mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
Merge branch 'main' into main
This commit is contained in:
commit
e205abb87d
2
.gitignore
vendored
Normal file
2
.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
env
|
||||
runtime
|
@ -16,7 +16,7 @@ __all__ = [
|
||||
"DistributedBucketSampler",
|
||||
]
|
||||
|
||||
T_co = TypeVar('T_co', covariant=True)
|
||||
T_co = TypeVar("T_co", covariant=True)
|
||||
|
||||
|
||||
class DistributedBucketSampler(Sampler[T_co]):
|
||||
@ -28,28 +28,30 @@ class DistributedBucketSampler(Sampler[T_co]):
|
||||
sort batches
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
dataset: Dataset,
|
||||
num_replicas: Optional[int]=None,
|
||||
rank: Optional[int]=None,
|
||||
shuffle: bool=True,
|
||||
seed: int=0,
|
||||
drop_last: bool=False,
|
||||
batch_size: int=32) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
dataset: Dataset,
|
||||
num_replicas: Optional[int] = None,
|
||||
rank: Optional[int] = None,
|
||||
shuffle: bool = True,
|
||||
seed: int = 0,
|
||||
drop_last: bool = False,
|
||||
batch_size: int = 32,
|
||||
) -> None:
|
||||
if num_replicas is None:
|
||||
if not dist.is_available():
|
||||
raise RuntimeError(
|
||||
"Requires distributed package to be available")
|
||||
raise RuntimeError("Requires distributed package to be available")
|
||||
num_replicas = dist.get_world_size()
|
||||
if rank is None:
|
||||
if not dist.is_available():
|
||||
raise RuntimeError(
|
||||
"Requires distributed package to be available")
|
||||
raise RuntimeError("Requires distributed package to be available")
|
||||
rank = dist.get_rank()
|
||||
torch.cuda.set_device(rank)
|
||||
if rank >= num_replicas or rank < 0:
|
||||
raise ValueError("Invalid rank {}, rank should be in the interval"
|
||||
" [0, {}]".format(rank, num_replicas - 1))
|
||||
raise ValueError(
|
||||
"Invalid rank {}, rank should be in the interval"
|
||||
" [0, {}]".format(rank, num_replicas - 1)
|
||||
)
|
||||
self.dataset = dataset
|
||||
self.num_replicas = num_replicas
|
||||
self.rank = rank
|
||||
@ -57,19 +59,20 @@ class DistributedBucketSampler(Sampler[T_co]):
|
||||
self.drop_last = drop_last
|
||||
# If the dataset length is evenly divisible by # of replicas, then there
|
||||
# is no need to drop any data, since the dataset will be split equally.
|
||||
if self.drop_last and len(
|
||||
self.
|
||||
dataset) % self.num_replicas != 0: # type: ignore[arg-type]
|
||||
if (
|
||||
self.drop_last and len(self.dataset) % self.num_replicas != 0
|
||||
): # type: ignore[arg-type]
|
||||
# Split to nearest available length that is evenly divisible.
|
||||
# This is to ensure each rank receives the same amount of data when
|
||||
# using this Sampler.
|
||||
self.num_samples = math.ceil(
|
||||
(len(self.dataset) - self.num_replicas) /
|
||||
self.num_replicas # type: ignore[arg-type]
|
||||
(len(self.dataset) - self.num_replicas)
|
||||
/ self.num_replicas # type: ignore[arg-type]
|
||||
)
|
||||
else:
|
||||
self.num_samples = math.ceil(
|
||||
len(self.dataset) / self.num_replicas) # type: ignore[arg-type]
|
||||
len(self.dataset) / self.num_replicas
|
||||
) # type: ignore[arg-type]
|
||||
self.total_size = self.num_samples * self.num_replicas
|
||||
self.shuffle = shuffle
|
||||
self.seed = seed
|
||||
@ -84,7 +87,7 @@ class DistributedBucketSampler(Sampler[T_co]):
|
||||
id_with_lengths.sort(key=lambda x: x[1])
|
||||
return id_with_lengths
|
||||
|
||||
def make_buckets(self, bucket_width: float=2.0):
|
||||
def make_buckets(self, bucket_width: float = 2.0):
|
||||
buckets = []
|
||||
cur = []
|
||||
max_sec = bucket_width
|
||||
@ -114,8 +117,8 @@ class DistributedBucketSampler(Sampler[T_co]):
|
||||
shuffled_bucket = list(itertools.chain(*shuffled_bucket))
|
||||
n_batch = int(math.ceil(len(shuffled_bucket) / grouped_batch_size))
|
||||
batches = [
|
||||
shuffled_bucket[b * grouped_batch_size:(b + 1) *
|
||||
grouped_batch_size] for b in range(n_batch)
|
||||
shuffled_bucket[b * grouped_batch_size : (b + 1) * grouped_batch_size]
|
||||
for b in range(n_batch)
|
||||
]
|
||||
shuffle(batches)
|
||||
indices = list(itertools.chain(*batches))
|
||||
@ -129,15 +132,16 @@ class DistributedBucketSampler(Sampler[T_co]):
|
||||
if padding_size <= len(indices):
|
||||
indices += indices[:padding_size]
|
||||
else:
|
||||
indices += (indices * math.ceil(padding_size /
|
||||
len(indices)))[:padding_size]
|
||||
indices += (indices * math.ceil(padding_size / len(indices)))[
|
||||
:padding_size
|
||||
]
|
||||
else:
|
||||
# remove tail of data to make it evenly divisible.
|
||||
indices = indices[:self.total_size]
|
||||
indices = indices[: self.total_size]
|
||||
assert len(indices) == self.total_size
|
||||
|
||||
# subsample
|
||||
indices = indices[self.rank:self.total_size:self.num_replicas]
|
||||
indices = indices[self.rank : self.total_size : self.num_replicas]
|
||||
assert len(indices) == self.num_samples
|
||||
|
||||
return iter(indices)
|
||||
|
@ -6,14 +6,21 @@ from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
class Text2SemanticDataModule(LightningDataModule):
|
||||
def __init__(self, config, train_semantic_path, train_phoneme_path,dev_semantic_path=None, dev_phoneme_path=None):
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
train_semantic_path,
|
||||
train_phoneme_path,
|
||||
dev_semantic_path=None,
|
||||
dev_phoneme_path=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.train_semantic_path = train_semantic_path
|
||||
self.train_phoneme_path = train_phoneme_path
|
||||
self.dev_semantic_path = dev_semantic_path
|
||||
self.dev_phoneme_path = dev_phoneme_path
|
||||
self.num_workers = self.config['data']['num_workers']
|
||||
self.num_workers = self.config["data"]["num_workers"]
|
||||
|
||||
def prepare_data(self):
|
||||
pass
|
||||
@ -22,8 +29,9 @@ class Text2SemanticDataModule(LightningDataModule):
|
||||
self._train_dataset = Text2SemanticDataset(
|
||||
phoneme_path=self.train_phoneme_path,
|
||||
semantic_path=self.train_semantic_path,
|
||||
max_sec=self.config['data']['max_sec'],
|
||||
pad_val=self.config['data']['pad_val'])
|
||||
max_sec=self.config["data"]["max_sec"],
|
||||
pad_val=self.config["data"]["pad_val"],
|
||||
)
|
||||
self._dev_dataset = self._train_dataset
|
||||
# self._dev_dataset = Text2SemanticDataset(
|
||||
# phoneme_path=self.dev_phoneme_path,
|
||||
@ -33,9 +41,8 @@ class Text2SemanticDataModule(LightningDataModule):
|
||||
# pad_val=self.config['data']['pad_val'])
|
||||
|
||||
def train_dataloader(self):
|
||||
batch_size = self.config['train']['batch_size']
|
||||
sampler = DistributedBucketSampler(
|
||||
self._train_dataset, batch_size=batch_size)
|
||||
batch_size = self.config["train"]["batch_size"]
|
||||
sampler = DistributedBucketSampler(self._train_dataset, batch_size=batch_size)
|
||||
return DataLoader(
|
||||
self._train_dataset,
|
||||
batch_size=batch_size,
|
||||
@ -43,7 +50,7 @@ class Text2SemanticDataModule(LightningDataModule):
|
||||
collate_fn=self._train_dataset.collate,
|
||||
num_workers=self.num_workers,
|
||||
persistent_workers=True,
|
||||
prefetch_factor=16
|
||||
prefetch_factor=16,
|
||||
)
|
||||
|
||||
def val_dataloader(self):
|
||||
@ -52,9 +59,9 @@ class Text2SemanticDataModule(LightningDataModule):
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
collate_fn=self._train_dataset.collate,
|
||||
num_workers=max(self.num_workers,12),
|
||||
num_workers=max(self.num_workers, 12),
|
||||
persistent_workers=True,
|
||||
prefetch_factor=16
|
||||
prefetch_factor=16,
|
||||
)
|
||||
|
||||
# 这个会使用到嘛?
|
||||
@ -63,4 +70,5 @@ class Text2SemanticDataModule(LightningDataModule):
|
||||
self._dev_dataset,
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
collate_fn=self._train_dataset.collate)
|
||||
collate_fn=self._train_dataset.collate,
|
||||
)
|
||||
|
@ -1,21 +1,24 @@
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/t2s_dataset.py
|
||||
import pdb
|
||||
import sys
|
||||
|
||||
# sys.path.append("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert")
|
||||
import traceback,os
|
||||
import traceback, os
|
||||
from typing import Dict
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import torch,json
|
||||
import torch, json
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data import Dataset
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from text import cleaned_text_to_sequence
|
||||
|
||||
# from config import exp_dir
|
||||
|
||||
|
||||
def batch_sequences(sequences: List[np.array], axis: int = 0, pad_value: int = 0):
|
||||
seq = sequences[0]
|
||||
ndim = seq.ndim
|
||||
@ -28,44 +31,52 @@ def batch_sequences(sequences: List[np.array], axis: int = 0, pad_value: int = 0
|
||||
|
||||
padded_sequences = []
|
||||
for seq, length in zip(sequences, seq_lengths):
|
||||
padding = [(0, 0)] * axis + [(0, max_length - length)] + [(0, 0)] * (
|
||||
ndim - axis - 1)
|
||||
padded_seq = np.pad(
|
||||
seq, padding, mode='constant', constant_values=pad_value)
|
||||
padding = (
|
||||
[(0, 0)] * axis + [(0, max_length - length)] + [(0, 0)] * (ndim - axis - 1)
|
||||
)
|
||||
padded_seq = np.pad(seq, padding, mode="constant", constant_values=pad_value)
|
||||
padded_sequences.append(padded_seq)
|
||||
batch = np.stack(padded_sequences)
|
||||
return batch
|
||||
|
||||
|
||||
class Text2SemanticDataset(Dataset):
|
||||
"""dataset class for text tokens to semantic model training."""
|
||||
|
||||
def __init__(self,
|
||||
phoneme_path: str,
|
||||
semantic_path: str,
|
||||
max_sample: int = None,
|
||||
max_sec: int = 100,
|
||||
pad_val: int = 1024,
|
||||
# min value of phoneme/sec
|
||||
min_ps_ratio: int = 3,
|
||||
# max value of phoneme/sec
|
||||
max_ps_ratio: int = 25) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
phoneme_path: str,
|
||||
semantic_path: str,
|
||||
max_sample: int = None,
|
||||
max_sec: int = 100,
|
||||
pad_val: int = 1024,
|
||||
# min value of phoneme/sec
|
||||
min_ps_ratio: int = 3,
|
||||
# max value of phoneme/sec
|
||||
max_ps_ratio: int = 25,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.semantic_data = pd.read_csv(semantic_path, delimiter='\t', encoding="utf-8")
|
||||
self.semantic_data = pd.read_csv(
|
||||
semantic_path, delimiter="\t", encoding="utf-8"
|
||||
)
|
||||
# get dict
|
||||
self.path2=phoneme_path#"%s/2-name2text.txt"%exp_dir#phoneme_path
|
||||
self.path3="%s/3-bert"%(os.path.basename(phoneme_path))#"%s/3-bert"%exp_dir#bert_dir
|
||||
self.path6=semantic_path#"%s/6-name2semantic.tsv"%exp_dir#semantic_path
|
||||
self.path2 = phoneme_path # "%s/2-name2text.txt"%exp_dir#phoneme_path
|
||||
self.path3 = "%s/3-bert" % (
|
||||
os.path.basename(phoneme_path)
|
||||
) # "%s/3-bert"%exp_dir#bert_dir
|
||||
self.path6 = semantic_path # "%s/6-name2semantic.tsv"%exp_dir#semantic_path
|
||||
assert os.path.exists(self.path2)
|
||||
assert os.path.exists(self.path6)
|
||||
self.phoneme_data={}
|
||||
with open(self.path2,"r",encoding="utf8")as f:
|
||||
lines=f.read().strip("\n").split("\n")
|
||||
self.phoneme_data = {}
|
||||
with open(self.path2, "r", encoding="utf8") as f:
|
||||
lines = f.read().strip("\n").split("\n")
|
||||
|
||||
for line in lines:
|
||||
tmp=line.split("\t")
|
||||
if(len(tmp)!=4):continue
|
||||
self.phoneme_data[tmp[0]]=[tmp[1],tmp[2],tmp[3]]
|
||||
tmp = line.split("\t")
|
||||
if len(tmp) != 4:
|
||||
continue
|
||||
self.phoneme_data[tmp[0]] = [tmp[1], tmp[2], tmp[3]]
|
||||
|
||||
# self.phoneme_data = np.load(phoneme_path, allow_pickle=True).item()
|
||||
# pad for semantic tokens
|
||||
@ -74,7 +85,7 @@ class Text2SemanticDataset(Dataset):
|
||||
# with open("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert/configs/s2.json", "r") as f:data = f.read()
|
||||
# data=json.loads(data)["model"]["semantic_frame_rate"]#50hz
|
||||
# self.hz=int(data[:-2])#
|
||||
self.hz=int(os.environ.get("hz","25hz")[:-2])
|
||||
self.hz = int(os.environ.get("hz", "25hz")[:-2])
|
||||
|
||||
# max seconds of semantic token
|
||||
self.max_sec = max_sec
|
||||
@ -100,7 +111,6 @@ class Text2SemanticDataset(Dataset):
|
||||
# self.tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext-large")
|
||||
# self.tokenizer = AutoTokenizer.from_pretrained("/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large")
|
||||
|
||||
|
||||
def init_batch(self):
|
||||
semantic_data_len = len(self.semantic_data)
|
||||
phoneme_data_len = len(self.phoneme_data.keys())
|
||||
@ -113,7 +123,7 @@ class Text2SemanticDataset(Dataset):
|
||||
for i in range(semantic_data_len):
|
||||
# 先依次遍历
|
||||
# get str
|
||||
item_name = self.semantic_data['item_name'][i]
|
||||
item_name = self.semantic_data["item_name"][i]
|
||||
# print(self.phoneme_data)
|
||||
try:
|
||||
phoneme, word2ph, text = self.phoneme_data[item_name]
|
||||
@ -123,16 +133,18 @@ class Text2SemanticDataset(Dataset):
|
||||
num_not_in += 1
|
||||
continue
|
||||
|
||||
semantic_str = self.semantic_data['semantic_audio'][i]
|
||||
semantic_str = self.semantic_data["semantic_audio"][i]
|
||||
# get token list
|
||||
semantic_ids = [int(idx) for idx in semantic_str.split(' ')]
|
||||
semantic_ids = [int(idx) for idx in semantic_str.split(" ")]
|
||||
# (T), 是否需要变成 (1, T) -> 不需要,因为需要求 len
|
||||
# 过滤掉太长的样本
|
||||
if len(semantic_ids) > self.max_sec * self.hz:#########1###根据token个数推测总时长过滤时长60s(config里)#40*25=1k
|
||||
if (
|
||||
len(semantic_ids) > self.max_sec * self.hz
|
||||
): #########1###根据token个数推测总时长过滤时长60s(config里)#40*25=1k
|
||||
num_deleted_bigger += 1
|
||||
continue
|
||||
# (T, ), 这个速度不会很慢,所以可以在一开始就处理,无需在 __getitem__ 里面单个处理####
|
||||
phoneme = phoneme.split(' ')
|
||||
phoneme = phoneme.split(" ")
|
||||
|
||||
try:
|
||||
phoneme_ids = cleaned_text_to_sequence(phoneme)
|
||||
@ -142,7 +154,9 @@ class Text2SemanticDataset(Dataset):
|
||||
num_not_in += 1
|
||||
continue
|
||||
# if len(phoneme_ids) >400:###########2:改为恒定限制为semantic/2.5就行
|
||||
if len(phoneme_ids) >self.max_sec * self.hz/2.5:###########2:改为恒定限制为semantic/2.5就行
|
||||
if (
|
||||
len(phoneme_ids) > self.max_sec * self.hz / 2.5
|
||||
): ###########2:改为恒定限制为semantic/2.5就行
|
||||
num_deleted_ps += 1
|
||||
continue
|
||||
# if len(semantic_ids) > 1000:###########3
|
||||
@ -151,7 +165,9 @@ class Text2SemanticDataset(Dataset):
|
||||
|
||||
ps_ratio = len(phoneme_ids) / (len(semantic_ids) / self.hz)
|
||||
|
||||
if ps_ratio > self.max_ps_ratio or ps_ratio < self.min_ps_ratio:##########4#3~25#每秒多少个phone
|
||||
if (
|
||||
ps_ratio > self.max_ps_ratio or ps_ratio < self.min_ps_ratio
|
||||
): ##########4#3~25#每秒多少个phone
|
||||
num_deleted_ps += 1
|
||||
# print(item_name)
|
||||
continue
|
||||
@ -160,16 +176,16 @@ class Text2SemanticDataset(Dataset):
|
||||
idx += 1
|
||||
self.item_names.append(item_name)
|
||||
|
||||
min_num=100#20直接不补#30补了也不存ckpt
|
||||
leng =len(self.semantic_phoneme)
|
||||
if(leng<min_num):
|
||||
tmp1=self.semantic_phoneme
|
||||
tmp2=self.item_names
|
||||
self.semantic_phoneme=[]
|
||||
self.item_names=[]
|
||||
for _ in range(max(2,int(min_num/leng))):
|
||||
self.semantic_phoneme+=tmp1
|
||||
self.item_names+=tmp2
|
||||
min_num = 100 # 20直接不补#30补了也不存ckpt
|
||||
leng = len(self.semantic_phoneme)
|
||||
if leng < min_num:
|
||||
tmp1 = self.semantic_phoneme
|
||||
tmp2 = self.item_names
|
||||
self.semantic_phoneme = []
|
||||
self.item_names = []
|
||||
for _ in range(max(2, int(min_num / leng))):
|
||||
self.semantic_phoneme += tmp1
|
||||
self.item_names += tmp2
|
||||
if num_not_in > 0:
|
||||
print(f"there are {num_not_in} semantic datas not in phoneme datas")
|
||||
if num_deleted_bigger > 0:
|
||||
@ -181,13 +197,13 @@ class Text2SemanticDataset(Dataset):
|
||||
print(
|
||||
f"deleted {num_deleted_ps} audios who's phoneme/sec are bigger than {self.max_ps_ratio} or smaller than {self.min_ps_ratio}"
|
||||
)
|
||||
'''
|
||||
"""
|
||||
there are 31 semantic datas not in phoneme datas
|
||||
deleted 34 audios who's duration are bigger than 54 seconds
|
||||
deleted 3190 audios who's phoneme/sec are bigger than 25 or smaller than 3
|
||||
