mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 04:22:46 +08:00
support sovits v3 lora training, 8G GPU memory is enough
support sovits v3 lora training, 8G GPU memory is enough
This commit is contained in:
parent
56509a17c9
commit
e937b625e4
@ -28,10 +28,13 @@ try:
|
|||||||
analytics.version_check = lambda:None
|
analytics.version_check = lambda:None
|
||||||
except:...
|
except:...
|
||||||
version=model_version=os.environ.get("version","v2")
|
version=model_version=os.environ.get("version","v2")
|
||||||
pretrained_sovits_name=["GPT_SoVITS/pretrained_models/s2G488k.pth", "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth","GPT_SoVITS/pretrained_models/s2Gv3.pth"]
|
path_sovits_v3="GPT_SoVITS/pretrained_models/s2Gv3.pth"
|
||||||
|
is_exist_s2gv3=os.path.exists(path_sovits_v3)
|
||||||
|
pretrained_sovits_name=["GPT_SoVITS/pretrained_models/s2G488k.pth", "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",path_sovits_v3]
|
||||||
pretrained_gpt_name=["GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt","GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "GPT_SoVITS/pretrained_models/s1v3.ckpt"]
|
pretrained_gpt_name=["GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt","GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "GPT_SoVITS/pretrained_models/s1v3.ckpt"]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
_ =[[],[]]
|
_ =[[],[]]
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
if os.path.exists(pretrained_gpt_name[i]):_[0].append(pretrained_gpt_name[i])
|
if os.path.exists(pretrained_gpt_name[i]):_[0].append(pretrained_gpt_name[i])
|
||||||
@ -73,6 +76,7 @@ is_share = eval(is_share)
|
|||||||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||||
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
||||||
|
# is_half=False
|
||||||
punctuation = set(['!', '?', '…', ',', '.', '-'," "])
|
punctuation = set(['!', '?', '…', ',', '.', '-'," "])
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||||
@ -83,13 +87,26 @@ from feature_extractor import cnhubert
|
|||||||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||||||
|
|
||||||
from GPT_SoVITS.module.models import SynthesizerTrn,SynthesizerTrnV3
|
from GPT_SoVITS.module.models import SynthesizerTrn,SynthesizerTrnV3
|
||||||
|
import numpy as np
|
||||||
|
import random
|
||||||
|
def set_seed(seed):
|
||||||
|
if seed == -1:
|
||||||
|
seed = random.randint(0, 1000000)
|
||||||
|
seed = int(seed)
|
||||||
|
random.seed(seed)
|
||||||
|
os.environ["PYTHONHASHSEED"] = str(seed)
|
||||||
|
np.random.seed(seed)
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
torch.cuda.manual_seed(seed)
|
||||||
|
# set_seed(42)
|
||||||
|
|
||||||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||||
from text import cleaned_text_to_sequence
|
from text import cleaned_text_to_sequence
|
||||||
from text.cleaner import clean_text
|
from text.cleaner import clean_text
|
||||||
from time import time as ttime
|
from time import time as ttime
|
||||||
from module.mel_processing import spectrogram_torch
|
|
||||||
from tools.my_utils import load_audio
|
from tools.my_utils import load_audio
|
||||||
from tools.i18n.i18n import I18nAuto, scan_language_list
|
from tools.i18n.i18n import I18nAuto, scan_language_list
|
||||||
|
from peft import LoraConfig, PeftModel, get_peft_model
|
||||||
|
|
||||||
language=os.environ.get("language","Auto")
|
language=os.environ.get("language","Auto")
|
||||||
language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
|
language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
|
||||||
@ -192,38 +209,17 @@ def resample(audio_tensor, sr0):
|
|||||||
).to(device)
|
).to(device)
|
||||||
return resample_transform_dict[sr0](audio_tensor)
|
return resample_transform_dict[sr0](audio_tensor)
|
||||||
|
|
||||||
|
###todo:put them to process_ckpt and modify my_save func (save sovits weights), gpt save weights use my_save in process_ckpt
|
||||||
|
#symbol_version-model_version-if_lora_v3
|
||||||
|
from process_ckpt import get_sovits_version_from_path_fast,load_sovits_new
