support sovits v3 lora training, 8G GPU memory is enough

support sovits v3 lora training, 8G GPU memory is enough
This commit is contained in:
RVC-Boss 2025-02-23 00:38:47 +08:00 committed by GitHub
parent e937b625e4
commit e6a32e15b0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 387 additions and 15 deletions

View File

@ -456,6 +456,231 @@ class TextAudioSpeakerCollateV3():
# return ssl_padded, spec_padded,mel_padded, ssl_lengths, spec_lengths, text_padded, text_lengths, wav_padded, wav_lengths,mel_lengths
return ssl_padded, spec_padded,mel_padded, ssl_lengths, spec_lengths, text_padded, text_lengths,mel_lengths
class TextAudioSpeakerLoaderV3b(torch.utils.data.Dataset):
"""
1) loads audio, speaker_id, text pairs
2) normalizes text and converts them to sequences of integers
3) computes spectrograms from audio files.
"""
def __init__(self, hparams, val=False):
exp_dir = hparams.exp_dir
self.path2 = "%s/2-name2text.txt" % exp_dir
self.path4 = "%s/4-cnhubert" % exp_dir
self.path5 = "%s/5-wav32k" % exp_dir
assert os.path.exists(self.path2)
assert os.path.exists(self.path4)
assert os.path.exists(self.path5)
names4 = set([name[:-3] for name in list(os.listdir(self.path4))]) # 去除.pt后缀
names5 = set(os.listdir(self.path5))
self.phoneme_data = {}
with open(self.path2, "r", encoding="utf8") as f:
lines = f.read().strip("\n").split("\n")
for line in lines:
tmp = line.split("\t")
if (len(tmp) != 4):
continue
self.phoneme_data[tmp[0]] = [tmp[1]]
self.audiopaths_sid_text = list(set(self.phoneme_data) & names4 & names5)
tmp = self.audiopaths_sid_text
leng = len(tmp)
min_num = 100
if (leng < min_num):
self.audiopaths_sid_text = []
for _ in range(max(2, int(min_num / leng))):
self.audiopaths_sid_text += tmp
self.max_wav_value = hparams.max_wav_value
self.sampling_rate = hparams.sampling_rate
self.filter_length = hparams.filter_length
self.hop_length = hparams.hop_length
self.win_length = hparams.win_length
self.sampling_rate = hparams.sampling_rate
self.val = val
random.seed(1234)
random.shuffle(self.audiopaths_sid_text)
print("phoneme_data_len:", len(self.phoneme_data.keys()))
print("wav_data_len:", len(self.audiopaths_sid_text))
audiopaths_sid_text_new = []
lengths = []
skipped_phone = 0
skipped_dur = 0
for audiopath in tqdm(self.audiopaths_sid_text):
try:
phoneme = self.phoneme_data[audiopath][0]
phoneme = phoneme.split(' ')
phoneme_ids = cleaned_text_to_sequence(phoneme, version)
except Exception:
print(f"{audiopath} not in self.phoneme_data !")
skipped_phone += 1
continue
size = os.path.getsize("%s/%s" % (self.path5, audiopath))
duration = size / self.sampling_rate / 2
if duration == 0:
print(f"Zero duration for {audiopath}, skipping...")
skipped_dur += 1
continue
if 54 > duration > 0.6 or self.val:
audiopaths_sid_text_new.append([audiopath, phoneme_ids])
lengths.append(size // (2 * self.hop_length))
else:
skipped_dur += 1
continue
print("skipped_phone: ", skipped_phone, ", skipped_dur: ", skipped_dur)
print("total left: ", len(audiopaths_sid_text_new))
assert len(audiopaths_sid_text_new) > 1 # 至少能凑够batch size这里todo
self.audiopaths_sid_text = audiopaths_sid_text_new
self.lengths = lengths
self.spec_min=-12
self.spec_max=2
self.filter_length_mel=self.win_length_mel=1024
self.hop_length_mel=256
self.n_mel_channels=100
self.sampling_rate_mel=24000
self.mel_fmin=0
self.mel_fmax=None
def norm_spec(self, x):
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
def get_audio_text_speaker_pair(self, audiopath_sid_text):
audiopath, phoneme_ids = audiopath_sid_text
text = torch.FloatTensor(phoneme_ids)
try:
spec, mel,wav = self.get_audio("%s/%s" % (self.path5, audiopath))
with torch.no_grad():
ssl = torch.load("%s/%s.pt" % (self.path4, audiopath), map_location="cpu")
if (ssl.shape[-1] != spec.shape[-1]):
typee = ssl.dtype
ssl = F.pad(ssl.float(), (0, 1), mode="replicate").to(typee)
ssl.requires_grad = False
except:
traceback.print_exc()
mel = torch.zeros(100, 180)