dataset.__len__(): 366463
|
||||
|
||||
'''
|
||||
"""
|
||||
# 345410 for LibriTTS
|
||||
print("dataset.__len__():", self.__len__())
|
||||
|
||||
@ -204,22 +220,24 @@ class Text2SemanticDataset(Dataset):
|
||||
# semantic tokens target
|
||||
semantic_ids_len = len(semantic_ids)
|
||||
|
||||
flag=0
|
||||
flag = 0
|
||||
path_bert = "%s/%s.pt" % (self.path3, item_name)
|
||||
if(os.path.exists(path_bert)==True):bert_feature = torch.load(path_bert,map_location="cpu")
|
||||
else:flag=1
|
||||
if(flag==1):
|
||||
if os.path.exists(path_bert) == True:
|
||||
bert_feature = torch.load(path_bert, map_location="cpu")
|
||||
else:
|
||||
flag = 1
|
||||
if flag == 1:
|
||||
# bert_feature=torch.zeros_like(phoneme_ids,dtype=torch.float32)
|
||||
bert_feature=None
|
||||
bert_feature = None
|
||||
else:
|
||||
assert bert_feature.shape[-1] == len(phoneme_ids)
|
||||
return {
|
||||
'idx': idx,
|
||||
'phoneme_ids': phoneme_ids,
|
||||
'phoneme_ids_len': phoneme_ids_len,
|
||||
'semantic_ids': semantic_ids,
|
||||
'semantic_ids_len': semantic_ids_len,
|
||||
'bert_feature': bert_feature,
|
||||
"idx": idx,
|
||||
"phoneme_ids": phoneme_ids,
|
||||
"phoneme_ids_len": phoneme_ids_len,
|
||||
"semantic_ids": semantic_ids,
|
||||
"semantic_ids_len": semantic_ids_len,
|
||||
"bert_feature": bert_feature,
|
||||
}
|
||||
|
||||
def get_sample_length(self, idx: int):
|
||||
@ -235,7 +253,6 @@ class Text2SemanticDataset(Dataset):
|
||||
semantic_ids_lens: List[int] = []
|
||||
# return
|
||||
|
||||
|
||||
for item in examples:
|
||||
sample_index.append(item["idx"])
|
||||
phoneme_ids.append(np.array(item["phoneme_ids"], dtype=np.int64))
|
||||
@ -256,9 +273,9 @@ class Text2SemanticDataset(Dataset):
|
||||
bert_padded.zero_()
|
||||
|
||||
for idx, item in enumerate(examples):
|
||||
bert = item['bert_feature']
|
||||
if(bert!=None):
|
||||
bert_padded[idx, :, :bert.shape[-1]] = bert
|
||||
bert = item["bert_feature"]
|
||||
if bert != None:
|
||||
bert_padded[idx, :, : bert.shape[-1]] = bert
|
||||
|
||||
return {
|
||||
# List[int]
|
||||
@ -276,27 +293,27 @@ class Text2SemanticDataset(Dataset):
|
||||
}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
root_dir = '/data/docker/liujing04/gpt-vits/prepare/dump_mix/'
|
||||
if __name__ == "__main__":
|
||||
root_dir = "/data/docker/liujing04/gpt-vits/prepare/dump_mix/"
|
||||
dataset = Text2SemanticDataset(
|
||||
phoneme_path=root_dir + 'phoneme_train.npy',
|
||||
semantic_path=root_dir + 'semantic_train.tsv')
|
||||
phoneme_path=root_dir + "phoneme_train.npy",
|
||||
semantic_path=root_dir + "semantic_train.tsv",
|
||||
)
|
||||
|
||||
batch_size = 12
|
||||
dataloader = DataLoader(
|
||||
dataset,
|
||||
batch_size=batch_size,
|
||||
collate_fn=dataset.collate,
|
||||
shuffle=False)
|
||||
dataset, batch_size=batch_size, collate_fn=dataset.collate, shuffle=False
|
||||
)
|
||||
for i, batch in enumerate(dataloader):
|
||||
if(i%1000==0):print(i)
|
||||
if i % 1000 == 0:
|
||||
print(i)
|
||||
# if i == 0:
|
||||
# print('batch["ids"]:', batch["ids"])
|
||||
# print('batch["phoneme_ids"]:', batch["phoneme_ids"],
|
||||
# batch["phoneme_ids"].shape)
|
||||
# print('batch["phoneme_ids_len"]:', batch["phoneme_ids_len"],
|
||||
# batch["phoneme_ids_len"].shape)
|
||||
# print('batch["semantic_ids"]:', batch["semantic_ids"],
|
||||
# batch["semantic_ids"].shape)
|
||||
# print('batch["semantic_ids_len"]:', batch["semantic_ids_len"],
|
||||
# batch["semantic_ids_len"].shape)
|
||||
# print('batch["phoneme_ids"]:', batch["phoneme_ids"],
|
||||
# batch["phoneme_ids"].shape)
|
||||
# print('batch["phoneme_ids_len"]:', batch["phoneme_ids_len"],
|
||||
# batch["phoneme_ids_len"].shape)
|
||||
# print('batch["semantic_ids"]:', batch["semantic_ids"],
|
||||
# batch["semantic_ids"].shape)
|
||||
# print('batch["semantic_ids_len"]:', batch["semantic_ids_len"],
|
||||
# batch["semantic_ids_len"].shape)
|
||||
|
@ -1,5 +1,6 @@
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_lightning_module.py
|
||||
import os,sys
|
||||
import os, sys
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from typing import Dict
|
||||
@ -12,29 +13,35 @@ from AR.modules.optim import ScaledAdam
|
||||
|
||||
|
||||
class Text2SemanticLightningModule(LightningModule):
|
||||
def __init__(self, config, output_dir,is_train=True):
|
||||
def __init__(self, config, output_dir, is_train=True):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.top_k = 3
|
||||
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
|
||||
pretrained_s1=config.get("pretrained_s1")
|
||||
if(pretrained_s1 and is_train):
|
||||
pretrained_s1 = config.get("pretrained_s1")
|
||||
if pretrained_s1 and is_train:
|
||||
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
||||
print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["weight"]))
|
||||
print(
|
||||
self.load_state_dict(
|
||||
torch.load(pretrained_s1, map_location="cpu")["weight"]
|
||||
)
|
||||
)
|
||||
if is_train:
|
||||
self.automatic_optimization = False
|
||||
self.save_hyperparameters()
|
||||
self.eval_dir = output_dir / 'eval'
|
||||
self.eval_dir = output_dir / "eval"
|
||||
self.eval_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def training_step(self, batch: Dict, batch_idx: int):
|
||||
|
||||
opt = self.optimizers()
|
||||
scheduler = self.lr_schedulers()
|
||||
loss, acc = self.model.forward(
|
||||
batch['phoneme_ids'], batch['phoneme_ids_len'],
|
||||
batch['semantic_ids'], batch['semantic_ids_len'],
|
||||
batch['bert_feature'])
|
||||
batch["phoneme_ids"],
|
||||
batch["phoneme_ids_len"],
|
||||
batch["semantic_ids"],
|
||||
batch["semantic_ids_len"],
|
||||
batch["bert_feature"],
|
||||
)
|
||||
self.manual_backward(loss)
|
||||
if batch_idx > 0 and batch_idx % 4 == 0:
|
||||
opt.step()
|
||||
@ -47,63 +54,67 @@ class Text2SemanticLightningModule(LightningModule):
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True)
|
||||
sync_dist=True,
|
||||
)
|
||||
self.log(
|
||||
"lr",
|
||||
scheduler.get_last_lr()[0],
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True)
|
||||
sync_dist=True,
|
||||
)
|
||||
self.log(
|
||||
f"top_{self.top_k}_acc",
|
||||
acc,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True)
|
||||
sync_dist=True,
|
||||
)
|
||||
|
||||
def validation_step(self, batch: Dict, batch_idx: int):return
|
||||
# # get loss
|
||||
# loss, acc = self.model.forward(
|
||||
# batch['phoneme_ids'], batch['phoneme_ids_len'],
|
||||
# batch['semantic_ids'], batch['semantic_ids_len'],
|
||||
# batch['bert_feature']
|
||||
# )
|
||||
#
|
||||
# self.log(
|
||||
# "val_total_loss",
|
||||
# loss,
|
||||
# on_step=True,
|
||||
# on_epoch=True,
|
||||
# prog_bar=True,
|
||||
# sync_dist=True)
|
||||
# self.log(
|
||||
# f"val_top_{self.top_k}_acc",
|
||||
# acc,
|
||||
# on_step=True,
|
||||
# on_epoch=True,
|
||||
# prog_bar=True,
|
||||
# sync_dist=True)
|
||||
#
|
||||
# # get infer output
|
||||
# semantic_len = batch['semantic_ids'].size(1)
|
||||
# prompt_len = min(int(semantic_len * 0.5), 150)
|
||||
# prompt = batch['semantic_ids'][:, :prompt_len]
|
||||
# pred_semantic = self.model.infer(batch['phoneme_ids'],
|
||||
# batch['phoneme_ids_len'], prompt,
|
||||
# batch['bert_feature']
|
||||
# )
|
||||
# save_name = f'semantic_toks_{batch_idx}.pt'
|
||||
# save_path = os.path.join(self.eval_dir, save_name)
|
||||
# torch.save(pred_semantic.detach().cpu(), save_path)
|
||||
def validation_step(self, batch: Dict, batch_idx: int):
|
||||
return
|
||||
|
||||
# # get loss
|
||||
# loss, acc = self.model.forward(
|
||||
# batch['phoneme_ids'], batch['phoneme_ids_len'],
|
||||
# batch['semantic_ids'], batch['semantic_ids_len'],
|
||||
# batch['bert_feature']
|
||||
# )
|
||||
#
|
||||
# self.log(
|
||||
# "val_total_loss",
|
||||
# loss,
|
||||
# on_step=True,
|
||||
# on_epoch=True,
|
||||
# prog_bar=True,
|
||||
# sync_dist=True)
|
||||
# self.log(
|
||||
# f"val_top_{self.top_k}_acc",
|
||||
# acc,
|
||||
# on_step=True,
|
||||
# on_epoch=True,
|
||||
# prog_bar=True,
|
||||
# sync_dist=True)
|
||||
#
|
||||
# # get infer output
|
||||
# semantic_len = batch['semantic_ids'].size(1)
|
||||
# prompt_len = min(int(semantic_len * 0.5), 150)
|
||||
# prompt = batch['semantic_ids'][:, :prompt_len]
|
||||
# pred_semantic = self.model.infer(batch['phoneme_ids'],
|
||||
# batch['phoneme_ids_len'], prompt,
|
||||
# batch['bert_feature']
|
||||
# )
|
||||
# save_name = f'semantic_toks_{batch_idx}.pt'
|
||||
# save_path = os.path.join(self.eval_dir, save_name)
|
||||
# torch.save(pred_semantic.detach().cpu(), save_path)
|
||||
|
||||
def configure_optimizers(self):
|
||||
model_parameters = self.model.parameters()
|
||||
parameters_names = []
|
||||
parameters_names.append([
|
||||
name_param_pair[0]
|
||||
for name_param_pair in self.model.named_parameters()
|
||||
])
|
||||
parameters_names.append(
|
||||
[name_param_pair[0] for name_param_pair in self.model.named_parameters()]
|
||||
)
|
||||
lm_opt = ScaledAdam(
|
||||
model_parameters,
|
||||
lr=0.01,
|
||||
@ -111,18 +122,19 @@ class Text2SemanticLightningModule(LightningModule):
|
||||
clipping_scale=2.0,
|
||||
parameters_names=parameters_names,
|
||||
show_dominant_parameters=False,
|
||||
clipping_update_period=1000, )
|
||||
clipping_update_period=1000,
|
||||
)
|
||||
|
||||
return {
|
||||
"optimizer": lm_opt,
|
||||
"lr_scheduler": {
|
||||
"scheduler":
|
||||
WarmupCosineLRSchedule(
|
||||
"scheduler": WarmupCosineLRSchedule(
|
||||
lm_opt,
|
||||
init_lr=self.config['optimizer']['lr_init'],
|
||||
peak_lr=self.config['optimizer']['lr'],
|
||||
end_lr=self.config['optimizer']['lr_end'],
|
||||
warmup_steps=self.config['optimizer']['warmup_steps'],
|
||||
total_steps=self.config['optimizer']['decay_steps'])
|
||||
}
|
||||
init_lr=self.config["optimizer"]["lr_init"],
|
||||
peak_lr=self.config["optimizer"]["lr"],
|
||||
end_lr=self.config["optimizer"]["lr_end"],
|
||||
warmup_steps=self.config["optimizer"]["warmup_steps"],
|
||||
total_steps=self.config["optimizer"]["decay_steps"],
|
||||
)
|
||||
},
|
||||
}
|
||||
|
@ -3,7 +3,12 @@ import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from AR.models.utils import make_pad_mask
|
||||
from AR.models.utils import topk_sampling,sample,logits_to_probs,multinomial_sample_one_no_sync
|
||||
from AR.models.utils import (
|
||||
topk_sampling,
|
||||
sample,
|
||||
logits_to_probs,
|
||||
multinomial_sample_one_no_sync,
|
||||
)
|
||||
from AR.modules.embedding import SinePositionalEmbedding
|
||||
from AR.modules.embedding import TokenEmbedding
|
||||
from AR.modules.transformer import LayerNorm
|
||||
@ -22,35 +27,39 @@ default_config = {
|
||||
"p_dropout": 0.0,
|
||||
"vocab_size": 1024 + 1,
|
||||
"phoneme_vocab_size": 512,
|
||||
"EOS": 1024
|
||||
"EOS": 1024,
|
||||
}
|
||||
|
||||
|
||||
class Text2SemanticDecoder(nn.Module):
|
||||
def __init__(self, config, norm_first=False, top_k=3):
|
||||
super(Text2SemanticDecoder, self).__init__()
|
||||
self.model_dim = config['model']["hidden_dim"]
|
||||
self.embedding_dim = config['model']["embedding_dim"]
|
||||
self.num_head = config['model']["head"]
|
||||
self.num_layers = config['model']["n_layer"]
|
||||
self.model_dim = config["model"]["hidden_dim"]
|
||||
self.embedding_dim = config["model"]["embedding_dim"]
|
||||
self.num_head = config["model"]["head"]
|
||||
self.num_layers = config["model"]["n_layer"]
|
||||
self.norm_first = norm_first
|
||||
self.vocab_size = config['model']["vocab_size"]
|
||||
self.phoneme_vocab_size = config['model']["phoneme_vocab_size"]
|
||||
self.p_dropout = config['model']["dropout"]
|
||||
self.EOS = config['model']["EOS"]
|
||||
self.vocab_size = config["model"]["vocab_size"]
|
||||
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
|
||||
self.p_dropout = config["model"]["dropout"]
|
||||
self.EOS = config["model"]["EOS"]
|
||||
self.norm_first = norm_first
|
||||
assert self.EOS == self.vocab_size - 1
|
||||
# should be same as num of kmeans bin
|
||||
# assert self.EOS == 1024
|
||||
self.bert_proj = nn.Linear(1024, self.embedding_dim)
|
||||
self.ar_text_embedding = TokenEmbedding(
|
||||
self.embedding_dim, self.phoneme_vocab_size, self.p_dropout)
|
||||
self.embedding_dim, self.phoneme_vocab_size, self.p_dropout
|
||||
)
|
||||
self.ar_text_position = SinePositionalEmbedding(
|
||||
self.embedding_dim, dropout=0.1, scale=False, alpha=True)
|
||||
self.embedding_dim, dropout=0.1, scale=False, alpha=True
|
||||
)
|
||||
self.ar_audio_embedding = TokenEmbedding(
|
||||
self.embedding_dim, self.vocab_size, self.p_dropout)
|
||||
self.embedding_dim, self.vocab_size, self.p_dropout
|
||||
)
|
||||
self.ar_audio_position = SinePositionalEmbedding(
|
||||
self.embedding_dim, dropout=0.1, scale=False, alpha=True)
|
||||
self.embedding_dim, dropout=0.1, scale=False, alpha=True
|
||||
)
|
||||
|
||||
self.h = TransformerEncoder(
|
||||
TransformerEncoderLayer(
|
||||
@ -59,28 +68,30 @@ class Text2SemanticDecoder(nn.Module):
|
||||
dim_feedforward=self.model_dim * 4,
|
||||
dropout=0.1,
|
||||
batch_first=True,
|
||||
norm_first=norm_first, ),
|
||||
norm_first=norm_first,
|
||||
),
|
||||
num_layers=self.num_layers,
|
||||
norm=LayerNorm(self.model_dim) if norm_first else None, )
|
||||
norm=LayerNorm(self.model_dim) if norm_first else None,
|
||||
)
|
||||
|
||||
self.ar_predict_layer = nn.Linear(
|
||||
self.model_dim, self.vocab_size, bias=False)
|
||||
self.loss_fct = nn.CrossEntropyLoss(reduction='sum')
|
||||
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
|
||||
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
|
||||
|
||||
self.ar_accuracy_metric = MulticlassAccuracy(
|
||||
self.vocab_size,
|
||||
top_k=top_k,
|
||||
average="micro",
|
||||
multidim_average="global",
|
||||
ignore_index=self.EOS, )
|
||||
ignore_index=self.EOS,
|
||||
)
|
||||
|
||||
def forward(self, x, x_lens, y, y_lens, bert_feature):
|
||||
'''
|
||||
"""
|
||||
x: phoneme_ids
|
||||
y: semantic_ids
|
||||
'''
|
||||
"""
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1,2))
|
||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||
x = self.ar_text_position(x)
|
||||
x_mask = make_pad_mask(x_lens)
|
||||
|
||||
@ -102,18 +113,23 @@ class Text2SemanticDecoder(nn.Module):
|
||||
x_attn_mask = F.pad(
|
||||
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
|
||||
(0, y_len),
|
||||
value=True, )
|
||||
value=True,
|
||||
)
|
||||
y_attn_mask = F.pad(
|
||||
torch.triu(
|
||||
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
|
||||
diagonal=1, ),
|
||||
diagonal=1,
|
||||
),
|
||||
(x_len, 0),
|
||||
value=False, )
|
||||
value=False,
|
||||
)
|
||||
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
|
||||
bsz, src_len = x.shape[0], x_len + y_len
|
||||
_xy_padding_mask = (ar_xy_padding_mask.view(bsz, 1, 1, src_len)
|
||||
.expand(-1, self.num_head, -1, -1)
|
||||
.reshape(bsz * self.num_head, 1, src_len))
|
||||
_xy_padding_mask = (
|
||||
ar_xy_padding_mask.view(bsz, 1, 1, src_len)
|
||||
.expand(-1, self.num_head, -1, -1)
|
||||
.reshape(bsz * self.num_head, 1, src_len)
|
||||
)
|
||||
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
|
||||
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
|
||||
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
|
||||
@ -122,26 +138,28 @@ class Text2SemanticDecoder(nn.Module):
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
xy_dec, _ = self.h(
|
||||
(xy_pos, None),
|
||||
mask=xy_attn_mask, )
|
||||
mask=xy_attn_mask,
|
||||
)
|
||||
logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
|
||||
# loss
|
||||
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
||||
loss = F.cross_entropy(logits, targets, reduction='sum')
|
||||
loss = F.cross_entropy(logits, targets, reduction="sum")
|
||||
acc = self.ar_accuracy_metric(logits.detach(), targets).item()
|
||||
return loss, acc
|
||||
|
||||
# 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
|
||||
def infer(self,
|
||||
x,
|
||||
x_lens,
|
||||
prompts,
|
||||
bert_feature,
|
||||
top_k: int=-100,
|
||||
early_stop_num: int=-1,