|
||||||
def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
|
def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
|
||||||
global vq_model, hps, version, model_version, dict_language
|
global vq_model, hps, version, model_version, dict_language,if_lora_v3
|
||||||
'''
|
version, model_version, if_lora_v3=get_sovits_version_from_path_fast(sovits_path)
|
||||||
v1:about 82942KB
|
# print(sovits_path,version, model_version, if_lora_v3)
|
||||||
half thr:82978KB
|
if if_lora_v3==True and is_exist_s2gv3==False:
|
||||||
v2:about 83014KB
|
info=i18n("GPT_SoVITS/pretrained_models/s2Gv3.pth v3sovits的底模没下载对,识别为v3sovits的lora没法加载")
|
||||||
half thr:100MB
|
gr.Warning(info)
|
||||||
v1base:103490KB
|
raise FileExistsError(info)
|
||||||
half thr:103520KB
|
|
||||||
v2base:103551KB
|
|
||||||
v3:about 750MB
|
|
||||||
|
|
||||||
~82978K~100M~103420~700M
|
|
||||||
v1-v2-v1base-v2base-v3
|
|
||||||
version:
|
|
||||||
symbols version and timebre_embedding version
|
|
||||||
model_version:
|
|
||||||
sovits is v1/2 (VITS) or v3 (shortcut CFM DiT)
|
|
||||||
'''
|
|
||||||
size=os.path.getsize(sovits_path)
|
|
||||||
if size<82978*1024:
|
|
||||||
model_version=version="v1"
|
|
||||||
elif size<100*1024*1024:
|
|
||||||
model_version=version="v2"
|
|
||||||
elif size<103520*1024:
|
|
||||||
model_version=version="v1"
|
|
||||||
elif size<700*1024*1024:
|
|
||||||
model_version = version = "v2"
|
|
||||||
else:
|
|
||||||
version = "v2"
|
|
||||||
model_version="v3"
|
|
||||||
|
|
||||||
dict_language = dict_language_v1 if version =='v1' else dict_language_v2
|
dict_language = dict_language_v1 if version =='v1' else dict_language_v2
|
||||||
if prompt_language is not None and text_language is not None:
|
if prompt_language is not None and text_language is not None:
|
||||||
if prompt_language in list(dict_language.keys()):
|
if prompt_language in list(dict_language.keys()):
|
||||||
@ -244,11 +240,13 @@ def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
|
|||||||
visible_inp_refs=True
|
visible_inp_refs=True
|
||||||
yield {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update,{"__type__": "update", "visible": visible_sample_steps},{"__type__": "update", "visible": visible_inp_refs},{"__type__": "update", "value": False,"interactive":True if model_version!="v3"else False}
|
yield {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update,{"__type__": "update", "visible": visible_sample_steps},{"__type__": "update", "visible": visible_inp_refs},{"__type__": "update", "value": False,"interactive":True if model_version!="v3"else False}
|
||||||
|
|
||||||
dict_s2 = torch.load(sovits_path, map_location="cpu", weights_only=False)
|
dict_s2 = load_sovits_new(sovits_path)
|
||||||
hps = dict_s2["config"]
|
hps = dict_s2["config"]
|
||||||
hps = DictToAttrRecursive(hps)
|
hps = DictToAttrRecursive(hps)
|
||||||
hps.model.semantic_frame_rate = "25hz"
|
hps.model.semantic_frame_rate = "25hz"
|
||||||
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
|
if 'enc_p.text_embedding.weight'not in dict_s2['weight']:
|
||||||
|
hps.model.version = "v2"#v3model,v2sybomls
|
||||||
|
elif dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
|
||||||
hps.model.version = "v1"
|
hps.model.version = "v1"
|
||||||
else:
|
else:
|
||||||
hps.model.version = "v2"
|
hps.model.version = "v2"
|
||||||
@ -278,7 +276,23 @@ def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
|
|||||||
else:
|
else:
|
||||||
vq_model = vq_model.to(device)
|
vq_model = vq_model.to(device)
|
||||||
vq_model.eval()
|
vq_model.eval()
|
||||||
print("loading sovits_%s"%model_version,vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
if if_lora_v3==False:
|
||||||
|
print("loading sovits_%s"%model_version,vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
||||||
|
else:
|
||||||
|
print("loading sovits_v3pretrained_G", vq_model.load_state_dict(load_sovits_new(path_sovits_v3)["weight"], strict=False))
|
||||||
|
lora_rank=dict_s2["lora_rank"]
|
||||||
|
lora_config = LoraConfig(
|
||||||
|