wav = torch.zeros(1, 96 * self.hop_length)
spec = torch.zeros(1025, 96)
ssl = torch.zeros(1, 768, 96)
text = text[-1:]
print("load audio or ssl error!!!!!!", audiopath)
return (ssl, spec, wav, mel, text)
def get_audio(self, filename):
audio_array = load_audio(filename,self.sampling_rate)#load_audio的方法是已经归一化到-1~1之间的不用再/32768
audio=torch.FloatTensor(audio_array)#/32768
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
audio_array24 = load_audio(filename,24000)#load_audio的方法是已经归一化到-1~1之间的不用再/32768######这里可以用GPU重采样加速
audio24=torch.FloatTensor(audio_array24)#/32768
audio_norm24 = audio24
audio_norm24 = audio_norm24.unsqueeze(0)
spec = spectrogram_torch(audio_norm, self.filter_length,
self.sampling_rate, self.hop_length, self.win_length,
center=False)
spec = torch.squeeze(spec, 0)
spec1 = spectrogram_torch(audio_norm24, self.filter_length_mel,self.sampling_rate_mel, self.hop_length_mel, self.win_length_mel,center=False)
mel = spec_to_mel_torch(spec1, self.filter_length_mel, self.n_mel_channels, self.sampling_rate_mel, self.mel_fmin, self.mel_fmax)
mel = torch.squeeze(mel, 0)
mel=self.norm_spec(mel)
# print(1111111,spec.shape,mel.shape)
return spec, mel,audio_norm
def get_sid(self, sid):
sid = torch.LongTensor([int(sid)])
return sid
def __getitem__(self, index):
# with torch.no_grad():
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
def __len__(self):
return len(self.audiopaths_sid_text)
class TextAudioSpeakerCollateV3b():
""" Zero-pads model inputs and targets
"""
def __init__(self, return_ids=False):
self.return_ids = return_ids
def __call__(self, batch):
"""Collate's training batch from normalized text, audio and speaker identities
PARAMS
------
batch: [text_normalized, spec_normalized, wav_normalized, sid]
"""
#ssl, spec, wav,mel, text
# Right zero-pad all one-hot text sequences to max input length
_, ids_sorted_decreasing = torch.sort(
torch.LongTensor([x[1].size(1) for x in batch]),
dim=0, descending=True)
#(ssl, spec,mel, text)
max_ssl_len = max([x[0].size(2) for x in batch])
max_ssl_len1 = int(8 * ((max_ssl_len // 8) + 1))
max_ssl_len = int(2 * ((max_ssl_len // 2) + 1))
# max_ssl_len = int(8 * ((max_ssl_len // 8) + 1))
# max_ssl_len1=max_ssl_len
max_spec_len = max([x[1].size(1) for x in batch])
max_spec_len = int(2 * ((max_spec_len // 2) + 1))
max_wav_len = max([x[2].size(1) for x in batch])
max_text_len = max([x[4].size(0) for x in batch])
max_mel_len=int(max_ssl_len1*1.25*1.5)###24000/256,32000/640=16000/320
ssl_lengths = torch.LongTensor(len(batch))
spec_lengths = torch.LongTensor(len(batch))
text_lengths = torch.LongTensor(len(batch))
wav_lengths = torch.LongTensor(len(batch))
mel_lengths = torch.LongTensor(len(batch))
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
mel_padded = torch.FloatTensor(len(batch), batch[0][3].size(0), max_mel_len)
ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len)
text_padded = torch.LongTensor(len(batch), max_text_len)
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
spec_padded.zero_()
mel_padded.zero_()
ssl_padded.zero_()
text_padded.zero_()
wav_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
row = batch[ids_sorted_decreasing[i]]
# ssl, spec, wav,mel, text
ssl = row[0]
ssl_padded[i, :, :ssl.size(2)] = ssl[0, :, :]
ssl_lengths[i] = ssl.size(2)
spec = row[1]
spec_padded[i, :, :spec.size(1)] = spec
spec_lengths[i] = spec.size(1)
wav = row[2]
wav_padded[i, :, :wav.size(1)] = wav
wav_lengths[i] = wav.size(1)
mel = row[3]
mel_padded[i, :, :mel.size(1)] = mel
mel_lengths[i] = mel.size(1)
text = row[4]
text_padded[i, :text.size(0)] = text
text_lengths[i] = text.size(0)
return ssl_padded, spec_padded,mel_padded, ssl_lengths, spec_lengths, text_padded, text_lengths, wav_padded, wav_lengths,mel_lengths
# return ssl_padded, spec_padded,mel_padded, ssl_lengths, spec_lengths, text_padded, text_lengths,mel_lengths
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
"""