|
||||
temperature: float=1.0):
|
||||
|
||||
def infer(
|
||||
self,
|
||||
x,
|
||||
x_lens,
|
||||
prompts,
|
||||
bert_feature,
|
||||
top_k: int = -100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
):
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1,2))
|
||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||
x = self.ar_text_position(x)
|
||||
|
||||
# AR Decoder
|
||||
@ -159,35 +177,37 @@ class Text2SemanticDecoder(nn.Module):
|
||||
x_attn_mask_pad = F.pad(
|
||||
x_attn_mask,
|
||||
(0, y_len),
|
||||
value=True, )
|
||||
value=True,
|
||||
)
|
||||
y_attn_mask = F.pad(
|
||||
torch.triu(
|
||||
torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||
(x_len, 0),
|
||||
value=False, )
|
||||
xy_attn_mask = torch.concat(
|
||||
[x_attn_mask_pad, y_attn_mask], dim=0).to(y.device)
|
||||
value=False,
|
||||
)
|
||||
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
|
||||
y.device
|
||||
)
|
||||
|
||||
xy_dec, _ = self.h(
|
||||
(xy_pos, None),
|
||||
mask=xy_attn_mask, )
|
||||
mask=xy_attn_mask,
|
||||
)
|
||||
logits = self.ar_predict_layer(xy_dec[:, -1])
|
||||
samples = topk_sampling(
|
||||
logits, top_k=top_k, top_p=1.0, temperature=temperature)
|
||||
logits, top_k=top_k, top_p=1.0, temperature=temperature
|
||||
)
|
||||
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len
|
||||
) > early_stop_num:
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||
print("use early stop num:", early_stop_num)
|
||||
stop = True
|
||||
|
||||
if torch.argmax(
|
||||
logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
||||
stop = True
|
||||
if stop:
|
||||
if prompts.shape[1] == y.shape[1]:
|
||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
print('bad zero prediction')
|
||||
print("bad zero prediction")
|
||||
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
||||
break
|
||||
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
||||
@ -198,23 +218,24 @@ class Text2SemanticDecoder(nn.Module):
|
||||
return y
|
||||
|
||||
def pad_y_eos(self, y, y_mask_int, eos_id):
|
||||
targets = F.pad(
|
||||
y, (0, 1), value=0) + eos_id * F.pad(
|
||||
y_mask_int, (0, 1), value=1)
|
||||
targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(
|
||||
y_mask_int, (0, 1), value=1
|
||||
)
|
||||
# 错位
|
||||
return targets[:, :-1], targets[:, 1:]
|
||||
|
||||
def infer_panel(self,
|
||||
x,#####全部文本token
|
||||
x_lens,
|
||||
prompts,####参考音频token
|
||||
bert_feature,
|
||||
top_k: int=-100,
|
||||
early_stop_num: int=-1,
|
||||
temperature: float=1.0):
|
||||
|
||||
def infer_panel(
|
||||
self,
|
||||
x, #####全部文本token
|
||||
x_lens,
|
||||
prompts, ####参考音频token
|
||||
bert_feature,
|
||||
top_k: int = -100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
):
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1,2))
|
||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||
x = self.ar_text_position(x)
|
||||
|
||||
# AR Decoder
|
||||
@ -224,75 +245,81 @@ class Text2SemanticDecoder(nn.Module):
|
||||
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
||||
stop = False
|
||||
# print(1111111,self.num_layers)
|
||||
cache={
|
||||
"all_stage":self.num_layers,
|
||||
"k":[None]*self.num_layers,###根据配置自己手写
|
||||
"v":[None]*self.num_layers,
|
||||
cache = {
|
||||
"all_stage": self.num_layers,
|
||||
"k": [None] * self.num_layers, ###根据配置自己手写
|
||||
"v": [None] * self.num_layers,
|
||||
# "xy_pos":None,##y_pos位置编码每次都不一样的没法缓存,每次都要重新拼xy_pos.主要还是写法原因,其实是可以历史统一一样的,但也没啥计算量就不管了
|
||||
"y_emb":None,##只需要对最新的samples求emb,再拼历史的就行
|
||||
"y_emb": None, ##只需要对最新的samples求emb,再拼历史的就行
|
||||
# "logits":None,###原版就已经只对结尾求再拼接了,不用管
|
||||
# "xy_dec":None,###不需要,本来只需要最后一个做logits
|
||||
"first_infer":1,
|
||||
"stage":0
|
||||
"first_infer": 1,
|
||||
"stage": 0,
|
||||
}
|
||||
for idx in tqdm(range(1500)):
|
||||
if(cache["first_infer"]==1):
|
||||
if cache["first_infer"] == 1:
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
else:
|
||||
y_emb = torch.cat([cache["y_emb"],self.ar_audio_embedding(y[:,-1:])],1)
|
||||
cache["y_emb"]=y_emb
|
||||
y_emb = torch.cat(
|
||||
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
|
||||
)
|
||||
cache["y_emb"] = y_emb
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
# x 和逐渐增长的 y 一起输入给模型
|
||||
if(cache["first_infer"]==1):
|
||||
if cache["first_infer"] == 1:
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
else:
|
||||
xy_pos=y_pos[:,-1:]
|
||||
xy_pos = y_pos[:, -1:]
|
||||
y_len = y_pos.shape[1]
|
||||
###以下3个不做缓存
|
||||
if (cache["first_infer"] == 1):
|
||||
if cache["first_infer"] == 1:
|
||||
x_attn_mask_pad = F.pad(
|
||||
x_attn_mask,
|
||||
(0, y_len),###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
||||
value=True, )
|
||||
y_attn_mask = F.pad(###yy的右上1扩展到左边xy的0,(y,x+y)
|
||||
torch.triu(
|
||||
torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||
x_attn_mask,
|
||||
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
||||
value=True,
|
||||
)
|
||||
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
||||
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||
(x_len, 0),
|
||||
value=False, )
|
||||
xy_attn_mask = torch.concat(
|
||||
[x_attn_mask_pad, y_attn_mask], dim=0).to(y.device)
|
||||
value=False,
|
||||
)
|
||||
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
|
||||
y.device
|
||||
)
|
||||
else:
|
||||
###最右边一列(是错的)
|
||||
# xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device)
|
||||
# xy_attn_mask[:,-1]=False
|
||||
###最下面一行(是对的)
|
||||
xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool, device=xy_pos.device)
|
||||
xy_attn_mask = torch.zeros(
|
||||
(1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
|
||||
)
|
||||
# pdb.set_trace()
|
||||
###缓存重头戏
|
||||
# print(1111,xy_pos.shape,xy_attn_mask.shape,x_len,y_len)
|
||||
xy_dec, _ = self.h(
|
||||
(xy_pos, None),
|
||||
mask=xy_attn_mask,cache=cache )
|
||||
logits = self.ar_predict_layer(xy_dec[:, -1])##不用改,如果用了cache的默认就是只有一帧,取最后一帧一样的
|
||||
xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache)
|
||||
logits = self.ar_predict_layer(
|
||||
xy_dec[:, -1]
|
||||
) ##不用改,如果用了cache的默认就是只有一帧,取最后一帧一样的
|
||||
# samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
|
||||
samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len
|
||||
) > early_stop_num:
|
||||
samples = sample(
|
||||
logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35
|
||||
)[0].unsqueeze(0)
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||
print("use early stop num:", early_stop_num)
|
||||
stop = True
|
||||
|
||||
if torch.argmax(
|
||||
logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
||||
stop = True
|
||||
if stop:
|
||||
if prompts.shape[1] == y.shape[1]:
|
||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
print('bad zero prediction')
|
||||
print("bad zero prediction")
|
||||
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
||||
break
|
||||
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
||||
# print(samples.shape)#[1,1]#第一个1是bs
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
cache["first_infer"]=0
|
||||
return y,idx
|
||||
cache["first_infer"] = 0
|
||||
return y, idx
|
||||
|
@ -2,6 +2,7 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
@ -9,7 +10,7 @@ def sequence_mask(length, max_length=None):
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def make_pad_mask(lengths: torch.Tensor, max_len: int=0) -> torch.Tensor:
|
||||
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
lengths:
|
||||
@ -38,11 +39,9 @@ def make_pad_mask(lengths: torch.Tensor, max_len: int=0) -> torch.Tensor:
|
||||
|
||||
|
||||
# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
|
||||
def top_k_top_p_filtering(logits,
|
||||
top_k=0,
|
||||
top_p=1.0,
|
||||
filter_value=-float("Inf"),
|
||||
min_tokens_to_keep=1):
|
||||
def top_k_top_p_filtering(
|
||||
logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
|
||||
):
|
||||
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
||||
Args:
|
||||
logits: logits distribution shape (batch size, vocabulary size)
|
||||
@ -53,16 +52,14 @@ def top_k_top_p_filtering(logits,
|
||||
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
||||
"""
|
||||
if top_k > 0:
|
||||
top_k = min(max(top_k, min_tokens_to_keep),
|
||||
logits.size(-1)) # Safety check
|
||||
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
|
||||
# Remove all tokens with a probability less than the last token of the top-k
|
||||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
||||
logits[indices_to_remove] = filter_value
|
||||
|
||||
if top_p < 1.0:
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||
cumulative_probs = torch.cumsum(
|
||||
F.softmax(sorted_logits, dim=-1), dim=-1)
|
||||
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
||||
|
||||
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
||||
sorted_indices_to_remove = cumulative_probs > top_p
|
||||
@ -70,13 +67,13 @@ def top_k_top_p_filtering(logits,
|
||||
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
||||
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
||||
# Shift the indices to the right to keep also the first token above the threshold
|
||||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
|
||||
..., :-1].clone()
|
||||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
||||
sorted_indices_to_remove[..., 0] = 0
|
||||
|
||||
# scatter sorted tensors to original indexing
|
||||
indices_to_remove = sorted_indices_to_remove.scatter(
|
||||
1, sorted_indices, sorted_indices_to_remove)
|
||||
1, sorted_indices, sorted_indices_to_remove
|
||||
)
|
||||
logits[indices_to_remove] = filter_value
|
||||
return logits
|
||||
|
||||
@ -100,6 +97,8 @@ def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
|
||||
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
|
||||
def multinomial_sample_one_no_sync(
|
||||
probs_sort,
|
||||
): # Does multinomial sampling without a cuda synchronization
|
||||
@ -115,7 +114,7 @@ def logits_to_probs(
|
||||
top_p: Optional[int] = None,
|
||||
repetition_penalty: float = 1.0,
|
||||
):
|
||||
previous_tokens=previous_tokens.squeeze()
|
||||
previous_tokens = previous_tokens.squeeze()
|
||||
# print(logits.shape,previous_tokens.shape)
|
||||
# pdb.set_trace()
|
||||
if previous_tokens is not None and repetition_penalty != 1.0:
|
||||
@ -159,4 +158,3 @@ def sample(
|
||||
)
|
||||
idx_next = multinomial_sample_one_no_sync(probs)
|
||||
return idx_next, probs
|
||||
|
||||
|
@ -13,7 +13,9 @@ from torch.nn.parameter import Parameter
|
||||
|
||||
from torch.nn import functional as F
|
||||
from AR.modules.patched_mha_with_cache import multi_head_attention_forward_patched
|
||||
F.multi_head_attention_forward=multi_head_attention_forward_patched
|
||||
|
||||
F.multi_head_attention_forward = multi_head_attention_forward_patched
|
||||
|
||||
|
||||
class MultiheadAttention(Module):
|
||||
r"""Allows the model to jointly attend to information
|
||||
@ -76,66 +78,71 @@ class MultiheadAttention(Module):
|
||||
bias_v: Optional[torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim,
|
||||
num_heads,
|
||||
dropout=0.0,
|
||||
bias=True,
|
||||
add_bias_kv=False,
|
||||
add_zero_attn=False,
|
||||
kdim=None,
|
||||
vdim=None,
|
||||
batch_first=False,
|
||||
linear1_cls=Linear,
|
||||
linear2_cls=Linear,
|
||||
device=None,
|
||||
dtype=None, ) -> None:
|
||||
self,
|
||||
embed_dim,
|
||||
num_heads,
|
||||
dropout=0.0,
|
||||
bias=True,
|
||||
add_bias_kv=False,
|
||||
add_zero_attn=False,
|
||||
kdim=None,
|
||||
vdim=None,
|
||||
batch_first=False,
|
||||
linear1_cls=Linear,
|
||||
linear2_cls=Linear,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(MultiheadAttention, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.kdim = kdim if kdim is not None else embed_dim
|
||||
self.vdim = vdim if vdim is not None else embed_dim
|
||||
self._qkv_same_embed_dim = (self.kdim == embed_dim and
|
||||
self.vdim == embed_dim)
|
||||
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.dropout = dropout
|
||||
self.batch_first = batch_first
|
||||
self.head_dim = embed_dim // num_heads
|
||||
assert (self.head_dim * num_heads == self.embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
assert (
|
||||
self.head_dim * num_heads == self.embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
|
||||
if add_bias_kv:
|
||||
self.bias_k = Parameter(
|
||||
torch.empty((1, 1, embed_dim), **factory_kwargs))
|
||||
self.bias_v = Parameter(
|
||||
torch.empty((1, 1, embed_dim), **factory_kwargs))
|
||||
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
||||
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
||||
else:
|
||||
self.bias_k = self.bias_v = None
|
||||
|
||||
if linear1_cls == Linear:
|
||||
if not self._qkv_same_embed_dim:
|
||||
self.q_proj_weight = Parameter(
|
||||
torch.empty((embed_dim, embed_dim), **factory_kwargs))
|
||||
torch.empty((embed_dim, embed_dim), **factory_kwargs)
|
||||
)
|
||||
self.k_proj_weight = Parameter(
|
||||
torch.empty((embed_dim, self.kdim), **factory_kwargs))
|
||||
torch.empty((embed_dim, self.kdim), **factory_kwargs)
|
||||
)
|
||||
self.v_proj_weight = Parameter(
|
||||
torch.empty((embed_dim, self.vdim), **factory_kwargs))
|
||||
torch.empty((embed_dim, self.vdim), **factory_kwargs)
|
||||
)
|
||||
self.register_parameter("in_proj_weight", None)
|
||||
else:
|
||||
self.in_proj_weight = Parameter(
|
||||
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))
|
||||
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)
|
||||
)
|
||||
self.register_parameter("q_proj_weight", None)
|
||||
self.register_parameter("k_proj_weight", None)
|
||||
self.register_parameter("v_proj_weight", None)
|
||||
|
||||
if bias:
|
||||
self.in_proj_bias = Parameter(
|
||||
torch.empty(3 * embed_dim, **factory_kwargs))
|
||||
torch.empty(3 * embed_dim, **factory_kwargs)
|
||||
)
|
||||
else:
|
||||
self.register_parameter("in_proj_bias", None)
|
||||
self.out_proj = NonDynamicallyQuantizableLinear(
|
||||
embed_dim, embed_dim, bias=bias, **factory_kwargs)
|
||||
embed_dim, embed_dim, bias=bias, **factory_kwargs
|
||||
)
|
||||
|
||||
self._reset_parameters()
|
||||
else:
|
||||
@ -143,7 +150,8 @@ class MultiheadAttention(Module):
|
||||
raise NotImplementedError
|
||||
else:
|
||||
self.in_proj_linear = linear1_cls(
|
||||
embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs)
|
||||
embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs
|
||||
)
|
||||
self.in_proj_weight = self.in_proj_linear.weight
|
||||
|
||||
self.register_parameter("q_proj_weight", None)
|
||||
@ -156,7 +164,8 @@ class MultiheadAttention(Module):
|
||||
self.register_parameter("in_proj_bias", None)
|
||||
|
||||
self.out_proj = linear2_cls(
|
||||
embed_dim, embed_dim, bias=bias, **factory_kwargs)
|
||||
embed_dim, embed_dim, bias=bias, **factory_kwargs
|
||||
)
|
||||
|
||||
if self.bias_k is not None:
|
||||
xavier_normal_(self.bias_k)
|
||||
@ -190,14 +199,15 @@ class MultiheadAttention(Module):
|
||||
super(MultiheadAttention, self).__setstate__(state)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
key_padding_mask: Optional[Tensor]=None,
|
||||
need_weights: bool=True,
|
||||
attn_mask: Optional[Tensor]=None,
|
||||
average_attn_weights: bool=True,cache=None
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
average_attn_weights: bool = True,
|
||||
cache=None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
@ -251,23 +261,26 @@ class MultiheadAttention(Module):
|
||||
if key_padding_mask is not None:
|
||||
_kpm_dtype = key_padding_mask.dtype
|
||||
if _kpm_dtype != torch.bool and not torch.is_floating_point(
|
||||
key_padding_mask):
|
||||
key_padding_mask
|
||||
):
|
||||
raise AssertionError(
|
||||
"only bool and floating types of key_padding_mask are supported"
|
||||
)
|
||||
why_not_fast_path = ""
|
||||
if not is_batched:
|
||||
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
||||
why_not_fast_path = (
|
||||
f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
||||
)
|
||||
elif query is not key or key is not value:
|
||||
# When lifting this restriction, don't forget to either
|
||||
# enforce that the dtypes all match or test cases where
|
||||
# they don't!
|
||||
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
|
||||
elif (self.in_proj_bias is not None and
|
||||
query.dtype != self.in_proj_bias.dtype):
|
||||
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
|
||||
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
|
||||
elif (self.in_proj_weight is not None and
|
||||
query.dtype != self.in_proj_weight.dtype):
|
||||
elif (
|
||||
self.in_proj_weight is not None and query.dtype != self.in_proj_weight.dtype
|
||||
):
|
||||
# this case will fail anyway, but at least they'll get a useful error message.
|
||||
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
|
||||
elif self.training:
|
||||
@ -288,29 +301,41 @@ class MultiheadAttention(Module):
|
||||
why_not_fast_path = "attn_mask was not None"
|
||||
elif query.is_nested and key_padding_mask is not None:
|
||||
why_not_fast_path = (
|
||||
"key_padding_mask is not supported with NestedTensor input")
|
||||
"key_padding_mask is not supported with NestedTensor input"
|
||||
)
|
||||
elif self.num_heads % 2 == 1:
|
||||
why_not_fast_path = "num_heads is odd"
|
||||
elif torch.is_autocast_enabled():
|
||||
why_not_fast_path = "autocast is enabled"
|
||||
|
||||
if not why_not_fast_path:
|
||||
tensor_args = (query, key, value, self.in_proj_weight,
|
||||
self.in_proj_bias, self.out_proj.weight,
|
||||
self.out_proj.bias, )
|
||||
tensor_args = (
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
self.in_proj_weight,
|
||||
self.in_proj_bias,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
)
|
||||
# We have to use list comprehensions below because TorchScript does not support
|
||||
# generator expressions.
|
||||
if torch.overrides.has_torch_function(tensor_args):
|
||||
why_not_fast_path = "some Tensor argument has_torch_function"
|
||||
elif not all([(x is None or x.is_cuda or "cpu" in str(x.device))
|
||||
for x in tensor_args]):
|
||||
why_not_fast_path = (
|
||||
"some Tensor argument is neither CUDA nor CPU")
|
||||
elif not all(
|
||||
[
|
||||
(x is None or x.is_cuda or "cpu" in str(x.device))
|
||||
for x in tensor_args
|
||||
]
|
||||
):
|
||||
why_not_fast_path = "some Tensor argument is neither CUDA nor CPU"
|
||||
elif torch.is_grad_enabled() and any(
|
||||
[x is not None and x.requires_grad for x in tensor_args]):
|
||||
[x is not None and x.requires_grad for x in tensor_args]
|
||||
):
|
||||
why_not_fast_path = (
|
||||
"grad is enabled and at least one of query or the "
|
||||
"input/output projection weights or biases requires_grad")
|
||||
"input/output projection weights or biases requires_grad"
|
||||
)
|
||||
if not why_not_fast_path:
|
||||
return torch._native_multi_head_attention(
|
||||
query,
|
||||
@ -322,17 +347,21 @@ class MultiheadAttention(Module):
|
||||
self.in_proj_bias,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
key_padding_mask
|
||||
if key_padding_mask is not None else attn_mask,
|
||||
key_padding_mask if key_padding_mask is not None else attn_mask,
|
||||
need_weights,
|
||||
average_attn_weights,
|
||||
1 if key_padding_mask is not None else 0
|
||||
if attn_mask is not None else None, )
|
||||
1
|
||||
if key_padding_mask is not None
|
||||
else 0
|
||||
if attn_mask is not None
|
||||
else None,
|
||||
)
|
||||
|
||||
any_nested = query.is_nested or key.is_nested or value.is_nested
|
||||
assert not any_nested, (
|
||||
"MultiheadAttention does not support NestedTensor outside of its fast path. "
|
||||
+ f"The fast path was not hit because {why_not_fast_path}")
|
||||
+ f"The fast path was not hit because {why_not_fast_path}"
|
||||
)
|
||||
|
||||
if self.batch_first and is_batched:
|
||||
# make sure that the transpose op does not affect the "is" property
|
||||
@ -343,9 +372,7 @@ class MultiheadAttention(Module):
|
||||
query, key = [x.transpose(1, 0) for x in (query, key)]
|
||||
value = key
|
||||
else:
|
||||
query, key, value = [
|
||||
x.transpose(1, 0) for x in (query, key, value)
|
||||
]
|
||||
query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
|
||||
|
||||
if not self._qkv_same_embed_dim:
|
||||
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
||||
@ -370,7 +397,9 @@ class MultiheadAttention(Module):
|
||||
q_proj_weight=self.q_proj_weight,
|
||||
k_proj_weight=self.k_proj_weight,
|
||||
v_proj_weight=self.v_proj_weight,
|
||||
average_attn_weights=average_attn_weights,cache=cache )
|
||||
average_attn_weights=average_attn_weights,
|
||||
cache=cache,
|
||||
)
|
||||
else:
|
||||
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
||||
query,
|
||||
@ -390,7 +419,9 @@ class MultiheadAttention(Module):
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
average_attn_weights=average_attn_weights,cache=cache )
|
||||
average_attn_weights=average_attn_weights,
|
||||
cache=cache,
|
||||
)
|
||||
if self.batch_first and is_batched:
|
||||
return attn_output.transpose(1, 0), attn_output_weights
|
||||
else:
|
||||
|
@ -7,10 +7,11 @@ from torch import nn
|
||||
|
||||
class TokenEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
vocab_size: int,
|
||||
dropout: float=0.0, ):
|
||||
self,
|
||||
embedding_dim: int,
|
||||
vocab_size: int,
|
||||
dropout: float = 0.0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
@ -24,7 +25,7 @@ class TokenEmbedding(nn.Module):
|
||||
return self.word_embeddings.weight
|
||||
|
||||
def embedding(self, index: int) -> torch.Tensor:
|
||||
return self.word_embeddings.weight[index:index + 1]
|
||||
return self.word_embeddings.weight[index : index + 1]
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.word_embeddings(x)
|
||||
@ -34,11 +35,12 @@ class TokenEmbedding(nn.Module):
|
||||
|
||||
class SinePositionalEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
dropout: float=0.0,
|
||||
scale: bool=False,
|
||||
alpha: bool=False, ):
|
||||
self,
|
||||
embedding_dim: int,
|
||||
dropout: float = 0.0,
|
||||
scale: bool = False,
|
||||
alpha: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.embedding_dim = embedding_dim
|
||||
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
|
||||
@ -59,13 +61,14 @@ class SinePositionalEmbedding(nn.Module):
|
||||
pe = torch.zeros(x.size(1), self.embedding_dim)
|
||||
if self.reverse:
|
||||
position = torch.arange(
|
||||
x.size(1) - 1, -1, -1.0, dtype=torch.float32).unsqueeze(1)
|
||||
x.size(1) - 1, -1, -1.0, dtype=torch.float32
|
||||
).unsqueeze(1)
|
||||
else:
|
||||
position = torch.arange(
|
||||
0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.embedding_dim, 2, dtype=torch.float32) *
|
||||
-(math.log(10000.0) / self.embedding_dim))
|
||||
torch.arange(0, self.embedding_dim, 2, dtype=torch.float32)
|
||||
* -(math.log(10000.0) / self.embedding_dim)
|
||||
)
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
pe = pe.unsqueeze(0)
|
||||
@ -74,5 +77,5 @@ class SinePositionalEmbedding(nn.Module):
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
self.extend_pe(x)
|
||||
output = x.unsqueeze(-1) if x.ndim == 2 else x
|
||||
output = output * self.x_scale + self.alpha * self.pe[:, :x.size(1)]
|
||||
output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)]
|
||||
return self.dropout(output)
|
||||
|
@ -12,14 +12,16 @@ class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler):
|
||||
Implements Warmup learning rate schedule until 'warmup_steps', going from 'init_lr' to 'peak_lr' for multiple optimizers.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
optimizer,
|
||||
init_lr,
|
||||
peak_lr,
|
||||
end_lr,
|
||||
warmup_steps=10000,
|
||||
total_steps=400000,
|
||||
current_step=0):
|
||||
def __init__(
|
||||
self,
|
||||
optimizer,
|
||||
init_lr,
|
||||
peak_lr,
|
||||
end_lr,
|
||||
warmup_steps=10000,
|
||||
total_steps=400000,
|
||||
current_step=0,
|
||||
):
|
||||
self.init_lr = init_lr
|
||||
self.peak_lr = peak_lr
|
||||
self.end_lr = end_lr
|
||||
@ -33,10 +35,10 @@ class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler):
|
||||
self._last_lr = [self.lr]
|
||||
|
||||
def set_lr(self, lr):
|
||||
self._last_lr = [g['lr'] for g in self.optimizer.param_groups]
|
||||
self._last_lr = [g["lr"] for g in self.optimizer.param_groups]
|
||||
for g in self.optimizer.param_groups:
|
||||
# g['lr'] = lr
|
||||
g['lr'] = self.end_lr###锁定用线性
|
||||
g["lr"] = self.end_lr ###锁定用线性
|
||||
|
||||
def step(self):
|
||||
if self._current_step < self.warmup_steps:
|
||||
@ -47,7 +49,8 @@ class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler):
|
||||
|
||||
else:
|
||||
decay_ratio = (self._current_step - self.warmup_steps) / (
|
||||
self.total_steps - self.warmup_steps)
|
||||
self.total_steps - self.warmup_steps
|
||||
)
|
||||
if decay_ratio < 0.0 or decay_ratio > 1.0:
|
||||
raise RuntimeError(
|
||||
"Decay ratio must be in [0.0, 1.0]. Fix LR scheduler settings."
|
||||
@ -55,25 +58,19 @@ class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler):
|
||||
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
||||
lr = self.end_lr + coeff * (self.peak_lr - self.end_lr)
|
||||
|
||||
self.lr=lr=self.end_lr=0.002###锁定用线性###不听话,直接锁定!
|
||||
self.lr = lr = self.end_lr = 0.002 ###锁定用线性###不听话,直接锁定!
|
||||
self.set_lr(lr)
|
||||
self.lr = lr
|
||||
self._current_step += 1
|
||||
return self.lr
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
m = nn.Linear(10, 10)
|
||||
opt = Adam(m.parameters(), lr=1e-4)
|
||||
s = WarmupCosineLRSchedule(
|
||||
opt,
|
||||
1e-6,
|
||||
2e-4,
|
||||
1e-6,
|
||||
warmup_steps=2000,
|
||||
total_steps=20000,
|
||||
current_step=0)
|
||||
opt, 1e-6, 2e-4, 1e-6, warmup_steps=2000, total_steps=20000, current_step=0
|
||||
)
|
||||
lrs = []
|
||||
for i in range(25000):
|
||||
s.step()
|
||||
|
@ -1,9 +1,16 @@
|
||||
from torch.nn.functional import *
|
||||
from torch.nn.functional import _mha_shape_check,_canonical_mask,_none_or_dtype,_in_projection_packed
|
||||
from torch.nn.functional import (
|
||||
_mha_shape_check,
|
||||
_canonical_mask,
|
||||
_none_or_dtype,
|
||||
_in_projection_packed,
|
||||
)
|
||||
|
||||
# import torch
|
||||
# Tensor = torch.Tensor
|
||||
# from typing import Callable, List, Optional, Tuple, Union
|
||||
|
||||
|
||||
def multi_head_attention_forward_patched(
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
@ -29,7 +36,8 @@ def multi_head_attention_forward_patched(
|
||||
static_k: Optional[Tensor] = None,
|
||||
static_v: Optional[Tensor] = None,
|
||||
average_attn_weights: bool = True,
|
||||
is_causal: bool = False,cache=None
|
||||
is_causal: bool = False,
|
||||
cache=None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
@ -105,7 +113,17 @@ def multi_head_attention_forward_patched(
|
||||
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
||||
head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.
|
||||
"""
|
||||
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
|
||||
tens_ops = (
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
in_proj_weight,
|
||||
in_proj_bias,
|
||||
bias_k,
|
||||
bias_v,
|
||||
out_proj_weight,
|
||||
out_proj_bias,
|
||||
)
|
||||
if has_torch_function(tens_ops):
|
||||
return handle_torch_function(
|
||||
multi_head_attention_forward,
|
||||
@ -134,10 +152,13 @@ def multi_head_attention_forward_patched(
|
||||
v_proj_weight=v_proj_weight,
|
||||
static_k=static_k,
|
||||
static_v=static_v,
|
||||
average_attn_weights=average_attn_weights,cache=cache
|
||||
average_attn_weights=average_attn_weights,
|
||||
cache=cache,
|
||||
)
|
||||
|
||||
is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
|
||||
is_batched = _mha_shape_check(
|
||||
query, key, value, key_padding_mask, attn_mask, num_heads
|
||||
)
|
||||
|
||||
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
|
||||
# is batched, run the computation and before returning squeeze the
|
||||
@ -159,7 +180,7 @@ def multi_head_attention_forward_patched(
|
||||
mask_name="key_padding_mask",
|
||||
other_type=_none_or_dtype(attn_mask),
|
||||
other_name="attn_mask",
|
||||
target_type=query.dtype
|
||||
target_type=query.dtype,
|
||||
)
|
||||
|
||||
if is_causal and attn_mask is None:
|
||||
@ -184,59 +205,84 @@ def multi_head_attention_forward_patched(
|
||||
check_other=False,
|
||||
)
|
||||
|
||||
|
||||
if key_padding_mask is not None:
|
||||
# We have the attn_mask, and use that to merge kpm into it.
|
||||
# Turn off use of is_causal hint, as the merged mask is no
|
||||
# longer causal.
|
||||
is_causal = False
|
||||
|
||||
assert embed_dim == embed_dim_to_check, \
|
||||
f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
|
||||
assert (
|
||||
embed_dim == embed_dim_to_check
|
||||
), f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
|
||||
if isinstance(embed_dim, torch.Tensor):
|
||||
# embed_dim can be a tensor when JIT tracing
|
||||
head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
|
||||
head_dim = embed_dim.div(num_heads, rounding_mode="trunc")
|
||||
else:
|
||||
head_dim = embed_dim // num_heads
|
||||
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
|
||||
assert (
|
||||
head_dim * num_heads == embed_dim
|
||||
), f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
|
||||
if use_separate_proj_weight:
|
||||
# allow MHA to have different embedding dimensions when separate projection weights are used
|
||||
assert key.shape[:2] == value.shape[:2], \
|
||||
f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
|
||||
assert (
|
||||
key.shape[:2] == value.shape[:2]
|
||||
), f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
|
||||
else:
|
||||
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
|
||||
assert (
|
||||
key.shape == value.shape
|
||||
), f"key shape {key.shape} does not match value shape {value.shape}"
|
||||
|
||||
#
|
||||
# compute in-projection
|
||||
#
|
||||
if not use_separate_proj_weight:
|
||||
assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
|
||||
assert (
|
||||
in_proj_weight is not None
|
||||
), "use_separate_proj_weight is False but in_proj_weight is None"
|
||||
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
|
||||
else:
|
||||
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
|
||||
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
|
||||
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
|
||||
assert (
|
||||
q_proj_weight is not None
|
||||
), "use_separate_proj_weight is True but q_proj_weight is None"
|
||||
assert (
|
||||
k_proj_weight is not None
|
||||
), "use_separate_proj_weight is True but k_proj_weight is None"
|
||||
assert (
|
||||
v_proj_weight is not None
|
||||
), "use_separate_proj_weight is True but v_proj_weight is None"
|
||||
if in_proj_bias is None:
|
||||
b_q = b_k = b_v = None
|
||||
else:
|
||||
b_q, b_k, b_v = in_proj_bias.chunk(3)
|
||||
q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
|
||||
if(cache!=None):
|
||||
if(cache["first_infer"]==1):
|
||||
cache["k"][cache["stage"]]=k
|
||||
q, k, v = _in_projection(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
q_proj_weight,
|
||||
k_proj_weight,
|
||||
v_proj_weight,
|
||||
b_q,
|
||||
b_k,
|
||||
b_v,
|
||||
)
|
||||
if cache != None:
|
||||
if cache["first_infer"] == 1:
|
||||
cache["k"][cache["stage"]] = k
|
||||
# print(0,cache["k"].shape)
|
||||
cache["v"][cache["stage"]]=v
|
||||
else:###12个layer每个都要留自己的cache_kv
|
||||
cache["v"][cache["stage"]] = v
|
||||
else: ###12个layer每个都要留自己的cache_kv
|
||||
# print(1,cache["k"].shape)
|
||||
cache["k"][cache["stage"]]=torch.cat([cache["k"][cache["stage"]],k],0)##本来时序是1,但是proj的时候可能transpose了所以时序到0维了
|
||||
cache["v"][cache["stage"]]=torch.cat([cache["v"][cache["stage"]],v],0)
|
||||
cache["k"][cache["stage"]] = torch.cat(
|
||||
[cache["k"][cache["stage"]], k], 0
|
||||
) ##本来时序是1,但是proj的时候可能transpose了所以时序到0维了
|
||||
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]], v], 0)
|
||||
# print(2, cache["k"].shape)
|
||||
src_len = cache["k"][cache["stage"]].shape[0]
|
||||
k=cache["k"][cache["stage"]]
|
||||
v=cache["v"][cache["stage"]]
|
||||
k = cache["k"][cache["stage"]]
|
||||
v = cache["v"][cache["stage"]]
|
||||
# if attn_mask is not None:
|
||||
# attn_mask=attn_mask[-1:,]
|
||||
# print(attn_mask.shape,attn_mask)
|
||||
# print(attn_mask.shape,attn_mask)
|
||||
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
|
||||
# print(2333,cache)
|
||||
# prep attention mask
|
||||
@ -255,14 +301,20 @@ def multi_head_attention_forward_patched(
|
||||
if attn_mask.dim() == 2:
|
||||
correct_2d_size = (tgt_len, src_len)
|
||||
if attn_mask.shape != correct_2d_size:
|
||||
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
|
||||
raise RuntimeError(
|
||||
f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}."