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
||||||
|
r=lora_rank,
|
||||||
|
lora_alpha=lora_rank,
|
||||||
|
init_lora_weights=True,
|
||||||
|
)
|
||||||
|
vq_model.cfm = get_peft_model(vq_model.cfm, lora_config)
|
||||||
|
print("loading sovits_v3_lora%s"%(lora_rank),vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
||||||
|
vq_model.cfm = vq_model.cfm.merge_and_unload()
|
||||||
|
# torch.save(vq_model.state_dict(),"merge_win.pth")
|
||||||
|
vq_model.eval()
|
||||||
|
|
||||||
with open("./weight.json")as f:
|
with open("./weight.json")as f:
|
||||||
data=f.read()
|
data=f.read()
|
||||||
data=json.loads(data)
|
data=json.loads(data)
|
||||||
@ -333,7 +347,8 @@ else:init_bigvgan()
|
|||||||
|
|
||||||
|
|
||||||
def get_spepc(hps, filename):
|
def get_spepc(hps, filename):
|
||||||
audio = load_audio(filename, int(hps.data.sampling_rate))
|
# audio = load_audio(filename, int(hps.data.sampling_rate))
|
||||||
|
audio, sampling_rate = librosa.load(filename, sr=int(hps.data.sampling_rate))
|
||||||
audio = torch.FloatTensor(audio)
|
audio = torch.FloatTensor(audio)
|
||||||
maxx=audio.abs().max()
|
maxx=audio.abs().max()
|
||||||
if(maxx>1):audio/=min(2,maxx)
|
if(maxx>1):audio/=min(2,maxx)
|
||||||
@ -443,11 +458,7 @@ def get_phones_and_bert(text,language,version,final=False):
|
|||||||
|
|
||||||
return phones,bert.to(dtype),norm_text
|
return phones,bert.to(dtype),norm_text
|
||||||
|
|
||||||
from module.mel_processing import spectrogram_torch,spec_to_mel_torch
|
from module.mel_processing import spectrogram_torch,mel_spectrogram_torch
|
||||||
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
|
||||||
spec=spectrogram_torch(y,n_fft,sampling_rate,hop_size,win_size,center)
|
|
||||||
mel=spec_to_mel_torch(spec,n_fft,num_mels,sampling_rate,fmin,fmax)
|
|
||||||
return mel
|
|
||||||
mel_fn_args = {
|
mel_fn_args = {
|
||||||
"n_fft": 1024,
|
"n_fft": 1024,
|
||||||
"win_size": 1024,
|
"win_size": 1024,
|
||||||
@ -465,7 +476,7 @@ def norm_spec(x):
|
|||||||
return (x - spec_min) / (spec_max - spec_min) * 2 - 1
|
return (x - spec_min) / (spec_max - spec_min) * 2 - 1
|
||||||
def denorm_spec(x):
|
def denorm_spec(x):
|
||||||
return (x + 1) / 2 * (spec_max - spec_min) + spec_min
|
return (x + 1) / 2 * (spec_max - spec_min) + spec_min
|
||||||
mel_fn=lambda x: mel_spectrogram(x, **mel_fn_args)
|
mel_fn=lambda x: mel_spectrogram_torch(x, **mel_fn_args)
|
||||||
|
|
||||||
|
|
||||||
def merge_short_text_in_array(texts, threshold):
|
def merge_short_text_in_array(texts, threshold):
|
||||||
@ -617,6 +628,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
|||||||
refer = get_spepc(hps, ref_wav_path).to(device).to(dtype)#######这里要重采样切到32k,因为src是24k的,没有单独的32k的src,所以不能改成2个路径
|
refer = get_spepc(hps, ref_wav_path).to(device).to(dtype)#######这里要重采样切到32k,因为src是24k的,没有单独的32k的src,所以不能改成2个路径
|
||||||
phoneme_ids0=torch.LongTensor(phones1).to(device).unsqueeze(0)
|
phoneme_ids0=torch.LongTensor(phones1).to(device).unsqueeze(0)
|
||||||
phoneme_ids1=torch.LongTensor(phones2).to(device).unsqueeze(0)
|
phoneme_ids1=torch.LongTensor(phones2).to(device).unsqueeze(0)
|
||||||
|
# print(11111111, phoneme_ids0, phoneme_ids1)
|
||||||
fea_ref,ge = vq_model.decode_encp(prompt.unsqueeze(0), phoneme_ids0, refer)
|
fea_ref,ge = vq_model.decode_encp(prompt.unsqueeze(0), phoneme_ids0, refer)
|
||||||
ref_audio, sr = torchaudio.load(ref_wav_path)
|
ref_audio, sr = torchaudio.load(ref_wav_path)
|
||||||
ref_audio=ref_audio.to(device).float()
|
ref_audio=ref_audio.to(device).float()
|
||||||
@ -624,7 +636,8 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
|||||||
ref_audio = ref_audio.mean(0).unsqueeze(0)
|
ref_audio = ref_audio.mean(0).unsqueeze(0)
|
||||||
if sr!=24000:
|
if sr!=24000:
|
||||||
ref_audio=resample(ref_audio,sr)
|
ref_audio=resample(ref_audio,sr)
|
||||||
mel2 = mel_fn(ref_audio.to(dtype))
|
# print("ref_audio",ref_audio.abs().mean())
|
||||||
|
mel2 = mel_fn(ref_audio)
|
||||||
mel2 = norm_spec(mel2)
|
mel2 = norm_spec(mel2)
|
||||||
T_min = min(mel2.shape[2], fea_ref.shape[2])
