc-训练集格式化一键三连")) with gr.Row(): - button1abc_open = gr.Button(i18n("开启一键三连"), variant="primary",visible=True) - button1abc_close = gr.Button(i18n("终止一键三连"), variant="primary",visible=False) - info1abc=gr.Textbox(label=i18n("一键三连进程输出信息")) + with gr.Row(): + button1abc_open = gr.Button(i18n("开启一键三连"), variant="primary",visible=True) + button1abc_close = gr.Button(i18n("终止一键三连"), variant="primary",visible=False) + with gr.Row(): + info1abc=gr.Textbox(label=i18n("一键三连进程输出信息")) + pretrained_s2G.change(sync,[pretrained_s2G],[pretrained_s2G_]) open_asr_button.click(open_asr, [asr_inp_dir, asr_opt_dir, asr_model, asr_size, asr_lang, asr_precision], [asr_info,open_asr_button,close_asr_button,path_list,inp_text,inp_wav_dir]) close_asr_button.click(close_asr, [], [asr_info,open_asr_button,close_asr_button]) open_slicer_button.click(open_slice, [slice_inp_path,slice_opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_process], [slicer_info,open_slicer_button,close_slicer_button,asr_inp_dir,denoise_input_dir,inp_wav_dir]) @@ -962,30 +976,46 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app: with gr.TabItem(i18n("1B-微调训练")): gr.Markdown(value=i18n("1Ba-SoVITS训练。用于分享的模型文件输出在SoVITS_weights下。")) with gr.Row(): - batch_size = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True) - total_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("总训练轮数total_epoch,不建议太高"),value=8,interactive=True) - text_low_lr_rate = gr.Slider(minimum=0.2,maximum=0.6,step=0.05,label=i18n("文本模块学习率权重"),value=0.4,interactive=True) - save_every_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("保存频率save_every_epoch"),value=4,interactive=True) - if_save_latest = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True) - if_save_every_weights = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True) - gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True) + with gr.Column(): + with gr.Row(): + batch_size = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True) + total_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("总训练轮数total_epoch,不建议太高"),value=8,interactive=True) + with gr.Row(): + text_low_lr_rate = gr.Slider(minimum=0.2,maximum=0.6,step=0.05,label=i18n("文本模块学习率权重"),value=0.4,interactive=True) + save_every_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("保存频率save_every_epoch"),value=4,interactive=True) + with gr.Column(): + with gr.Column(): + if_save_latest = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True) + if_save_every_weights = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True) + with gr.Row(): + gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True) with gr.Row(): - button1Ba_open = gr.Button(i18n("开启SoVITS训练"), variant="primary",visible=True) - button1Ba_close = gr.Button(i18n("终止SoVITS训练"), variant="primary",visible=False) - info1Ba=gr.Textbox(label=i18n("SoVITS训练进程输出信息")) + with gr.Row(): + button1Ba_open = gr.Button(i18n("开启SoVITS训练"), variant="primary",visible=True) + button1Ba_close = gr.Button(i18n("终止SoVITS训练"), variant="primary",visible=False) + with gr.Row(): + info1Ba=gr.Textbox(label=i18n("SoVITS训练进程输出信息")) gr.Markdown(value=i18n("1Bb-GPT训练。用于分享的模型文件输出在GPT_weights下。")) with gr.Row(): - batch_size1Bb = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True) - total_epoch1Bb = gr.Slider(minimum=2,maximum=50,step=1,label=i18n("总训练轮数total_epoch"),value=15,interactive=True) - if_dpo = gr.Checkbox(label=i18n("是否开启dpo训练选项(实验性)"), value=False, interactive=True, show_label=True) - if_save_latest1Bb = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True) - if_save_every_weights1Bb = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True) - save_every_epoch1Bb = gr.Slider(minimum=1,maximum=50,step=1,label=i18n("保存频率save_every_epoch"),value=5,interactive=True) - gpu_numbers1Bb = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True) + with gr.Column(): + with gr.Row(): + batch_size1Bb = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True) + total_epoch1Bb = gr.Slider(minimum=2,maximum=50,step=1,label=i18n("总训练轮数total_epoch"),value=15,interactive=True) + with gr.Row(): + save_every_epoch1Bb = gr.Slider(minimum=1,maximum=50,step=1,label=i18n("保存频率save_every_epoch"),value=5,interactive=True) + if_dpo = gr.Checkbox(label=i18n("是否开启dpo训练选项(实验性)"), value=False, interactive=True, show_label=True) + with gr.Column(): + with gr.Column(): + if_save_latest1Bb = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True) + if_save_every_weights1Bb = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True) + with gr.Row(): + gpu_numbers1Bb = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True) with gr.Row(): - button1Bb_open = gr.Button(i18n("开启GPT训练"), variant="primary",visible=True) - button1Bb_close = gr.Button(i18n("终止GPT训练"), variant="primary",visible=False) - info1Bb=gr.Textbox(label=i18n("GPT训练进程输出信息")) + with gr.Row(): + button1Bb_open = gr.Button(i18n("开启GPT训练"), variant="primary",visible=True) + button1Bb_close = gr.Button(i18n("终止GPT训练"), variant="primary",visible=False) + with gr.Row(): + info1Bb=gr.Textbox(label=i18n("GPT训练进程输出信息")) button1Ba_open.click(open1Ba, [batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D], [info1Ba,button1Ba_open,button1Ba_close]) button1Ba_close.click(close1Ba, [], [info1Ba,button1Ba_open,button1Ba_close]) button1Bb_open.click(open1Bb, [batch_size1Bb,total_epoch1Bb,exp_name,if_dpo,if_save_latest1Bb,if_save_every_weights1Bb,save_every_epoch1Bb,gpu_numbers1Bb,pretrained_s1], [info1Bb,button1Bb_open,button1Bb_close]) @@ -993,15 +1023,21 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app: with gr.TabItem(i18n("1C-推理")): gr.Markdown(value=i18n("选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模,体验5秒Zero Shot TTS用。")) with gr.Row(): - GPT_dropdown = gr.Dropdown(label=i18n("*GPT模型列表"), choices=sorted(GPT_names,key=custom_sort_key),value=pretrained_gpt_name[0],interactive=True) - SoVITS_dropdown = gr.Dropdown(label=i18n("*SoVITS模型列表"), choices=sorted(SoVITS_names,key=custom_sort_key),value=pretrained_sovits_name[0],interactive=True) - gpu_number_1C=gr.Textbox(label=i18n("GPU卡号,只能填1个整数"), value=gpus, interactive=True) - refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary") + with gr.Row(): + GPT_dropdown = gr.Dropdown(label=i18n("*GPT模型列表"), choices=sorted(GPT_names,key=custom_sort_key),value=pretrained_gpt_name[0],interactive=True) + SoVITS_dropdown = gr.Dropdown(label=i18n("*SoVITS模型列表"), choices=sorted(SoVITS_names,key=custom_sort_key),value=pretrained_sovits_name[0],interactive=True) + with gr.Row(): + gpu_number_1C=gr.Textbox(label=i18n("GPU卡号,只能填1个整数"), value=gpus, interactive=True) + refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary") refresh_button.click(fn=change_choices,inputs=[],outputs=[SoVITS_dropdown,GPT_dropdown]) with gr.Row(): - if_tts = gr.Checkbox(label=i18n("是否开启TTS推理WebUI"), show_label=True) - tts_info = gr.Textbox(label=i18n("TTS推理WebUI进程输出信息")) - if_tts.change(change_tts_inference, [if_tts,bert_pretrained_dir,cnhubert_base_dir,gpu_number_1C,GPT_dropdown,SoVITS_dropdown], [tts_info]) + with gr.Row(): + open_tts = gr.Button(value=i18n("开启TTS推理WebUI"),variant='primary',visible=True) + close_tts = gr.Button(value=i18n("关闭TTS推理WebUI"),variant='primary',visible=False) + with gr.Row(): + tts_info = gr.Textbox(label=i18n("TTS推理WebUI进程输出信息")) + open_tts.click(change_tts_inference, [bert_pretrained_dir,cnhubert_base_dir,gpu_number_1C,GPT_dropdown,SoVITS_dropdown], [tts_info,open_tts,close_tts]) + close_tts.click(change_tts_inference, [bert_pretrained_dir,cnhubert_base_dir,gpu_number_1C,GPT_dropdown,SoVITS_dropdown], [tts_info,open_tts,close_tts]) version_checkbox.change(switch_version,[version_checkbox],[pretrained_s2G,pretrained_s2D,pretrained_s1,GPT_dropdown,SoVITS_dropdown]) with gr.TabItem(i18n("2-GPT-SoVITS-变声")):gr.Markdown(value=i18n("施工中,请静候佳音")) app.queue(concurrency_count=511, max_size=1022).launch(