View File

@ -145,7 +145,7 @@ def mel_spectrogram_torch(
return_complex=False,
)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-9)
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
spec = spectral_normalize_torch(spec)

View File

@ -1099,17 +1099,15 @@ class CFM(torch.nn.Module):
return x
def forward(self, x1, x_lens, prompt_lens, mu, use_grad_ckpt):
b, _, t = x1.shape
# random timestep
t = torch.rand([b], device=mu.device, dtype=x1.dtype)
x0 = torch.randn_like(x1,device=mu.device)
vt = x1 - x0
xt = x0 + t[:, None, None] * vt
dt = torch.zeros_like(t,device=mu.device)
prompt = torch.zeros_like(x1)
for bib in range(b):
prompt[bib, :, :prompt_lens[bib]] = x1[bib, :, :prompt_lens[bib]]
xt[bib, :, :prompt_lens[bib]] = 0
for i in range(b):
prompt[i, :, :prompt_lens[i]] = x1[i, :, :prompt_lens[i]]
xt[i, :, :prompt_lens[i]] = 0
gailv=0.3# if ttime()>1736250488 else 0.1
if random.random() < gailv:
base = torch.randint(2, 8, (t.shape[0],), device=mu.device)
@ -1128,14 +1126,15 @@ class CFM(torch.nn.Module):
vt_pred = self.estimator(xt, prompt, x_lens, t,dt, mu, use_grad_ckpt).transpose(2,1)
loss = 0
# print(45555555,estimator_out.shape,u.shape,x_lens,prompt_lens)#45555555 torch.Size([7, 465, 100]) torch.Size([7, 100, 465]) tensor([461, 461, 451, 451, 442, 442, 442], device='cuda:0') tensor([ 96, 93, 185, 59, 244, 262, 294], device='cuda:0')
for bib in range(b):
loss += self.criterion(vt_pred[bib, :, prompt_lens[bib]:x_lens[bib]], vt[bib, :, prompt_lens[bib]:x_lens[bib]])
for i in range(b):
loss += self.criterion(vt_pred[i, :, prompt_lens[i]:x_lens[i]], vt[i, :, prompt_lens[i]:x_lens[i]])
loss /= b
return loss#, estimator_out + (1 - self.sigma_min) * z
return loss
def set_no_grad(net_g):
for name, param in net_g.named_parameters():
param.requires_grad=False
class SynthesizerTrnV3(nn.Module):
"""
@ -1210,7 +1209,6 @@ class SynthesizerTrnV3(nn.Module):
bins=1024
)
self.freeze_quantizer=freeze_quantizer
inter_channels2=512
self.bridge=nn.Sequential(
nn.Conv1d(inter_channels, inter_channels2, 1, stride=1),
@ -1219,6 +1217,10 @@ class SynthesizerTrnV3(nn.Module):
self.wns1=Encoder(inter_channels2, inter_channels2, inter_channels2, 5, 1, 8,gin_channels=gin_channels)
self.linear_mel=nn.Conv1d(inter_channels2,100,1,stride=1)
self.cfm = CFM(100,DiT(**dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=inter_channels2, conv_layers=4)),)#text_dim is condition feature dim
if self.freeze_quantizer==True:
set_no_grad(self.ssl_proj)
set_no_grad(self.quantizer)
set_no_grad(self.enc_p)
def forward(self, ssl, y, mel,ssl_lengths,y_lengths, text, text_lengths,mel_lengths, use_grad_ckpt):#ssl_lengths no need now
with autocast(enabled=False):
@ -1229,13 +1231,13 @@ class SynthesizerTrnV3(nn.Module):
if self.freeze_quantizer:
self.ssl_proj.eval()#
self.quantizer.eval()
self.enc_p.eval()
ssl = self.ssl_proj(ssl)
quantized, codes, commit_loss, quantized_list = self.quantizer(
ssl, layers=[0]
)
with maybe_no_grad:
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
fea=self.bridge(x)
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
fea, y_mask_ = self.wns1(fea, mel_lengths, ge)##If the 1-minute fine-tuning works fine, no need to manually adjust the learning rate.
@ -1274,3 +1276,148 @@ class SynthesizerTrnV3(nn.Module):
ssl = self.ssl_proj(x)
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
return codes.transpose(0,1)
class SynthesizerTrnV3b(nn.Module):
"""
Synthesizer for Training
"""
def __init__(self,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
n_speakers=0,
gin_channels=0,
use_sdp=True,
semantic_frame_rate=None,
freeze_quantizer=None,
**kwargs):
super().__init__()
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.n_speakers = n_speakers