|
T_min = min(mel2.shape[2], fea_ref.shape[2])
|
||||||
mel2 = mel2[:, :, :T_min]
|
mel2 = mel2[:, :, :T_min]
|
||||||
@ -634,7 +647,12 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
|||||||
fea_ref = fea_ref[:, :, -468:]
|
fea_ref = fea_ref[:, :, -468:]
|
||||||
T_min = 468
|
T_min = 468
|
||||||
chunk_len = 934 - T_min
|
chunk_len = 934 - T_min
|
||||||
|
# print("fea_ref",fea_ref,fea_ref.shape)
|
||||||
|
# print("mel2",mel2)
|
||||||
|
mel2=mel2.to(dtype)
|
||||||
fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge)
|
fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge)
|
||||||
|
# print("fea_todo",fea_todo)
|
||||||
|
# print("ge",ge.abs().mean())
|
||||||
cfm_resss = []
|
cfm_resss = []
|
||||||
idx = 0
|
idx = 0
|
||||||
while (1):
|
while (1):
|
||||||
@ -642,9 +660,12 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
|||||||
if (fea_todo_chunk.shape[-1] == 0): break
|
if (fea_todo_chunk.shape[-1] == 0): break
|
||||||
idx += chunk_len
|
idx += chunk_len
|
||||||
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1)
|
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1)
|
||||||
|
# set_seed(123)
|
||||||
cfm_res = vq_model.cfm.inference(fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0)
|
cfm_res = vq_model.cfm.inference(fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0)
|
||||||
cfm_res = cfm_res[:, :, mel2.shape[2]:]
|
cfm_res = cfm_res[:, :, mel2.shape[2]:]
|
||||||
mel2 = cfm_res[:, :, -T_min:]
|
mel2 = cfm_res[:, :, -T_min:]
|
||||||
|
# print("fea", fea)
|
||||||
|
# print("mel2in", mel2)
|
||||||
fea_ref = fea_todo_chunk[:, :, -T_min:]
|
fea_ref = fea_todo_chunk[:, :, -T_min:]
|
||||||
cfm_resss.append(cfm_res)
|
cfm_resss.append(cfm_res)
|
||||||
cmf_res = torch.cat(cfm_resss, 2)
|
cmf_res = torch.cat(cfm_resss, 2)
|
||||||
@ -653,8 +674,8 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
|||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
wav_gen = model(cmf_res)
|
wav_gen = model(cmf_res)
|
||||||
audio=wav_gen[0][0].cpu().detach().numpy()
|
audio=wav_gen[0][0].cpu().detach().numpy()
|
||||||
max_audio=np.abs(audio).max()#简单防止16bit爆音
|
max_audio=np.abs(audio).max()#简单防止16bit爆音
|
||||||
if max_audio>1:audio/=max_audio
|
if max_audio>1:audio/=max_audio
|
||||||
audio_opt.append(audio)
|
audio_opt.append(audio)
|
||||||
audio_opt.append(zero_wav)
|
audio_opt.append(zero_wav)
|
||||||
t4 = ttime()
|
t4 = ttime()
|
||||||
|
@ -14,7 +14,24 @@ def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
|
|||||||
torch.save(fea,tmp_path)
|
torch.save(fea,tmp_path)
|
||||||
shutil.move(tmp_path,"%s/%s"%(dir,name))
|
shutil.move(tmp_path,"%s/%s"%(dir,name))
|
||||||
|
|
||||||
def savee(ckpt, name, epoch, steps, hps):
|
'''
|
||||||
|
00:v1
|
||||||
|
01:v2
|
||||||
|
02:v3
|
||||||
|
03:v3lora
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
|
from io import BytesIO
|
||||||
|
def my_save2(fea,path):
|
||||||
|
bio = BytesIO()
|
||||||
|
torch.save(fea, bio)
|
||||||
|
bio.seek(0)
|
||||||
|
data = bio.getvalue()
|
||||||
|
data = b'03' + data[2:]###temp for v3lora only, todo
|
||||||
|
with open(path, "wb") as f: f.write(data)
|
||||||
|
|
||||||
|
def savee(ckpt, name, epoch, steps, hps,lora_rank=None):
|
||||||
try:
|
try:
|
||||||
opt = OrderedDict()
|
opt = OrderedDict()
|
||||||
opt["weight"] = {}
|
opt["weight"] = {}
|
||||||
@ -24,8 +41,66 @@ def savee(ckpt, name, epoch, steps, hps):
|
|||||||
opt["weight"][key] = ckpt[key].half()
|
opt["weight"][key] = ckpt[key].half()
|
||||||
opt["config"] = hps
|
opt["config"] = hps
|
||||||
opt["info"] = "%sepoch_%siteration" % (epoch, steps)
|
opt["info"] = "%sepoch_%siteration" % (epoch, steps)
|
||||||
# torch.save(opt, "%s/%s.pth" % (hps.save_weight_dir, name))
|
if lora_rank:
|
||||||
my_save(opt, "%s/%s.pth" % (hps.save_weight_dir, name))
|
opt["lora_rank"]=lora_rank
|
||||||
|
my_save2(opt, "%s/%s.pth" % (hps.save_weight_dir, name))
|
||||||
|
else:
|
||||||
|
my_save(opt, "%s/%s.pth" % (hps.save_weight_dir, name))
|
||||||
return "Success."
|
return "Success."