|
||||
)
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
elif attn_mask.dim() == 3:
|
||||
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
|
||||
if attn_mask.shape != correct_3d_size:
|
||||
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
|
||||
raise RuntimeError(
|
||||
f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}."
|
||||
)
|
||||
else:
|
||||
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
|
||||
raise RuntimeError(
|
||||
f"attn_mask's dimension {attn_mask.dim()} is not supported"
|
||||
)
|
||||
|
||||
# add bias along batch dimension (currently second)
|
||||
if bias_k is not None and bias_v is not None:
|
||||
@ -286,26 +338,34 @@ def multi_head_attention_forward_patched(
|
||||
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
||||
else:
|
||||
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
||||
assert static_k.size(0) == bsz * num_heads, \
|
||||
f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
|
||||
assert static_k.size(2) == head_dim, \
|
||||
f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
|
||||
assert (
|
||||
static_k.size(0) == bsz * num_heads
|
||||
), f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
|
||||
assert (
|
||||
static_k.size(2) == head_dim
|
||||
), f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
|
||||
k = static_k
|
||||
if static_v is None:
|
||||
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
||||
else:
|
||||
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
||||
assert static_v.size(0) == bsz * num_heads, \
|
||||
f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
|
||||
assert static_v.size(2) == head_dim, \
|
||||
f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
|
||||
assert (
|
||||
static_v.size(0) == bsz * num_heads
|
||||
), f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
|
||||
assert (
|
||||
static_v.size(2) == head_dim
|
||||
), f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
|
||||
v = static_v
|
||||
|
||||
# add zero attention along batch dimension (now first)
|
||||
if add_zero_attn:
|
||||
zero_attn_shape = (bsz * num_heads, 1, head_dim)
|
||||
k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
|
||||
v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
|
||||
k = torch.cat(
|
||||
[k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1
|
||||
)
|
||||
v = torch.cat(
|
||||
[v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1
|
||||
)
|
||||
if attn_mask is not None:
|
||||
attn_mask = pad(attn_mask, (0, 1))
|
||||
if key_padding_mask is not None:
|
||||
@ -316,10 +376,15 @@ def multi_head_attention_forward_patched(
|
||||
|
||||
# merge key padding and attention masks
|
||||
if key_padding_mask is not None:
|
||||
assert key_padding_mask.shape == (bsz, src_len), \
|
||||
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
|
||||
key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
|
||||
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
|
||||
assert key_padding_mask.shape == (
|
||||
bsz,
|
||||
src_len,
|
||||
), f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
|
||||
key_padding_mask = (
|
||||
key_padding_mask.view(bsz, 1, 1, src_len)
|
||||
.expand(-1, num_heads, -1, -1)
|
||||
.reshape(bsz * num_heads, 1, src_len)
|
||||
)
|
||||
if attn_mask is None:
|
||||
attn_mask = key_padding_mask
|
||||
else:
|
||||
@ -337,10 +402,14 @@ def multi_head_attention_forward_patched(
|
||||
B, Nt, E = q.shape
|
||||
q_scaled = q / math.sqrt(E)
|
||||
|
||||
assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
|
||||
assert not (
|
||||
is_causal and attn_mask is None
|
||||
), "FIXME: is_causal not implemented for need_weights"
|
||||
|
||||
if attn_mask is not None:
|
||||
attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
|
||||
attn_output_weights = torch.baddbmm(
|
||||
attn_mask, q_scaled, k.transpose(-2, -1)
|
||||
)
|
||||
else:
|
||||
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
|
||||
attn_output_weights = softmax(attn_output_weights, dim=-1)
|
||||
@ -349,7 +418,9 @@ def multi_head_attention_forward_patched(
|
||||
|
||||
attn_output = torch.bmm(attn_output_weights, v)
|
||||
|
||||
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
|
||||
attn_output = (
|
||||
attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
|
||||
)
|
||||
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
||||
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
||||
|
||||
@ -377,8 +448,12 @@ def multi_head_attention_forward_patched(
|
||||
k = k.view(bsz, num_heads, src_len, head_dim)
|
||||
v = v.view(bsz, num_heads, src_len, head_dim)
|
||||
|
||||
attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
|
||||
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
||||
attn_output = scaled_dot_product_attention(
|
||||
q, k, v, attn_mask, dropout_p, is_causal
|
||||
)
|
||||
attn_output = (
|
||||
attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
||||
)
|
||||
|
||||
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
||||
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
||||
|
@ -61,8 +61,9 @@ class DoubleSwishFunction(torch.autograd.Function):
|
||||
# floors), should be expectation-preserving.
|
||||
floor = -0.043637
|
||||
ceil = 1.2
|
||||
d_scaled = (deriv - floor) * (255.0 / (ceil - floor)
|
||||
) + torch.rand_like(deriv)
|
||||
d_scaled = (deriv - floor) * (255.0 / (ceil - floor)) + torch.rand_like(
|
||||
deriv
|
||||
)
|
||||
if __name__ == "__main__":
|
||||
# for self-testing only.
|
||||
assert d_scaled.min() >= 0.0
|
||||
@ -75,7 +76,7 @@ class DoubleSwishFunction(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, y_grad: Tensor) -> Tensor:
|
||||
(d, ) = ctx.saved_tensors
|
||||
(d,) = ctx.saved_tensors
|
||||
# the same constants as used in forward pass.
|
||||
floor = -0.043637
|
||||
ceil = 1.2
|
||||
@ -96,11 +97,12 @@ class DoubleSwish(torch.nn.Module):
|
||||
class ActivationBalancerFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(
|
||||
ctx,
|
||||
x: Tensor,
|
||||
scale_factor: Tensor,
|
||||
sign_factor: Optional[Tensor],
|
||||
channel_dim: int, ) -> Tensor:
|
||||
ctx,
|
||||
x: Tensor,
|
||||
scale_factor: Tensor,
|
||||
sign_factor: Optional[Tensor],
|
||||
channel_dim: int,
|
||||
) -> Tensor:
|
||||
if channel_dim < 0:
|
||||
channel_dim += x.ndim
|
||||
ctx.channel_dim = channel_dim
|
||||
@ -125,16 +127,22 @@ class ActivationBalancerFunction(torch.autograd.Function):
|
||||
scale_factor = scale_factor.unsqueeze(-1)
|
||||
factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
|
||||
neg_delta_grad = x_grad.abs() * factor
|
||||
return (x_grad - neg_delta_grad, None, None, None, )
|
||||
return (
|
||||
x_grad - neg_delta_grad,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
)
|
||||
|
||||
|
||||
def _compute_scale_factor(
|
||||
x: Tensor,
|
||||
channel_dim: int,
|
||||
min_abs: float,
|
||||
max_abs: float,
|
||||
gain_factor: float,
|
||||
max_factor: float, ) -> Tensor:
|
||||
x: Tensor,
|
||||
channel_dim: int,
|
||||
min_abs: float,
|
||||
max_abs: float,
|
||||
gain_factor: float,
|
||||
max_factor: float,
|
||||
) -> Tensor:
|
||||
if channel_dim < 0:
|
||||
channel_dim += x.ndim
|
||||
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
||||
@ -145,23 +153,25 @@ def _compute_scale_factor(
|
||||
else:
|
||||
# below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if
|
||||
# x_abs)_mean , min_abs.
|
||||
below_threshold = (
|
||||
(min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp(
|
||||
min=0, max=max_factor)
|
||||
below_threshold = ((min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp(
|
||||
min=0, max=max_factor
|
||||
)
|
||||
|
||||
above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(
|
||||
min=0, max=max_factor)
|
||||
min=0, max=max_factor
|
||||
)
|
||||
|
||||
return below_threshold - above_threshold
|
||||
|
||||
|
||||
def _compute_sign_factor(
|
||||
x: Tensor,
|
||||
channel_dim: int,
|
||||
min_positive: float,
|
||||
max_positive: float,
|
||||
gain_factor: float,
|
||||
max_factor: float, ) -> Tensor:
|
||||
x: Tensor,
|
||||
channel_dim: int,
|
||||
min_positive: float,
|
||||
max_positive: float,
|
||||
gain_factor: float,
|
||||
max_factor: float,
|
||||
) -> Tensor:
|
||||
if channel_dim < 0:
|
||||
channel_dim += x.ndim
|
||||
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
||||
@ -171,18 +181,18 @@ def _compute_sign_factor(
|
||||
else:
|
||||
# 0 if proportion_positive >= min_positive, else can be
|
||||
# as large as max_factor.
|
||||
factor1 = ((min_positive - proportion_positive) *
|
||||
(gain_factor / min_positive)).clamp_(
|
||||
min=0, max=max_factor)
|
||||
factor1 = (
|
||||
(min_positive - proportion_positive) * (gain_factor / min_positive)
|
||||
).clamp_(min=0, max=max_factor)
|
||||
|
||||
if max_positive == 1.0:
|
||||
factor2 = 0.0
|
||||
else:
|
||||
# 0 if self.proportion_positive <= max_positive, else can be
|
||||
# as large as -max_factor.
|
||||
factor2 = ((proportion_positive - max_positive) *
|
||||
(gain_factor / (1.0 - max_positive))).clamp_(
|
||||
min=0, max=max_factor)
|
||||
factor2 = (
|
||||
(proportion_positive - max_positive) * (gain_factor / (1.0 - max_positive))
|
||||
).clamp_(min=0, max=max_factor)
|
||||
sign_factor = factor1 - factor2
|
||||
# require min_positive != 0 or max_positive != 1:
|
||||
assert not isinstance(sign_factor, float)
|
||||
@ -230,17 +240,18 @@ class ActivationBalancer(torch.nn.Module):
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_channels: int,
|
||||
channel_dim: int,
|
||||
min_positive: float=0.05,
|
||||
max_positive: float=0.95,
|
||||
max_factor: float=0.04,
|
||||
sign_gain_factor: float=0.01,
|
||||
scale_gain_factor: float=0.02,
|
||||
min_abs: float=0.2,
|
||||
max_abs: float=100.0,
|
||||
min_prob: float=0.1, ):
|
||||
self,
|
||||
num_channels: int,
|
||||
channel_dim: int,
|
||||
min_positive: float = 0.05,
|
||||
max_positive: float = 0.95,
|
||||
max_factor: float = 0.04,
|
||||
sign_gain_factor: float = 0.01,
|
||||
scale_gain_factor: float = 0.02,
|
||||
min_abs: float = 0.2,
|
||||
max_abs: float = 100.0,
|
||||
min_prob: float = 0.1,
|
||||
):
|
||||
super(ActivationBalancer, self).__init__()
|
||||
self.num_channels = num_channels
|
||||
self.channel_dim = channel_dim
|
||||
@ -260,8 +271,7 @@ class ActivationBalancer(torch.nn.Module):
|
||||
self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
if (torch.jit.is_scripting() or not x.requires_grad or
|
||||
torch.jit.is_tracing()):
|
||||
if torch.jit.is_scripting() or not x.requires_grad or torch.jit.is_tracing():
|
||||
return _no_op(x)
|
||||
|
||||
count = self.cpu_count
|
||||
@ -276,7 +286,7 @@ class ActivationBalancer(torch.nn.Module):
|
||||
|
||||
# the prob of doing some work exponentially decreases from 0.5 till it hits
|
||||
# a floor at min_prob (==0.1, by default)
|
||||
prob = max(self.min_prob, 0.5**(1 + (count / 4000.0)))
|
||||
prob = max(self.min_prob, 0.5 ** (1 + (count / 4000.0)))
|
||||
|
||||
if random.random() < prob:
|
||||
sign_gain_factor = 0.5
|
||||
@ -287,7 +297,8 @@ class ActivationBalancer(torch.nn.Module):
|
||||
self.min_positive,
|
||||
self.max_positive,
|
||||
gain_factor=self.sign_gain_factor / prob,
|
||||
max_factor=self.max_factor, )
|
||||
max_factor=self.max_factor,
|
||||
)
|
||||
else:
|
||||
sign_factor = None
|
||||
|
||||
@ -297,23 +308,28 @@ class ActivationBalancer(torch.nn.Module):
|
||||
min_abs=self.min_abs,
|
||||
max_abs=self.max_abs,
|
||||
gain_factor=self.scale_gain_factor / prob,
|
||||
max_factor=self.max_factor, )
|
||||
max_factor=self.max_factor,
|
||||
)
|
||||
return ActivationBalancerFunction.apply(
|
||||
x,
|
||||
scale_factor,
|
||||
sign_factor,
|
||||
self.channel_dim, )
|
||||
self.channel_dim,
|
||||
)
|
||||
else:
|
||||
return _no_op(x)
|
||||
|
||||
|
||||
def BalancedDoubleSwish(d_model, channel_dim=-1, max_abs=10.0,
|
||||
min_prob=0.25) -> nn.Sequential:
|
||||
def BalancedDoubleSwish(
|
||||
d_model, channel_dim=-1, max_abs=10.0, min_prob=0.25
|
||||
) -> nn.Sequential:
|
||||
"""
|
||||
ActivationBalancer -> DoubleSwish
|
||||
"""
|
||||
balancer = ActivationBalancer(
|
||||
d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob)
|
||||
d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob
|
||||
)
|
||||
return nn.Sequential(
|
||||
balancer,
|
||||
DoubleSwish(), )
|
||||
DoubleSwish(),
|
||||
)
|
||||
|
@ -26,26 +26,28 @@ class LayerNorm(nn.Module):
|
||||
elementwise_affine: bool
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
normalized_shape: _shape_t,
|
||||
eps: float=1e-5,
|
||||
elementwise_affine: bool=True,
|
||||
device=None,
|
||||
dtype=None, ) -> None:
|
||||
self,
|
||||
normalized_shape: _shape_t,
|
||||
eps: float = 1e-5,
|
||||
elementwise_affine: bool = True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(LayerNorm, self).__init__()
|
||||
if isinstance(normalized_shape, numbers.Integral):
|
||||
# mypy error: incompatible types in assignment
|
||||
normalized_shape = (normalized_shape, ) # type: ignore[assignment]
|
||||
self.normalized_shape = tuple(
|
||||
normalized_shape) # type: ignore[arg-type]
|
||||
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
||||
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
||||
self.eps = eps
|
||||
self.elementwise_affine = elementwise_affine
|
||||
if self.elementwise_affine:
|
||||
self.weight = nn.Parameter(
|
||||
torch.empty(self.normalized_shape, **factory_kwargs))
|
||||
torch.empty(self.normalized_shape, **factory_kwargs)
|
||||
)
|
||||
self.bias = nn.Parameter(
|
||||
torch.empty(self.normalized_shape, **factory_kwargs))
|
||||
torch.empty(self.normalized_shape, **factory_kwargs)
|
||||
)
|
||||
else:
|
||||
self.register_parameter("weight", None)
|
||||
self.register_parameter("bias", None)
|
||||
@ -57,36 +59,43 @@ class LayerNorm(nn.Module):
|
||||
nn.init.ones_(self.weight)
|
||||
nn.init.zeros_(self.bias)
|
||||
|
||||
def forward(self, input: Tensor, embedding: Any=None) -> Tensor:
|
||||
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
input, embedding = input
|
||||
return (F.layer_norm(
|
||||
input,
|
||||
self.normalized_shape,
|
||||
self.weight,
|
||||
self.bias,
|
||||
self.eps, ), embedding, )
|
||||
return (
|
||||
F.layer_norm(
|
||||
input,
|
||||
self.normalized_shape,
|
||||
self.weight,
|
||||
self.bias,
|
||||
self.eps,
|
||||
),
|
||||
embedding,
|
||||
)
|
||||
|
||||
assert embedding is None
|
||||
return F.layer_norm(input, self.normalized_shape, self.weight,
|
||||
self.bias, self.eps)
|
||||
return F.layer_norm(
|
||||
input, self.normalized_shape, self.weight, self.bias, self.eps
|
||||
)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return (
|
||||
"{normalized_shape}, eps={eps}, "
|
||||
"elementwise_affine={elementwise_affine}".format(**self.__dict__))
|
||||
"elementwise_affine={elementwise_affine}".format(**self.__dict__)
|
||||
)
|
||||
|
||||
|
||||
class IdentityNorm(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
eps: float=1e-5,
|
||||
device=None,
|
||||
dtype=None, ) -> None:
|
||||
self,
|
||||
d_model: int,
|
||||
eps: float = 1e-5,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
super(IdentityNorm, self).__init__()
|
||||
|
||||
def forward(self, input: Tensor, embedding: Any=None) -> Tensor:
|
||||
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
return input
|
||||
|
||||
@ -121,11 +130,13 @@ class TransformerEncoder(nn.Module):
|
||||
self.norm = norm
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
mask: Optional[Tensor]=None,
|
||||
src_key_padding_mask: Optional[Tensor]=None,
|
||||
return_layer_states: bool=False,cache=None ) -> Tensor:
|
||||
self,
|
||||
src: Tensor,
|
||||
mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
return_layer_states: bool = False,
|
||||
cache=None,
|
||||
) -> Tensor:
|
||||
r"""Pass the input through the encoder layers in turn.
