FIx: cannot identify one class to a dict(needed)

To implement recursive construction while retaining the characteristics of the original dictionary, we can slightly modify the DictToAttrRecursive class. This allows each object to retain its characteristics as a dictionary while accessing keys and values as attributes.
This commit is contained in:
spicysama 2024-01-17 02:55:54 +08:00 committed by GitHub
parent 2078ad1177
commit e3a008dbea
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -10,25 +10,15 @@ if("_CUDA_VISIBLE_DEVICES"in os.environ):
is_half=eval(os.environ.get("is_half","True"))
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
import sys,torch,numpy as np
from pathlib import Path
import os,pdb,utils,librosa,math,traceback,requests,argparse,torch,multiprocessing,pandas as pd,torch.multiprocessing as mp,soundfile
# torch.backends.cuda.sdp_kernel("flash")
# torch.backends.cuda.enable_flash_sdp(True)
# torch.backends.cuda.enable_mem_efficient_sdp(True) # Not avaliable if torch version is lower than 2.0
# torch.backends.cuda.enable_math_sdp(True)
from random import shuffle
from AR.utils import get_newest_ckpt
from glob import glob
from tqdm import tqdm
import numpy as np
import librosa,torch
from feature_extractor import cnhubert
cnhubert.cnhubert_base_path=cnhubert_base_path
from io import BytesIO
from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from AR.utils.io import load_yaml_config
from text import cleaned_text_to_sequence
from text.cleaner import text_to_sequence, clean_text
from text.cleaner import clean_text
from time import time as ttime
from module.mel_processing import spectrogram_torch
from my_utils import load_audio
@ -58,16 +48,36 @@ def get_bert_feature(text, word2ph):
n_semantic = 1024
dict_s2=torch.load(sovits_path,map_location="cpu")
hps=dict_s2["config"]
class DictToAttrRecursive:
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
# 如果值是字典,递归调用构造函数
setattr(self, key, DictToAttrRecursive(value))
else:
setattr(self, key, value)
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate="25hz"
dict_s1=torch.load(gpt_path,map_location="cpu")
config=dict_s1["config"]
@ -269,4 +279,4 @@ app.queue(concurrency_count=511, max_size=1022).launch(
inbrowser=True,
server_port=infer_ttswebui,
quiet=True,
)
)