|
||||||
except:
|
except:
|
||||||
return traceback.format_exc()
|
return traceback.format_exc()
|
||||||
|
|
||||||
|
head2version={
|
||||||
|
b'00':["v1","v1",False],
|
||||||
|
b'01':["v2","v2",False],
|
||||||
|
b'02':["v2","v3",False],
|
||||||
|
b'03':["v2","v3",True],
|
||||||
|
}
|
||||||
|
hash_pretrained_dict={
|
||||||
|
"dc3c97e17592963677a4a1681f30c653":["v2","v2",False],#s2G488k.pth#sovits_v1_pretrained
|
||||||
|
"43797be674a37c1c83ee81081941ed0f":["v2","v3",False],#s2Gv3.pth#sovits_v3_pretrained
|
||||||
|
"6642b37f3dbb1f76882b69937c95a5f3":["v2","v2",False],#s2G2333K.pth#sovits_v2_pretrained
|
||||||
|
}
|
||||||
|
import hashlib
|
||||||
|
def get_hash_from_file(sovits_path):
|
||||||
|
with open(sovits_path,"rb")as f:data=f.read(8192)
|
||||||
|
hash_md5 = hashlib.md5()
|
||||||
|
hash_md5.update(data)
|
||||||
|
return hash_md5.hexdigest()
|
||||||
|
def get_sovits_version_from_path_fast(sovits_path):
|
||||||
|
###1-if it is pretrained sovits models, by hash
|
||||||
|
hash=get_hash_from_file(sovits_path)
|
||||||
|
if hash in hash_pretrained_dict:
|
||||||
|
return hash_pretrained_dict[hash]
|
||||||
|
###2-new weights or old weights, by head
|
||||||
|
with open(sovits_path,"rb")as f:version=f.read(2)
|
||||||
|
if version!=b"PK":
|
||||||
|
return head2version[version]
|
||||||
|
###3-old weights, by file size
|
||||||
|
if_lora_v3=False
|
||||||
|
size=os.path.getsize(sovits_path)
|
||||||
|
'''
|
||||||
|
v1weights:about 82942KB
|
||||||
|
half thr:82978KB
|
||||||
|
v2weights:about 83014KB
|
||||||
|
v3weights:about 750MB
|
||||||
|
'''
|
||||||
|
if size < 82978 * 1024:
|
||||||
|
model_version = version = "v1"
|
||||||
|
elif size < 700 * 1024 * 1024:
|
||||||
|
model_version = version = "v2"
|
||||||
|
else:
|
||||||
|
version = "v2"
|
||||||
|
model_version = "v3"
|
||||||
|
return version,model_version,if_lora_v3
|
||||||
|
|
||||||
|
def load_sovits_new(sovits_path):
|
||||||
|
f=open(sovits_path,"rb")
|
||||||
|
meta=f.read(2)
|
||||||
|
if meta!="PK":
|
||||||
|
data = b'PK' + f.read()
|
||||||
|
bio = BytesIO()
|
||||||
|
bio.write(data)
|
||||||
|
bio.seek(0)
|
||||||
|
return torch.load(bio, map_location="cpu", weights_only=False)
|
||||||
|
return torch.load(sovits_path,map_location="cpu", weights_only=False)
|
@ -26,12 +26,7 @@ from AR.utils import get_newest_ckpt
|
|||||||
from collections import OrderedDict
|
from collections import OrderedDict
|
||||||
from time import time as ttime
|
from time import time as ttime
|
||||||
import shutil
|
import shutil
|
||||||
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
|
from process_ckpt import my_save
|
||||||
dir=os.path.dirname(path)
|
|
||||||
name=os.path.basename(path)
|
|
||||||
tmp_path="%s.pth"%(ttime())
|
|
||||||
torch.save(fea,tmp_path)
|
|
||||||
shutil.move(tmp_path,"%s/%s"%(dir,name))
|
|
||||||
|
|
||||||
|
|
||||||
class my_model_ckpt(ModelCheckpoint):
|
class my_model_ckpt(ModelCheckpoint):
|
||||||
|
342
GPT_SoVITS/s2_train_v3_lora.py
Normal file
342
GPT_SoVITS/s2_train_v3_lora.py
Normal file
@ -0,0 +1,342 @@
|
|||||||
|
import warnings
|
||||||
|
warnings.filterwarnings("ignore")
|
||||||
|
import utils, os
|
||||||
|
hps = utils.get_hparams(stage=2)
|
||||||
|
os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",")
|
||||||
|
import torch
|
||||||
|
from torch.nn import functional as F
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import torch.distributed as dist, traceback
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.cuda.amp import autocast, GradScaler
|
||||||
|
from tqdm import tqdm
|
||||||
|
import logging, traceback
|
||||||
|
|
||||||
|
logging.getLogger("matplotlib").setLevel(logging.INFO)
|
||||||
|
logging.getLogger("h5py").setLevel(logging.INFO)
|