|
||||
|
||||
Args:
|
||||
@ -144,7 +155,9 @@ class TransformerEncoder(nn.Module):
|
||||
output = mod(
|
||||
output,
|
||||
src_mask=mask,
|
||||
src_key_padding_mask=src_key_padding_mask, cache=cache)
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
cache=cache,
|
||||
)
|
||||
layer_states.append(output[0])
|
||||
|
||||
if self.norm is not None:
|
||||
@ -154,9 +167,12 @@ class TransformerEncoder(nn.Module):
|
||||
|
||||
output = src
|
||||
for mod in self.layers:
|
||||
output = mod(output,
|
||||
src_mask=mask,
|
||||
src_key_padding_mask=src_key_padding_mask, cache=cache)
|
||||
output = mod(
|
||||
output,
|
||||
src_mask=mask,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
cache=cache,
|
||||
)
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
@ -168,43 +184,47 @@ class TransformerEncoderLayer(nn.Module):
|
||||
__constants__ = ["batch_first", "norm_first"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int=2048,
|
||||
dropout: float=0.1,
|
||||
activation: Union[str, Callable[[Tensor], Tensor]]=F.relu,
|
||||
batch_first: bool=False,
|
||||
norm_first: bool=False,
|
||||
device=None,
|
||||
dtype=None,
|
||||
linear1_self_attention_cls: nn.Module=nn.Linear,
|
||||
linear2_self_attention_cls: nn.Module=nn.Linear,
|
||||
linear1_feedforward_cls: nn.Module=nn.Linear,
|
||||
linear2_feedforward_cls: nn.Module=nn.Linear,
|
||||
layer_norm_cls: nn.Module=LayerNorm,
|
||||
layer_norm_eps: float=1e-5,
|
||||
adaptive_layer_norm=False, ) -> None:
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
||||
batch_first: bool = False,
|
||||
norm_first: bool = False,
|
||||
device=None,
|
||||
dtype=None,
|
||||
linear1_self_attention_cls: nn.Module = nn.Linear,
|
||||
linear2_self_attention_cls: nn.Module = nn.Linear,
|
||||
linear1_feedforward_cls: nn.Module = nn.Linear,
|
||||
linear2_feedforward_cls: nn.Module = nn.Linear,
|
||||
layer_norm_cls: nn.Module = LayerNorm,
|
||||
layer_norm_eps: float = 1e-5,
|
||||
adaptive_layer_norm=False,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(TransformerEncoderLayer, self).__init__()
|
||||
# print(233333333333,d_model,nhead)
|
||||
# import os
|
||||
# os._exit(2333333)
|
||||
self.self_attn = MultiheadAttention(
|
||||
d_model,#512 16
|
||||
d_model, # 512 16
|
||||
nhead,
|
||||
dropout=dropout,
|
||||
batch_first=batch_first,
|
||||
linear1_cls=linear1_self_attention_cls,
|
||||
linear2_cls=linear2_self_attention_cls,
|
||||
**factory_kwargs, )
|
||||
**factory_kwargs,
|
||||
)
|
||||
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = linear1_feedforward_cls(d_model, dim_feedforward,
|
||||
**factory_kwargs)
|
||||
self.linear1 = linear1_feedforward_cls(
|
||||
d_model, dim_feedforward, **factory_kwargs
|
||||
)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = linear2_feedforward_cls(dim_feedforward, d_model,
|
||||
**factory_kwargs)
|
||||
self.linear2 = linear2_feedforward_cls(
|
||||
dim_feedforward, d_model, **factory_kwargs
|
||||
)
|
||||
|
||||
self.norm_first = norm_first
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
@ -230,11 +250,9 @@ class TransformerEncoderLayer(nn.Module):
|
||||
|
||||
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
if layer_norm_cls == IdentityNorm:
|
||||
norm2 = BalancedBasicNorm(
|
||||
d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
else:
|
||||
norm2 = layer_norm_cls(
|
||||
d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
|
||||
if adaptive_layer_norm:
|
||||
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
|
||||
@ -249,10 +267,12 @@ class TransformerEncoderLayer(nn.Module):
|
||||
self.activation = F.relu
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
src_mask: Optional[Tensor]=None,
|
||||
src_key_padding_mask: Optional[Tensor]=None,cache=None ) -> Tensor:
|
||||
self,
|
||||
src: Tensor,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
cache=None,
|
||||
) -> Tensor:
|
||||
r"""Pass the input through the encoder layer.
|
||||
|
||||
Args:
|
||||
@ -272,7 +292,8 @@ class TransformerEncoderLayer(nn.Module):
|
||||
if src_key_padding_mask is not None:
|
||||
_skpm_dtype = src_key_padding_mask.dtype
|
||||
if _skpm_dtype != torch.bool and not torch.is_floating_point(
|
||||
src_key_padding_mask):
|
||||
src_key_padding_mask
|
||||
):
|
||||
raise AssertionError(
|
||||
"only bool and floating types of key_padding_mask are supported"
|
||||
)
|
||||
@ -281,12 +302,15 @@ class TransformerEncoderLayer(nn.Module):
|
||||
x = x + self._sa_block(
|
||||
self.norm1(x, stage_embedding),
|
||||
src_mask,
|
||||
src_key_padding_mask,cache=cache )
|
||||
src_key_padding_mask,
|
||||
cache=cache,
|
||||
)
|
||||
x = x + self._ff_block(self.norm2(x, stage_embedding))
|
||||
else:
|
||||
x = self.norm1(
|
||||
x + self._sa_block(x, src_mask, src_key_padding_mask,cache=cache),
|
||||
stage_embedding, )
|
||||
x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
|
||||
stage_embedding,
|
||||
)
|
||||
x = self.norm2(x + self._ff_block(x), stage_embedding)
|
||||
|
||||
if is_src_tuple:
|
||||
@ -295,12 +319,14 @@ class TransformerEncoderLayer(nn.Module):
|
||||
|
||||
# self-attention block
|
||||
def _sa_block(
|
||||
self,
|
||||
x: Tensor,
|
||||
attn_mask: Optional[Tensor],
|
||||
key_padding_mask: Optional[Tensor],cache=None ) -> Tensor:
|
||||
self,
|
||||
x: Tensor,
|
||||
attn_mask: Optional[Tensor],
|
||||
key_padding_mask: Optional[Tensor],
|
||||
cache=None,
|
||||
) -> Tensor:
|
||||
# print(x.shape,attn_mask.shape,key_padding_mask)
|
||||
#torch.Size([1, 188, 512]) torch.Size([188, 188]) None
|
||||
# torch.Size([1, 188, 512]) torch.Size([188, 188]) None
|
||||
# import os
|
||||
# os._exit(23333)
|
||||
x = self.self_attn(
|
||||
@ -309,7 +335,9 @@ class TransformerEncoderLayer(nn.Module):
|
||||
x,
|
||||
attn_mask=attn_mask,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=False,cache=cache )[0]
|
||||
need_weights=False,
|
||||
cache=cache,
|
||||
)[0]
|
||||
return self.dropout1(x)
|
||||
|
||||
# feed forward block
|
||||
@ -328,20 +356,23 @@ class AdaptiveLayerNorm(nn.Module):
|
||||
self.d_model = d_model
|
||||
self.eps = self.norm.eps
|
||||
|
||||
def forward(self, input: Tensor, embedding: Tensor=None) -> Tensor:
|
||||
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
input, embedding = input
|
||||
weight, bias = torch.split(
|
||||
self.project_layer(embedding),
|
||||
split_size_or_sections=self.d_model,
|
||||
dim=-1, )
|
||||
dim=-1,
|
||||
)
|
||||
return (weight * self.norm(input) + bias, embedding)
|
||||
|
||||
weight, bias = torch.split(
|
||||
self.project_layer(embedding),
|
||||
split_size_or_sections=self.d_model,
|
||||
dim=-1, )
|
||||
dim=-1,
|
||||
)
|
||||
return weight * self.norm(input) + bias
|
||||
|
||||
|
||||
def _get_clones(module, N):
|
||||
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
||||
|
@ -27,46 +27,44 @@ class GruutPhonemizer:
|
||||
"—": "—",
|
||||
"…": "… ",
|
||||
"«": "«",
|
||||
"»": "»"
|
||||
"»": "»",
|
||||
}
|
||||
self._punctuation_regexp: str = rf"([{''.join(self._special_cases_dict.keys())}])"
|
||||
self._punctuation_regexp: str = (
|
||||
rf"([{''.join(self._special_cases_dict.keys())}])"
|
||||
)
|
||||
|
||||
def _normalize_punctuation(self, text: str) -> str:
|
||||
text = regex.sub(fr"\pZ+{self._punctuation_regexp}", r"\1", text)
|
||||
text = regex.sub(fr"{self._punctuation_regexp}(\pL)", r"\1 \2", text)
|
||||
text = regex.sub(rf"\pZ+{self._punctuation_regexp}", r"\1", text)
|
||||
text = regex.sub(rf"{self._punctuation_regexp}(\pL)", r"\1 \2", text)
|
||||
text = regex.sub(r"\pZ+", r" ", text)
|
||||
return text.strip()
|
||||
|
||||
def _convert_punctuation(self, word: Word) -> str:
|
||||
if not word.phonemes:
|
||||
return ''
|
||||
if word.phonemes[0] in ['‖', '|']:
|
||||
return ""
|
||||
if word.phonemes[0] in ["‖", "|"]:
|
||||
return word.text.strip()
|
||||
|
||||
phonemes = ''.join(word.phonemes)
|
||||
phonemes = "".join(word.phonemes)
|
||||
# remove modifier characters ˈˌː with regex
|
||||
phonemes = re.sub(r'[ˈˌː͡]', '', phonemes)
|
||||
phonemes = re.sub(r"[ˈˌː͡]", "", phonemes)
|
||||
return phonemes.strip()
|
||||
|
||||
def phonemize(self, text: str, espeak: bool=False) -> str:
|
||||
def phonemize(self, text: str, espeak: bool = False) -> str:
|
||||
text_to_phonemize: str = self._normalize_punctuation(text)
|
||||
sents: List[Sentence] = [
|
||||
sent
|
||||
for sent in self._phonemizer(
|
||||
text_to_phonemize, lang="en-us", espeak=espeak)
|
||||
for sent in self._phonemizer(text_to_phonemize, lang="en-us", espeak=espeak)
|
||||
]
|
||||
words: List[str] = [
|
||||
self._convert_punctuation(word) for word in itertools.chain(*sents)
|
||||
]
|
||||
return ' '.join(words)
|
||||
return " ".join(words)
|
||||
|
||||
def transform(self, phonemes):
|
||||
# convert phonemes to ids
|
||||
# dictionary is in symbols.py
|
||||
return [
|
||||
self.symbol_to_id[p] for p in phonemes
|
||||
if p in self.symbol_to_id.keys()
|
||||
]
|
||||
return [self.symbol_to_id[p] for p in phonemes if p in self.symbol_to_id.keys()]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -1,7 +1,7 @@
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/text_processing/symbols.py
|
||||
PAD = '_'
|
||||
PAD = "_"
|
||||
PUNCTUATION = ';:,.!?¡¿—…"«»“” '
|
||||
LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
||||
LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
|
||||
IPA_LETTERS = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
||||
SYMBOLS = [PAD] + list(PUNCTUATION) + list(LETTERS) + list(IPA_LETTERS)
|
||||
SPACE_ID = SYMBOLS.index(" ")
|
||||
|
@ -11,22 +11,24 @@ def load_yaml_config(path):
|
||||
|
||||
|
||||
def save_config_to_yaml(config, path):
|
||||
assert path.endswith('.yaml')
|
||||
with open(path, 'w') as f:
|
||||
assert path.endswith(".yaml")
|
||||
with open(path, "w") as f:
|
||||
f.write(yaml.dump(config))
|
||||
f.close()
|
||||
|
||||
|
||||
def write_args(args, path):
|
||||
args_dict = dict((name, getattr(args, name)) for name in dir(args)
|
||||
if not name.startswith('_'))
|
||||
with open(path, 'a') as args_file:
|
||||
args_file.write('==> torch version: {}\n'.format(torch.__version__))
|
||||
args_dict = dict(
|
||||
(name, getattr(args, name)) for name in dir(args) if not name.startswith("_")
|
||||
)
|
||||
with open(path, "a") as args_file:
|
||||
args_file.write("==> torch version: {}\n".format(torch.__version__))
|
||||
args_file.write(
|
||||
'==> cudnn version: {}\n'.format(torch.backends.cudnn.version()))
|
||||
args_file.write('==> Cmd:\n')
|
||||
"==> cudnn version: {}\n".format(torch.backends.cudnn.version())
|
||||
)
|
||||
args_file.write("==> Cmd:\n")
|
||||
args_file.write(str(sys.argv))
|
||||
args_file.write('\n==> args:\n')
|
||||
args_file.write("\n==> args:\n")
|
||||
for k, v in sorted(args_dict.items()):
|
||||
args_file.write(' %s: %s\n' % (str(k), str(v)))
|
||||
args_file.write(" %s: %s\n" % (str(k), str(v)))
|
||||
args_file.close()
|
||||
|
@ -1,31 +1,31 @@
|
||||
train:
|
||||
seed: 1234
|
||||
epochs: 300
|
||||
batch_size: 8
|
||||
gradient_accumulation: 4
|
||||
save_every_n_epoch: 1
|
||||
precision: 16
|
||||
gradient_clip: 1.0
|
||||
seed: 1234
|
||||
epochs: 300
|
||||
batch_size: 8
|
||||
gradient_accumulation: 4
|
||||
save_every_n_epoch: 1
|
||||
precision: 16
|
||||
gradient_clip: 1.0
|
||||
optimizer:
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
data:
|
||||
max_eval_sample: 8
|
||||
max_sec: 54
|
||||
num_workers: 1
|
||||
pad_val: 1024 # same with EOS in model
|
||||
max_eval_sample: 8
|
||||
max_sec: 54
|
||||
num_workers: 1
|
||||
pad_val: 1024 # same with EOS in model
|
||||
model:
|
||||
vocab_size: 1025
|
||||
phoneme_vocab_size: 512
|
||||
embedding_dim: 512
|
||||
hidden_dim: 512
|
||||
head: 16
|
||||
linear_units: 2048
|
||||
n_layer: 12
|
||||
dropout: 0
|
||||
EOS: 1024
|
||||
vocab_size: 1025
|
||||
phoneme_vocab_size: 512
|
||||
embedding_dim: 512
|
||||
hidden_dim: 512
|
||||
head: 16
|
||||
linear_units: 2048
|
||||
n_layer: 12
|
||||
dropout: 0
|
||||
EOS: 1024
|
||||
inference:
|
||||
top_k: 5
|
||||
top_k: 5
|
||||
|
@ -1,31 +1,31 @@
|
||||
train:
|
||||
seed: 1234
|
||||
epochs: 300
|
||||
batch_size: 8
|
||||
gradient_accumulation: 4
|
||||
save_every_n_epoch: 1
|
||||
precision: 16-mixed
|
||||
gradient_clip: 1.0
|
||||
seed: 1234
|
||||
epochs: 300
|
||||
batch_size: 8
|
||||
gradient_accumulation: 4
|
||||
save_every_n_epoch: 1
|
||||
precision: 16-mixed
|
||||
gradient_clip: 1.0
|
||||
optimizer:
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
data:
|
||||
max_eval_sample: 8
|
||||
max_sec: 54
|
||||
num_workers: 1
|
||||
pad_val: 1024 # same with EOS in model
|
||||
max_eval_sample: 8
|
||||
max_sec: 54
|
||||
num_workers: 1
|
||||
pad_val: 1024 # same with EOS in model
|
||||
model:
|
||||
vocab_size: 1025
|
||||
phoneme_vocab_size: 512
|
||||
embedding_dim: 1024
|
||||
hidden_dim: 1024
|
||||
head: 16
|
||||
linear_units: 2048
|
||||
n_layer: 16
|
||||
dropout: 0
|
||||
EOS: 1024
|
||||
vocab_size: 1025
|
||||
phoneme_vocab_size: 512
|
||||
embedding_dim: 1024
|
||||
hidden_dim: 1024
|
||||
head: 16
|
||||
linear_units: 2048
|
||||
n_layer: 16
|
||||
dropout: 0
|
||||
EOS: 1024
|
||||
inference:
|
||||
top_k: 5
|
||||
top_k: 5
|
||||
|
@ -1,31 +1,31 @@
|
||||
train:
|
||||
seed: 1234
|
||||
epochs: 300
|
||||
batch_size: 12
|
||||
gradient_accumulation: 4
|
||||
save_every_n_epoch: 1
|
||||
precision: 16-mixed
|
||||
gradient_clip: 1.0
|
||||
seed: 1234
|
||||
epochs: 300
|
||||
batch_size: 12
|
||||
gradient_accumulation: 4
|
||||
save_every_n_epoch: 1
|
||||
precision: 16-mixed
|
||||
gradient_clip: 1.0
|
||||
optimizer:
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
data:
|
||||
max_eval_sample: 8
|
||||
max_sec: 54
|
||||
num_workers: 1
|
||||
pad_val: 1024 # same with EOS in model
|
||||
max_eval_sample: 8
|
||||
max_sec: 54
|
||||
num_workers: 1
|
||||
pad_val: 1024 # same with EOS in model
|
||||
model:
|
||||
vocab_size: 1025
|
||||
phoneme_vocab_size: 512
|
||||
embedding_dim: 1024
|
||||
hidden_dim: 1024
|
||||
head: 16
|
||||
linear_units: 2048
|
||||
n_layer: 6
|
||||
dropout: 0
|
||||
EOS: 1024
|
||||
vocab_size: 1025
|
||||
phoneme_vocab_size: 512
|
||||
embedding_dim: 1024
|
||||
hidden_dim: 1024
|
||||
head: 16
|
||||
linear_units: 2048