self.gin_channels = gin_channels
self.model_dim=512
self.use_sdp = use_sdp
self.enc_p = TextEncoder(inter_channels,hidden_channels,filter_channels,n_heads,n_layers,kernel_size,p_dropout)
# self.ref_enc = modules.MelStyleEncoder(spec_channels, style_vector_dim=gin_channels)###Rollback
self.ref_enc = modules.MelStyleEncoder(704, style_vector_dim=gin_channels)###Rollback
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
gin_channels=gin_channels)
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
ssl_dim = 768
assert semantic_frame_rate in ['25hz', "50hz"]
self.semantic_frame_rate = semantic_frame_rate
if semantic_frame_rate == '25hz':
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
else:
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
self.quantizer = ResidualVectorQuantizer(
dimension=ssl_dim,
n_q=1,
bins=1024
)
self.freeze_quantizer=freeze_quantizer
inter_channels2=512
self.bridge=nn.Sequential(
nn.Conv1d(inter_channels, inter_channels2, 1, stride=1),
nn.LeakyReLU()
)
self.wns1=Encoder(inter_channels2, inter_channels2, inter_channels2, 5, 1, 8,gin_channels=gin_channels)
self.linear_mel=nn.Conv1d(inter_channels2,100,1,stride=1)
self.cfm = CFM(100,DiT(**dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=inter_channels2, conv_layers=4)),)#text_dim is condition feature dim
def forward(self, ssl, y, mel,ssl_lengths,y_lengths, text, text_lengths,mel_lengths):#ssl_lengths no need now
with autocast(enabled=False):
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
ge = self.ref_enc(y[:,:704] * y_mask, y_mask)
# ge = self.ref_enc(y * y_mask, y_mask)#change back, new spec setting is whole 24k
# ge=None
maybe_no_grad = torch.no_grad() if self.freeze_quantizer else contextlib.nullcontext()
with maybe_no_grad:
if self.freeze_quantizer:
self.ssl_proj.eval()
self.quantizer.eval()
ssl = self.ssl_proj(ssl)
quantized, codes, commit_loss, quantized_list = self.quantizer(
ssl, layers=[0]
)
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=ge)
z_p = self.flow(z, y_mask, g=ge)
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
o = self.dec(z_slice, g=ge)
fea=self.bridge(x)
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
fea, y_mask_ = self.wns1(fea, mel_lengths, ge)
learned_mel = self.linear_mel(fea)
B=ssl.shape[0]
prompt_len_max = mel_lengths*2/3
prompt_len = (torch.rand([B], device=fea.device) * prompt_len_max).floor().to(dtype=torch.long)#
minn=min(mel.shape[-1],fea.shape[-1])
mel=mel[:,:,:minn]
fea=fea[:,:,:minn]
cfm_loss= self.cfm(mel, mel_lengths, prompt_len, fea)#fea==cond,y_lengths==target_mel_lengths#ge not need
return commit_loss,cfm_loss,F.mse_loss(learned_mel, mel),o, ids_slice, y_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q), quantized
@torch.no_grad()
def decode_encp(self, codes,text, refer,ge=None):
# print(2333333,refer.shape)
# ge=None
if(ge==None):
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
refer_mask = torch.unsqueeze(commons.sequence_mask(refer_lengths, refer.size(2)), 1).to(refer.dtype)
ge = self.ref_enc(refer[:,:704] * refer_mask, refer_mask)
y_lengths = torch.LongTensor([int(codes.size(2)*2)]).to(codes.device)
y_lengths1 = torch.LongTensor([int(codes.size(2)*2.5*1.5)]).to(codes.device)
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
quantized = self.quantizer.decode(codes)
if self.semantic_frame_rate == '25hz':
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
fea=self.bridge(x)
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
####more wn paramter to learn mel
fea, y_mask_ = self.wns1(fea, y_lengths1, ge)
return fea,ge
def extract_latent(self, x):
ssl = self.ssl_proj(x)
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
return codes.transpose(0,1)