||||||
|
logging.getLogger("numba").setLevel(logging.INFO)
|
||||||
|
from random import randint
|
||||||
|
from module import commons
|
||||||
|
from peft import LoraConfig, PeftModel, get_peft_model
|
||||||
|
from module.data_utils import (
|
||||||
|
TextAudioSpeakerLoaderV3 as TextAudioSpeakerLoader,
|
||||||
|
TextAudioSpeakerCollateV3 as TextAudioSpeakerCollate,
|
||||||
|
DistributedBucketSampler,
|
||||||
|
)
|
||||||
|
from module.models import (
|
||||||
|
SynthesizerTrnV3 as SynthesizerTrn,
|
||||||
|
MultiPeriodDiscriminator,
|
||||||
|
)
|
||||||
|
from module.losses import generator_loss, discriminator_loss, feature_loss, kl_loss
|
||||||
|
from module.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
||||||
|
from process_ckpt import savee
|
||||||
|
from collections import OrderedDict as od
|
||||||
|
torch.backends.cudnn.benchmark = False
|
||||||
|
torch.backends.cudnn.deterministic = False
|
||||||
|
###反正A100fp32更快,那试试tf32吧
|
||||||
|
torch.backends.cuda.matmul.allow_tf32 = True
|
||||||
|
torch.backends.cudnn.allow_tf32 = True
|
||||||
|
torch.set_float32_matmul_precision("medium") # 最低精度但最快(也就快一丁点),对于结果造成不了影响
|
||||||
|
# from config import pretrained_s2G,pretrained_s2D
|
||||||
|
global_step = 0
|
||||||
|
|
||||||
|
device = "cpu" # cuda以外的设备,等mps优化后加入
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
n_gpus = torch.cuda.device_count()
|
||||||
|
else:
|
||||||
|
n_gpus = 1
|
||||||
|
os.environ["MASTER_ADDR"] = "localhost"
|
||||||
|
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
|
||||||
|
|
||||||
|
mp.spawn(
|
||||||
|
run,
|
||||||
|
nprocs=n_gpus,
|
||||||
|
args=(
|
||||||
|
n_gpus,
|
||||||
|
hps,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, n_gpus, hps):
|
||||||
|
global global_step,no_grad_names,save_root,lora_rank
|
||||||
|
if rank == 0:
|
||||||
|
logger = utils.get_logger(hps.data.exp_dir)
|
||||||
|
logger.info(hps)
|
||||||
|
# utils.check_git_hash(hps.s2_ckpt_dir)
|
||||||
|
writer = SummaryWriter(log_dir=hps.s2_ckpt_dir)
|
||||||
|
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval"))
|
||||||
|
|
||||||
|
dist.init_process_group(
|
||||||
|
backend = "gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl",
|
||||||
|
init_method="env://?use_libuv=False",
|
||||||
|
world_size=n_gpus,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
torch.manual_seed(hps.train.seed)
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.set_device(rank)
|
||||||
|
|
||||||
|
train_dataset = TextAudioSpeakerLoader(hps.data) ########
|
||||||
|
train_sampler = DistributedBucketSampler(
|
||||||
|
train_dataset,
|
||||||
|
hps.train.batch_size,
|
||||||
|
[
|
||||||
|
32,
|
||||||
|
300,
|
||||||
|
400,
|
||||||
|
500,
|
||||||
|
600,
|
||||||
|
700,
|
||||||
|
800,
|
||||||
|
900,
|
||||||
|
1000,
|
||||||
|
# 1100,
|
||||||
|
# 1200,
|
||||||
|
# 1300,
|
||||||
|
# 1400,
|
||||||
|
# 1500,
|
||||||
|
# 1600,
|
||||||
|
# 1700,
|
||||||
|
# 1800,
|
||||||
|
# 1900,
|
||||||
|
],
|
||||||
|
num_replicas=n_gpus,
|
||||||
|
rank=rank,
|
||||||
|
shuffle=True,
|
||||||
|
)
|
||||||
|
collate_fn = TextAudioSpeakerCollate()
|
||||||
|
train_loader = DataLoader(
|
||||||
|
train_dataset,
|
||||||
|
num_workers=6,
|
||||||
|
shuffle=False,
|
||||||
|
pin_memory=True,
|
||||||
|
collate_fn=collate_fn,
|
||||||
|
batch_sampler=train_sampler,
|
||||||
|
persistent_workers=True,
|
||||||
|
prefetch_factor=4,
|
||||||
|
)
|
||||||
|
save_root="%s/logs_s2_%s_lora_%s" % (hps.data.exp_dir,hps.model.version,hps.train.lora_rank)
|
||||||
|
os.makedirs(save_root,exist_ok=True)
|
||||||
|
lora_rank=int(hps.train.lora_rank)
|
||||||
|
lora_config = LoraConfig(
|
||||||
|
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
||||||
|
r=lora_rank,
|
||||||
|