|
||||
n_layer: 6
|
||||
dropout: 0
|
||||
EOS: 1024
|
||||
inference:
|
||||
top_k: 5
|
||||
top_k: 5
|
||||
|
@ -1,31 +1,31 @@
|
||||
train:
|
||||
seed: 1234
|
||||
epochs: 20
|
||||
batch_size: 8
|
||||
save_every_n_epoch: 1
|
||||
precision: 16-mixed
|
||||
gradient_clip: 1.0
|
||||
seed: 1234
|
||||
epochs: 20
|
||||
batch_size: 8
|
||||
save_every_n_epoch: 1
|
||||
precision: 16-mixed
|
||||
gradient_clip: 1.0
|
||||
optimizer:
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
data:
|
||||
max_eval_sample: 8
|
||||
max_sec: 54
|
||||
num_workers: 4
|
||||
pad_val: 1024 # same with EOS in model
|
||||
max_eval_sample: 8
|
||||
max_sec: 54
|
||||
num_workers: 4
|
||||
pad_val: 1024 # same with EOS in model
|
||||
model:
|
||||
vocab_size: 1025
|
||||
phoneme_vocab_size: 512
|
||||
embedding_dim: 512
|
||||
hidden_dim: 512
|
||||
head: 16
|
||||
linear_units: 2048
|
||||
n_layer: 24
|
||||
dropout: 0
|
||||
EOS: 1024
|
||||
random_bert: 0
|
||||
vocab_size: 1025
|
||||
phoneme_vocab_size: 512
|
||||
embedding_dim: 512
|
||||
hidden_dim: 512
|
||||
head: 16
|
||||
linear_units: 2048
|
||||
n_layer: 24
|
||||
dropout: 0
|
||||
EOS: 1024
|
||||
random_bert: 0
|
||||
inference:
|
||||
top_k: 5
|
||||
top_k: 5
|
||||
|
@ -1,77 +1,77 @@
|
||||
train:
|
||||
seed: 1234
|
||||
epochs: 100
|
||||
batch_size: 6
|
||||
gradient_accumulation: 4
|
||||
save_every_n_epoch: 1
|
||||
precision: 32
|
||||
gradient_clip: 1.0
|
||||
seed: 1234
|
||||
epochs: 100
|
||||
batch_size: 6
|
||||
gradient_accumulation: 4
|
||||
save_every_n_epoch: 1
|
||||
precision: 32
|
||||
gradient_clip: 1.0
|
||||
optimizer:
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
data:
|
||||
max_eval_sample: 8
|
||||
max_sec: 40
|
||||
num_workers: 1
|
||||
pad_val: 1024 # same with EOS in model
|
||||
max_eval_sample: 8
|
||||
max_sec: 40
|
||||
num_workers: 1
|
||||
pad_val: 1024 # same with EOS in model
|
||||
model:
|
||||
saving_path: "ckpt/"
|
||||
resume_checkpoint: null
|
||||
vocoder_config_path: "quantizer/new_ckpt/config.json"
|
||||
vocoder_ckpt_path: "quantizer/new_ckpt/g_00600000"
|
||||
datadir: "/home/liweiche/GigaSpeech/wavs"
|
||||
metapath: "/home/liweiche/GigaSpeech/train2.json"
|
||||
val_metapath: "/home/liweiche/GigaSpeech/dev2.json"
|
||||
sampledir: "logs/"
|
||||
pretrained_path: null
|
||||
lr: 0.0001
|
||||
batch_size: 200.0
|
||||
train_bucket_size: 8192
|
||||
training_step: 800000
|
||||
optim_flat_percent: 0.0
|
||||
warmup_step: 50
|
||||
adam_beta1: 0.9
|
||||
adam_beta2: 0.98
|
||||
ffd_size: 3072
|
||||
hidden_size: 768
|
||||
enc_nlayers: 6
|
||||
dec_nlayers: 6
|
||||
nheads: 12
|
||||
ar_layer: 4
|
||||
ar_ffd_size: 1024
|
||||
ar_hidden_size: 256
|
||||
ar_nheads: 4
|
||||
aligner_softmax_temp: 1.0
|
||||
layer_norm_eps: 0.00001
|
||||
speaker_embed_dropout: 0.05
|
||||
label_smoothing: 0.0
|
||||
val_check_interval: 5000
|
||||
check_val_every_n_epoch: 1
|
||||
precision: "fp16"
|
||||
nworkers: 16
|
||||
distributed: true
|
||||
accelerator: "ddp"
|
||||
version: null
|
||||
accumulate_grad_batches: 1
|
||||
use_repetition_token: true
|
||||
use_repetition_gating: false
|
||||
repetition_penalty: 1.0
|
||||
sampling_temperature: 1.0
|
||||
top_k: -1
|
||||
min_top_k: 3
|
||||
top_p: 0.8
|
||||
sample_num: 4
|
||||
length_penalty_max_length: 15000
|
||||
length_penalty_max_prob: 0.95
|
||||
max_input_length: 2048
|
||||
max_output_length: 2000
|
||||
sample_rate: 16000
|
||||
n_codes: 1024
|
||||
n_cluster_groups: 1
|
||||
phone_context_window: 4
|
||||
phoneset_size: 1000
|
||||
saving_path: "ckpt/"
|
||||
resume_checkpoint: null
|
||||
vocoder_config_path: "quantizer/new_ckpt/config.json"
|
||||
vocoder_ckpt_path: "quantizer/new_ckpt/g_00600000"
|
||||
datadir: "/home/liweiche/GigaSpeech/wavs"
|
||||
metapath: "/home/liweiche/GigaSpeech/train2.json"
|
||||
val_metapath: "/home/liweiche/GigaSpeech/dev2.json"
|
||||
sampledir: "logs/"
|
||||
pretrained_path: null
|
||||
lr: 0.0001
|
||||
batch_size: 200.0
|
||||
train_bucket_size: 8192
|
||||
training_step: 800000
|
||||
optim_flat_percent: 0.0
|
||||
warmup_step: 50
|
||||
adam_beta1: 0.9
|
||||
adam_beta2: 0.98
|
||||
ffd_size: 3072
|
||||
hidden_size: 768
|
||||
enc_nlayers: 6
|
||||
dec_nlayers: 6
|
||||
nheads: 12
|
||||
ar_layer: 4
|
||||
ar_ffd_size: 1024
|
||||
ar_hidden_size: 256
|
||||
ar_nheads: 4
|
||||
aligner_softmax_temp: 1.0
|
||||
layer_norm_eps: 0.00001
|
||||
speaker_embed_dropout: 0.05
|
||||
label_smoothing: 0.0
|
||||
val_check_interval: 5000
|
||||
check_val_every_n_epoch: 1
|
||||
precision: "fp16"
|
||||
nworkers: 16
|
||||
distributed: true
|
||||
accelerator: "ddp"
|
||||
version: null
|
||||
accumulate_grad_batches: 1
|
||||
use_repetition_token: true
|
||||
use_repetition_gating: false
|
||||
repetition_penalty: 1.0
|
||||
sampling_temperature: 1.0
|
||||
top_k: -1
|
||||
min_top_k: 3
|
||||
top_p: 0.8
|
||||
sample_num: 4
|
||||
length_penalty_max_length: 15000
|
||||
length_penalty_max_prob: 0.95
|
||||
max_input_length: 2048
|
||||
max_output_length: 2000
|
||||
sample_rate: 16000
|
||||
n_codes: 1024
|
||||
n_cluster_groups: 1
|
||||
phone_context_window: 4
|
||||
phoneset_size: 1000
|
||||
inference:
|
||||
top_k: 5
|
||||
top_k: 5
|
||||
|
@ -1,32 +1,32 @@
|
||||
gpu:
|
||||
n_card: 1
|
||||
n_process_per_card: 2
|
||||
n_card: 1
|
||||
n_process_per_card: 2
|
||||
io:
|
||||
text_path: D:\RVC1006\GPT-SoVITS\GPT_SoVITS
|
||||
save_every_n_epoch: 1
|
||||
precision: 16-mixed
|
||||
gradient_clip: 1.0
|
||||
text_path: D:\RVC1006\GPT-SoVITS\GPT_SoVITS
|
||||
save_every_n_epoch: 1
|
||||
precision: 16-mixed
|
||||
gradient_clip: 1.0
|
||||
optimizer:
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
data:
|
||||
max_eval_sample: 8
|
||||
max_sec: 54
|
||||
num_workers: 1
|
||||
pad_val: 1024 # same with EOS in model
|
||||
max_eval_sample: 8
|
||||
max_sec: 54
|
||||
num_workers: 1
|
||||
pad_val: 1024 # same with EOS in model
|
||||
model:
|
||||
vocab_size: 1025
|
||||
phoneme_vocab_size: 512
|
||||
embedding_dim: 512
|
||||
hidden_dim: 512
|
||||
head: 16
|
||||
linear_units: 2048
|
||||
n_layer: 24
|
||||
dropout: 0
|
||||
EOS: 1024
|
||||
random_bert: 0
|
||||
vocab_size: 1025
|
||||
phoneme_vocab_size: 512
|
||||
embedding_dim: 512
|
||||
hidden_dim: 512
|
||||
head: 16
|
||||
linear_units: 2048
|
||||
n_layer: 24
|
||||
dropout: 0
|
||||
EOS: 1024
|
||||
random_bert: 0
|
||||
inference:
|
||||
top_k: 5
|
||||
top_k: 5
|
||||
|
@ -11,23 +11,30 @@ logging.getLogger("numba").setLevel(logging.WARNING)
|
||||
from transformers import (
|
||||
Wav2Vec2FeatureExtractor,
|
||||
HubertModel,
|
||||
Wav2Vec2Model,
|
||||
)
|
||||
|
||||
import utils
|
||||
import torch.nn as nn
|
||||
|
||||
cnhubert_base_path=None
|
||||
cnhubert_base_path = None
|
||||
|
||||
|
||||
class CNHubert(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.model = HubertModel.from_pretrained(cnhubert_base_path)
|
||||
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(cnhubert_base_path)
|
||||
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
|
||||
cnhubert_base_path
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
|
||||
input_values = self.feature_extractor(
|
||||
x, return_tensors="pt", sampling_rate=16000
|
||||
).input_values.to(x.device)
|
||||
feats = self.model(input_values)["last_hidden_state"]
|
||||
return feats
|
||||
|
||||
|
||||
# class CNHubertLarge(nn.Module):
|
||||
# def __init__(self):
|
||||
# super().__init__()
|
||||
@ -59,12 +66,12 @@ class CNHubert(nn.Module):
|
||||
# return feats
|
||||
|
||||
|
||||
|
||||
def get_model():
|
||||
model = CNHubert()
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
|
||||
# def get_large_model():
|
||||
# model = CNHubertLarge()
|
||||
# model.eval()
|
||||
@ -80,18 +87,18 @@ def get_model():
|
||||
# model.eval()
|
||||
# return model
|
||||
|
||||
|
||||
def get_content(hmodel, wav_16k_tensor):
|
||||
with torch.no_grad():
|
||||
feats = hmodel(wav_16k_tensor)
|
||||
return feats.transpose(1,2)
|
||||
return feats.transpose(1, 2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
model = get_model()
|
||||
src_path = "/Users/Shared/原音频2.wav"
|
||||
wav_16k_tensor = utils.load_wav_to_torch_and_resample(src_path, 16000)
|
||||
model = model
|
||||
wav_16k_tensor = wav_16k_tensor
|
||||
feats = get_content(model,wav_16k_tensor)
|
||||
feats = get_content(model, wav_16k_tensor)
|
||||
print(feats.shape)
|
||||
|
||||
|
@ -3,20 +3,23 @@ import torch
|
||||
|
||||
def get_model():
|
||||
import whisper
|
||||
model = whisper.load_model("small", device='cpu')
|
||||
|
||||
model = whisper.load_model("small", device="cpu")
|
||||
|
||||
return model.encoder
|
||||
|
||||
|
||||
def get_content(model=None, wav_16k_tensor=None):
|
||||
from whisper import log_mel_spectrogram, pad_or_trim
|
||||
|
||||
dev = next(model.parameters()).device
|
||||
mel = log_mel_spectrogram(wav_16k_tensor).to(dev)[:, :3000]
|
||||
# if torch.cuda.is_available():
|
||||
# mel = mel.to(torch.float16)
|
||||
feature_len = mel.shape[-1] // 2
|
||||
assert mel.shape[-1] < 3000, "输入音频过长,只允许输入30以内音频"
|
||||
assert mel.shape[-1] < 3000, "输入音频过长,只允许输入30以内音频"
|
||||
with torch.no_grad():
|
||||
feature = model(pad_or_trim(mel, 3000).unsqueeze(0))[:1, :feature_len, :].transpose(1,2)
|
||||
feature = model(pad_or_trim(mel, 3000).unsqueeze(0))[
|
||||
:1, :feature_len, :
|
||||
].transpose(1, 2)
|
||||
return feature
|
||||
|
||||
|
@ -1,49 +1,50 @@
|
||||
import os
|
||||
gpt_path=os.environ.get("gpt_path","pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
|
||||
sovits_path=os.environ.get("sovits_path","pretrained_models/s2G488k.pth")
|
||||
cnhubert_base_path=os.environ.get("cnhubert_base_path","pretrained_models/chinese-hubert-base")
|
||||
bert_path=os.environ.get("bert_path","pretrained_models/chinese-roberta-wwm-ext-large")
|
||||
infer_ttswebui=os.environ.get("infer_ttswebui",9872)
|
||||
infer_ttswebui=int(infer_ttswebui)
|
||||
if("_CUDA_VISIBLE_DEVICES"in os.environ):
|
||||
os.environ["CUDA_VISIBLE_DEVICES"]=os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
is_half=eval(os.environ.get("is_half","True"))
|
||||
|
||||
gpt_path = os.environ.get(
|
||||
"gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||
)
|
||||
sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth")
|
||||
cnhubert_base_path = os.environ.get(
|
||||
"cnhubert_base_path", "pretrained_models/chinese-hubert-base"
|
||||
)
|
||||
bert_path = os.environ.get(
|
||||
"bert_path", "pretrained_models/chinese-roberta-wwm-ext-large"
|
||||
)
|
||||
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
||||
infer_ttswebui = int(infer_ttswebui)
|
||||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
is_half = eval(os.environ.get("is_half", "True"))
|
||||
import gradio as gr
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
import sys,torch,numpy as np
|
||||
from pathlib import Path
|
||||
import os,pdb,utils,librosa,math,traceback,requests,argparse,torch,multiprocessing,pandas as pd,torch.multiprocessing as mp,soundfile
|
||||
# torch.backends.cuda.sdp_kernel("flash")
|
||||
# torch.backends.cuda.enable_flash_sdp(True)
|
||||
# torch.backends.cuda.enable_mem_efficient_sdp(True) # Not avaliable if torch version is lower than 2.0
|
||||
# torch.backends.cuda.enable_math_sdp(True)
|
||||
from random import shuffle
|
||||
from AR.utils import get_newest_ckpt
|
||||
from glob import glob
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
import librosa,torch
|
||||
from feature_extractor import cnhubert
|
||||
cnhubert.cnhubert_base_path=cnhubert_base_path
|
||||
from io import BytesIO
|
||||
|
||||
from module.models import SynthesizerTrn
|
||||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||
from AR.utils.io import load_yaml_config
|
||||
from text import cleaned_text_to_sequence
|
||||
from text.cleaner import text_to_sequence, clean_text
|
||||
from text.cleaner import clean_text
|
||||
from time import time as ttime
|
||||
from module.mel_processing import spectrogram_torch
|
||||
from my_utils import load_audio
|
||||
|
||||
device="cuda"
|
||||
device = "cuda"
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||||
bert_model=AutoModelForMaskedLM.from_pretrained(bert_path)
|
||||
if(is_half==True):bert_model=bert_model.half().to(device)
|
||||
else:bert_model=bert_model.to(device)
|
||||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
||||
if is_half == True:
|
||||
bert_model = bert_model.half().to(device)
|
||||
else:
|
||||
bert_model = bert_model.to(device)
|
||||
|
||||
|
||||
# bert_model=bert_model.to(device)
|
||||
def get_bert_feature(text, word2ph):
|
||||
with torch.no_grad():
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
for i in inputs:
|
||||
inputs[i] = inputs[i].to(device)#####输入是long不用管精度问题,精度随bert_model
|
||||
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model
|
||||
res = bert_model(**inputs, output_hidden_states=True)
|
||||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||||
assert len(word2ph) == len(text)
|
||||
@ -55,218 +56,305 @@ def get_bert_feature(text, word2ph):
|
||||
# if(is_half==True):phone_level_feature=phone_level_feature.half()
|
||||
return phone_level_feature.T
|
||||
|
||||
|
||||
n_semantic = 1024
|
||||
|
||||
dict_s2=torch.load(sovits_path,map_location="cpu")
|
||||
hps=dict_s2["config"]
|
||||
class DictToAttrRecursive:
|
||||
|
||||
class DictToAttrRecursive(dict):
|
||||
def __init__(self, input_dict):
|
||||
super().__init__(input_dict)
|
||||
for key, value in input_dict.items():
|
||||
if isinstance(value, dict):
|
||||
# 如果值是字典,递归调用构造函数
|
||||
setattr(self, key, DictToAttrRecursive(value))
|
||||
else:
|
||||
setattr(self, key, value)
|
||||
value = DictToAttrRecursive(value)
|
||||
self[key] = value
|
||||
setattr(self, key, value)
|
||||
|
||||
def __getattr__(self, item):
|
||||
try:
|
||||
return self[item]
|
||||
except KeyError:
|
||||
raise AttributeError(f"Attribute {item} not found")
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
if isinstance(value, dict):
|
||||
value = DictToAttrRecursive(value)
|
||||
super(DictToAttrRecursive, self).__setitem__(key, value)
|
||||
super().__setattr__(key, value)
|
||||
|
||||
def __delattr__(self, item):
|
||||
try:
|
||||
del self[item]
|
||||
except KeyError:
|
||||