lora_alpha=lora_rank,
|
||||||
|
init_lora_weights=True,
|
||||||
|
)
|
||||||
|
def get_model(hps):return SynthesizerTrn(
|
||||||
|
hps.data.filter_length // 2 + 1,
|
||||||
|
hps.train.segment_size // hps.data.hop_length,
|
||||||
|
n_speakers=hps.data.n_speakers,
|
||||||
|
**hps.model,
|
||||||
|
)
|
||||||
|
def get_optim(net_g):
|
||||||
|
return torch.optim.AdamW(
|
||||||
|
filter(lambda p: p.requires_grad, net_g.parameters()), ###默认所有层lr一致
|
||||||
|
hps.train.learning_rate,
|
||||||
|
betas=hps.train.betas,
|
||||||
|
eps=hps.train.eps,
|
||||||
|
)
|
||||||
|
def model2cuda(net_g,rank):
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
net_g = DDP(net_g.cuda(rank), device_ids=[rank], find_unused_parameters=True)
|
||||||
|
else:
|
||||||
|
net_g = net_g.to(device)
|
||||||
|
return net_g
|
||||||
|
try:# 如果能加载自动resume
|
||||||
|
net_g = get_model(hps)
|
||||||
|
net_g.cfm = get_peft_model(net_g.cfm, lora_config)
|
||||||
|
net_g=model2cuda(net_g,rank)
|
||||||
|
optim_g=get_optim(net_g)
|
||||||
|
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
|
||||||
|
_, _, _, epoch_str = utils.load_checkpoint(
|
||||||
|
utils.latest_checkpoint_path(save_root, "G_*.pth"),
|
||||||
|
net_g,
|
||||||
|
optim_g,
|
||||||
|
)
|
||||||
|
global_step = (epoch_str - 1) * len(train_loader)
|
||||||
|
except: # 如果首次不能加载,加载pretrain
|
||||||
|
# traceback.print_exc()
|
||||||
|
epoch_str = 1
|
||||||
|
global_step = 0
|
||||||
|
net_g = get_model(hps)
|
||||||
|
if hps.train.pretrained_s2G != ""and hps.train.pretrained_s2G != None and os.path.exists(hps.train.pretrained_s2G):
|
||||||
|
if rank == 0:
|
||||||
|
logger.info("loaded pretrained %s" % hps.train.pretrained_s2G)
|
||||||
|
print(
|
||||||
|
net_g.load_state_dict(
|
||||||
|
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
|
||||||
|
strict=False,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
net_g.cfm = get_peft_model(net_g.cfm, lora_config)
|
||||||
|
net_g=model2cuda(net_g,rank)
|
||||||
|
optim_g = get_optim(net_g)
|
||||||
|
|
||||||
|
no_grad_names=set()
|
||||||
|
for name, param in net_g.named_parameters():
|
||||||
|
if not param.requires_grad:
|
||||||
|
no_grad_names.add(name.replace("module.",""))
|
||||||
|
# print(name, "not requires_grad")
|
||||||
|
# print(no_grad_names)
|
||||||
|
# os._exit(233333)
|
||||||
|
|
||||||
|
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
||||||
|
optim_g, gamma=hps.train.lr_decay, last_epoch=-1
|
||||||
|
)
|
||||||
|
for _ in range(epoch_str):
|
||||||
|
scheduler_g.step()
|
||||||
|
|
||||||
|
scaler = GradScaler(enabled=hps.train.fp16_run)
|
||||||
|
|
||||||
|
net_d=optim_d=scheduler_d=None
|
||||||
|
for epoch in range(epoch_str, hps.train.epochs + 1):
|
||||||
|
if rank == 0:
|
||||||
|
train_and_evaluate(
|
||||||
|
rank,
|
||||||
|
epoch,
|
||||||
|
hps,
|
||||||
|
[net_g, net_d],
|
||||||
|
[optim_g, optim_d],
|
||||||
|
[scheduler_g, scheduler_d],
|
||||||
|
scaler,
|
||||||
|
# [train_loader, eval_loader], logger, [writer, writer_eval])
|
||||||
|
[train_loader, None],
|
||||||
|
logger,
|
||||||
|
[writer, writer_eval],
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
train_and_evaluate(
|
||||||
|
rank,
|
||||||
|
epoch,
|
||||||
|
hps,
|
||||||
|
[net_g, net_d],
|
||||||
|
[optim_g, optim_d],
|
||||||
|
[scheduler_g, scheduler_d],
|
||||||
|
scaler,
|
||||||
|
[train_loader, None],
|
||||||
|
None,
|
||||||
|
None,
|
||||||
|
)
|
||||||
|
scheduler_g.step()
|
||||||
|
|
||||||
|
def train_and_evaluate(
|
||||||
|
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
|
||||||
|
):
|
||||||
|
net_g, net_d = nets
|
||||||
|
optim_g, optim_d = optims
|
||||||
|
# scheduler_g, scheduler_d = schedulers
|
||||||
|
train_loader, eval_loader = loaders
|
||||||
|
if writers is not None:
|
||||||
|
writer, writer_eval = writers
|
||||||
|
|
||||||
|
train_loader.batch_sampler.set_epoch(epoch)
|
||||||
|
global global_step
|
||||||
|
|
||||||
|
net_g.train()
|
||||||
|
for batch_idx, (ssl, spec, mel, ssl_lengths, spec_lengths, text, text_lengths, mel_lengths) in enumerate(tqdm(train_loader)):
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
||||||
|
rank, non_blocking=True
|
||||||
|
)
|
||||||
|
mel, mel_lengths = mel.cuda(rank, non_blocking=True), mel_lengths.cuda(
|
||||||
|
rank, non_blocking=True
|
||||||
|
)
|
||||||
|
ssl = ssl.cuda(rank, non_blocking=True)
|
||||||
|
ssl.requires_grad = False
|
||||||
|
text, text_lengths = text.cuda(rank, non_blocking=True), text_lengths.cuda(
|
||||||
|
rank, non_blocking=True
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
spec, spec_lengths = spec.to(device), spec_lengths.to(device)
|
||||||
|
mel, mel_lengths = mel.to(device), mel_lengths.to(device)
|
||||||
|
ssl = ssl.to(device)
|
||||||
|
ssl.requires_grad = False
|
||||||
|
text, text_lengths = text.to(device), text_lengths.to(device)
|
||||||
|
|
||||||
|
with autocast(enabled=hps.train.fp16_run):
|
||||||
|
cfm_loss = net_g(ssl, spec, mel,ssl_lengths,spec_lengths, text, text_lengths,mel_lengths, use_grad_ckpt=hps.train.grad_ckpt)
|
||||||
|
loss_gen_all=cfm_loss
|
||||||
|
optim_g.zero_grad()
|
||||||
|
scaler.scale(loss_gen_all).backward()
|
||||||
|
scaler.unscale_(optim_g)
|
||||||
|
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
||||||
|
scaler.step(optim_g)
|
||||||
|
scaler.update()
|
||||||
|
|
||||||
|
if rank == 0:
|
||||||
|
if global_step % hps.train.log_interval == 0:
|
||||||
|
lr = optim_g.param_groups[0]['lr']
|
||||||
|
losses = [cfm_loss]
|
||||||
|
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
||||||
|
epoch,
|
||||||
|
100. * batch_idx / len(train_loader)))
|
||||||
|
logger.info([x.item() for x in losses] + [global_step, lr])
|
||||||
|
|
||||||
|
scalar_dict = {"loss/g/total": loss_gen_all, "learning_rate": lr, "grad_norm_g": grad_norm_g}
|
||||||
|
utils.summarize(
|
||||||
|
writer=writer,
|
||||||
|
global_step=global_step,
|
||||||
|
scalars=scalar_dict)
|
||||||
|
|
||||||
|
global_step += 1
|
||||||
|
if epoch % hps.train.save_every_epoch == 0 and rank == 0:
|
||||||
|
if hps.train.if_save_latest == 0:
|
||||||
|
utils.save_checkpoint(
|
||||||
|
net_g,
|
||||||
|
optim_g,
|
||||||
|
hps.train.learning_rate,
|
||||||
|
epoch,
|
||||||
|
os.path.join(
|
||||||
|
save_root, "G_{}.pth".format(global_step)
|
||||||
|
),
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
utils.save_checkpoint(
|
||||||
|
net_g,
|
||||||
|
optim_g,
|
||||||
|
hps.train.learning_rate,
|
||||||
|
epoch,
|
||||||
|
os.path.join(
|
||||||
|
save_root, "G_{}.pth".format(233333333333)
|
||||||
|
),
|
||||||
|
)
|
||||||
|
if rank == 0 and hps.train.if_save_every_weights == True:
|
||||||
|
if hasattr(net_g, "module"):
|
||||||
|
ckpt = net_g.module.state_dict()
|
||||||
|
else:
|
||||||
|
ckpt = net_g.state_dict()
|
||||||
|
sim_ckpt=od()
|
||||||
|
for key in ckpt:
|
||||||
|
# if "cfm"not in key:
|
||||||
|
# print(key)
|
||||||
|
if key not in no_grad_names:
|
||||||
|
sim_ckpt[key]=ckpt[key].half().cpu()
|
||||||
|
logger.info(
|
||||||
|
"saving ckpt %s_e%s:%s"
|
||||||
|
% (
|
||||||
|
hps.name,
|
||||||
|
epoch,
|
||||||
|
savee(
|
||||||
|
sim_ckpt,
|
||||||
|
hps.name + "_e%s_s%s_l%s" % (epoch, global_step,lora_rank),
|
||||||
|
epoch,
|
||||||
|
global_step,
|
||||||
|
hps,lora_rank=lora_rank
|
||||||
|
),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
if rank == 0:
|
||||||
|
logger.info("====> Epoch: {}".format(epoch))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
x
Reference in New Issue
Block a user