raise AttributeError(f"Attribute {item} not found")
|
||||
|
||||
|
||||
hps = DictToAttrRecursive(hps)
|
||||
hps.model.semantic_frame_rate="25hz"
|
||||
dict_s1=torch.load(gpt_path,map_location="cpu")
|
||||
config=dict_s1["config"]
|
||||
ssl_model=cnhubert.get_model()
|
||||
if(is_half==True):ssl_model=ssl_model.half().to(device)
|
||||
else:ssl_model=ssl_model.to(device)
|
||||
|
||||
hps.model.semantic_frame_rate = "25hz"
|
||||
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
||||
config = dict_s1["config"]
|
||||
ssl_model = cnhubert.get_model()
|
||||
if is_half == True:
|
||||
ssl_model = ssl_model.half().to(device)
|
||||
else:
|
||||
ssl_model = ssl_model.to(device)
|
||||
|
||||
vq_model = SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model)
|
||||
if(is_half==True):vq_model=vq_model.half().to(device)
|
||||
else:vq_model=vq_model.to(device)
|
||||
**hps.model
|
||||
)
|
||||
if is_half == True:
|
||||
vq_model = vq_model.half().to(device)
|
||||
else:
|
||||
vq_model = vq_model.to(device)
|
||||
vq_model.eval()
|
||||
print(vq_model.load_state_dict(dict_s2["weight"],strict=False))
|
||||
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
||||
hz = 50
|
||||
max_sec = config['data']['max_sec']
|
||||
max_sec = config["data"]["max_sec"]
|
||||
# t2s_model = Text2SemanticLightningModule.load_from_checkpoint(checkpoint_path=gpt_path, config=config, map_location="cpu")#########todo
|
||||
t2s_model = Text2SemanticLightningModule(config,"ojbk",is_train=False)
|
||||
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False)
|
||||
t2s_model.load_state_dict(dict_s1["weight"])
|
||||
if(is_half==True):t2s_model=t2s_model.half()
|
||||
t2s_model=t2s_model.to(device)
|
||||
if is_half == True:
|
||||
t2s_model = t2s_model.half()
|
||||
t2s_model = t2s_model.to(device)
|
||||
t2s_model.eval()
|
||||
total = sum([param.nelement() for param in t2s_model.parameters()])
|
||||
print("Number of parameter: %.2fM" % (total / 1e6))
|
||||
|
||||
|
||||
def get_spepc(hps, filename):
|
||||
audio=load_audio(filename,int(hps.data.sampling_rate))
|
||||
audio=torch.FloatTensor(audio)
|
||||
audio = load_audio(filename, int(hps.data.sampling_rate))
|
||||
audio = torch.FloatTensor(audio)
|
||||
audio_norm = audio
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
spec = spectrogram_torch(audio_norm, hps.data.filter_length,hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,center=False)
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
hps.data.filter_length,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.hop_length,
|
||||
hps.data.win_length,
|
||||
center=False,
|
||||
)
|
||||
return spec
|
||||
|
||||
dict_language={
|
||||
"中文":"zh",
|
||||
"英文":"en",
|
||||
"日文":"ja"
|
||||
}
|
||||
def get_tts_wav(ref_wav_path,prompt_text,prompt_language,text,text_language):
|
||||
|
||||
dict_language = {"中文": "zh", "英文": "en", "日文": "ja"}
|
||||
|
||||
|
||||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language):
|
||||
t0 = ttime()
|
||||
prompt_text=prompt_text.strip("\n")
|
||||
prompt_language,text=prompt_language,text.strip("\n")
|
||||
prompt_text = prompt_text.strip("\n")
|
||||
prompt_language, text = prompt_language, text.strip("\n")
|
||||
with torch.no_grad():
|
||||
wav16k, sr = librosa.load(ref_wav_path, sr=16000) # 派蒙
|
||||
wav16k = torch.from_numpy(wav16k)
|
||||
if(is_half==True):wav16k=wav16k.half().to(device)
|
||||
else:wav16k=wav16k.to(device)
|
||||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)#.float()
|
||||
if is_half == True:
|
||||
wav16k = wav16k.half().to(device)
|
||||
else:
|
||||
wav16k = wav16k.to(device)
|
||||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
||||
"last_hidden_state"
|
||||
].transpose(
|
||||
1, 2
|
||||
) # .float()
|
||||
codes = vq_model.extract_latent(ssl_content)
|
||||
prompt_semantic = codes[0, 0]
|
||||
t1 = ttime()
|
||||
prompt_language=dict_language[prompt_language]
|
||||
text_language=dict_language[text_language]
|
||||
prompt_language = dict_language[prompt_language]
|
||||
text_language = dict_language[text_language]
|
||||
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
|
||||
phones1=cleaned_text_to_sequence(phones1)
|
||||
texts=text.split("\n")
|
||||
phones1 = cleaned_text_to_sequence(phones1)
|
||||
texts = text.split("\n")
|
||||
audio_opt = []
|
||||
zero_wav=np.zeros(int(hps.data.sampling_rate*0.3),dtype=np.float16 if is_half==True else np.float32)
|
||||
zero_wav = np.zeros(
|
||||
int(hps.data.sampling_rate * 0.3),
|
||||
dtype=np.float16 if is_half == True else np.float32,
|
||||
)
|
||||
for text in texts:
|
||||
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
|
||||
phones2 = cleaned_text_to_sequence(phones2)
|
||||
if(prompt_language=="zh"):bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
|
||||
else:bert1 = torch.zeros((1024, len(phones1)),dtype=torch.float16 if is_half==True else torch.float32).to(device)
|
||||
if(text_language=="zh"):bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
|
||||
else:bert2 = torch.zeros((1024, len(phones2))).to(bert1)
|
||||
if prompt_language == "zh":
|
||||
bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
|
||||
else:
|
||||
bert1 = torch.zeros(
|
||||
(1024, len(phones1)),
|
||||
dtype=torch.float16 if is_half == True else torch.float32,
|
||||
).to(device)
|
||||
if text_language == "zh":
|
||||
bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
|
||||
else:
|
||||
bert2 = torch.zeros((1024, len(phones2))).to(bert1)
|
||||
bert = torch.cat([bert1, bert2], 1)
|
||||
|
||||
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
|
||||
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
||||
bert = bert.to(device).unsqueeze(0)
|
||||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||||
t2 = ttime()
|
||||
with torch.no_grad():
|
||||
# pred_semantic = t2s_model.model.infer(
|
||||
pred_semantic,idx = t2s_model.model.infer_panel(
|
||||
pred_semantic, idx = t2s_model.model.infer_panel(
|
||||
all_phoneme_ids,
|
||||
all_phoneme_len,
|
||||
prompt,
|
||||
bert,
|
||||
# prompt_phone_len=ph_offset,
|
||||
top_k=config['inference']['top_k'],
|
||||
early_stop_num=hz * max_sec)
|
||||
top_k=config["inference"]["top_k"],
|
||||
early_stop_num=hz * max_sec,
|
||||
)
|
||||
t3 = ttime()
|
||||
# print(pred_semantic.shape,idx)
|
||||
pred_semantic = pred_semantic[:,-idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||
refer = get_spepc(hps, ref_wav_path)#.to(device)
|
||||
if(is_half==True):refer=refer.half().to(device)
|
||||
else:refer=refer.to(device)
|
||||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
|
||||
0
|
||||
) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
||||
if is_half == True:
|
||||
refer = refer.half().to(device)
|
||||
else:
|
||||
refer = refer.to(device)
|
||||
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
||||
audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer).detach().cpu().numpy()[0, 0]###试试重建不带上prompt部分
|
||||
audio = (
|
||||
vq_model.decode(
|
||||
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
|
||||
)
|
||||
.detach()
|
||||
.cpu()
|
||||
.numpy()[0, 0]
|
||||
) ###试试重建不带上prompt部分
|
||||
audio_opt.append(audio)
|
||||
audio_opt.append(zero_wav)
|
||||
t4 = ttime()
|
||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
||||
yield hps.data.sampling_rate,(np.concatenate(audio_opt,0)*32768).astype(np.int16)
|
||||
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
||||
np.int16
|
||||
)
|
||||
|
||||
|
||||
splits = {
|
||||
",",
|
||||
"。",
|
||||
"?",
|
||||
"!",
|
||||
",",
|
||||
".",
|
||||
"?",
|
||||
"!",
|
||||
"~",
|
||||
":",
|
||||
":",
|
||||
"—",
|
||||
"…",
|
||||
} # 不考虑省略号
|
||||
|
||||
|
||||
splits={",","。","?","!",",",".","?","!","~",":",":","—","…",}#不考虑省略号
|
||||
def split(todo_text):
|
||||
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||||
if (todo_text[-1] not in splits): todo_text += "。"
|
||||
if todo_text[-1] not in splits:
|
||||
todo_text += "。"
|
||||
i_split_head = i_split_tail = 0
|
||||
len_text = len(todo_text)
|
||||
todo_texts = []
|
||||
while (1):
|
||||
if (i_split_head >= len_text): break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
||||
if (todo_text[i_split_head] in splits):
|
||||
while 1:
|
||||
if i_split_head >= len_text:
|
||||
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
||||
if todo_text[i_split_head] in splits:
|
||||
i_split_head += 1
|
||||
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
||||
i_split_tail = i_split_head
|
||||
else:
|
||||
i_split_head += 1
|
||||
return todo_texts
|
||||
|
||||
|
||||
def cut1(inp):
|
||||
inp=inp.strip("\n")
|
||||
inps=split(inp)
|
||||
split_idx=list(range(0,len(inps),5))
|
||||
split_idx[-1]=None
|
||||
if(len(split_idx)>1):
|
||||
opts=[]
|
||||
for idx in range(len(split_idx)-1):
|
||||
opts.append("".join(inps[split_idx[idx]:split_idx[idx+1]]))
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
split_idx = list(range(0, len(inps), 5))
|
||||
split_idx[-1] = None
|
||||
if len(split_idx) > 1:
|
||||
opts = []
|
||||
for idx in range(len(split_idx) - 1):
|
||||
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
|
||||
else:
|
||||
opts=[inp]
|
||||
opts = [inp]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
def cut2(inp):
|
||||
inp=inp.strip("\n")
|
||||
inps=split(inp)
|
||||
if(len(inps)<2):return [inp]
|
||||
opts=[]
|
||||
summ=0
|
||||
tmp_str=""
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
if len(inps) < 2:
|
||||
return [inp]
|
||||
opts = []
|
||||
summ = 0
|
||||
tmp_str = ""
|
||||
for i in range(len(inps)):
|
||||
summ+=len(inps[i])
|
||||
tmp_str+=inps[i]
|
||||
if(summ>50):
|
||||
summ=0
|
||||
summ += len(inps[i])
|
||||
tmp_str += inps[i]
|
||||
if summ > 50:
|
||||
summ = 0
|
||||
opts.append(tmp_str)
|
||||
tmp_str=""
|
||||
if(tmp_str!=""):opts.append(tmp_str)
|
||||
if(len(opts[-1])<50):##如果最后一个太短了,和前一个合一起
|
||||
opts[-2]=opts[-2]+opts[-1]
|
||||
opts=opts[:-1]
|
||||
tmp_str = ""
|
||||
if tmp_str != "":
|
||||
opts.append(tmp_str)
|
||||
if len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
||||
opts[-2] = opts[-2] + opts[-1]
|
||||
opts = opts[:-1]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
def cut3(inp):
|
||||
inp=inp.strip("\n")
|
||||
return "\n".join(["%s。"%item for item in inp.strip("。").split("。")])
|
||||
inp = inp.strip("\n")
|
||||
return "\n".join(["%s。" % item for item in inp.strip("。").split("。")])
|
||||
|
||||
|
||||
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
gr.Markdown(
|
||||
value=
|
||||
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>."
|
||||
value="本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>."
|
||||
)
|
||||
# with gr.Tabs():
|
||||
# with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
|
||||
with gr.Group():
|
||||
gr.Markdown(
|
||||
value=
|
||||
"*请上传并填写参考信息"
|
||||
)
|
||||
gr.Markdown(value="*请上传并填写参考信息")
|
||||
with gr.Row():
|
||||
inp_ref = gr.Audio(label="请上传参考音频", type="filepath")
|
||||
prompt_text= gr.Textbox(label="参考音频的文本",value="")
|
||||
prompt_language= gr.Dropdown(label="参考音频的语种",choices=["中文","英文","日文"],value="中文")
|
||||
gr.Markdown(
|
||||
value=
|
||||
"*请填写需要合成的目标文本"
|
||||
)
|
||||
prompt_text = gr.Textbox(label="参考音频的文本", value="")
|
||||
prompt_language = gr.Dropdown(
|
||||
label="参考音频的语种", choices=["中文", "英文", "日文"], value="中文"
|
||||
)
|
||||
gr.Markdown(value="*请填写需要合成的目标文本")
|
||||
with gr.Row():
|
||||
text=gr.Textbox(label="需要合成的文本",value="")
|
||||
text_language = gr.Dropdown(label="需要合成的语种", choices=["中文", "英文", "日文"],value="中文")
|
||||
inference_button=gr.Button("合成语音", variant="primary")
|
||||
text = gr.Textbox(label="需要合成的文本", value="")
|
||||
text_language = gr.Dropdown(
|
||||
label="需要合成的语种", choices=["中文", "英文", "日文"], value="中文"
|
||||
)
|
||||
inference_button = gr.Button("合成语音", variant="primary")
|
||||
output = gr.Audio(label="输出的语音")
|
||||
inference_button.click(get_tts_wav, [inp_ref, prompt_text,prompt_language, text,text_language], [output])
|
||||
|
||||
gr.Markdown(
|
||||
value=
|
||||
"文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"
|
||||
inference_button.click(
|
||||
get_tts_wav,
|
||||
[inp_ref, prompt_text, prompt_language, text, text_language],
|
||||
[output],
|
||||
)
|
||||
|
||||
gr.Markdown(value="文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。")
|
||||
with gr.Row():
|
||||
text_inp=gr.Textbox(label="需要合成的切分前文本",value="")
|
||||
text_inp = gr.Textbox(label="需要合成的切分前文本", value="")
|
||||
button1 = gr.Button("凑五句一切", variant="primary")
|
||||
button2 = gr.Button("凑50字一切", variant="primary")
|
||||
button3 = gr.Button("按中文句号。切", variant="primary")
|
||||
text_opt = gr.Textbox(label="切分后文本", value="")
|
||||
button1.click(cut1,[text_inp],[text_opt])
|
||||
button2.click(cut2,[text_inp],[text_opt])
|
||||
button3.click(cut3,[text_inp],[text_opt])
|
||||
gr.Markdown(
|
||||
value=
|
||||
"后续将支持混合语种编码文本输入。"
|
||||
)
|
||||
button1.click(cut1, [text_inp], [text_opt])
|
||||
button2.click(cut2, [text_inp], [text_opt])
|
||||
button3.click(cut3, [text_inp], [text_opt])
|
||||
gr.Markdown(value="后续将支持混合语种编码文本输入。")
|
||||
|
||||
app.queue(concurrency_count=511, max_size=1022).launch(
|
||||
server_name="0.0.0.0",
|
||||
inbrowser=True,
|
||||
server_port=infer_ttswebui,
|
||||
quiet=True,
|
||||
)
|
||||
)
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,189 +1,189 @@
|
||||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size*dilation - dilation)/2)
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def intersperse(lst, item):
|
||||
result = [item] * (len(lst) * 2 + 1)
|
||||
result[1::2] = lst
|
||||
return result
|
||||
result = [item] * (len(lst) * 2 + 1)
|
||||
result[1::2] = lst
|
||||
return result
|
||||
|
||||
|
||||
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
||||
"""KL(P||Q)"""
|
||||
kl = (logs_q - logs_p) - 0.5
|
||||
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
||||
return kl
|
||||
"""KL(P||Q)"""
|
||||
kl = (logs_q - logs_p) - 0.5
|
||||
kl += (
|
||||
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
||||
)
|
||||
return kl
|
||||
|
||||
|
||||
def rand_gumbel(shape):
|
||||
"""Sample from the Gumbel distribution, protect from overflows."""
|
||||
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
||||
return -torch.log(-torch.log(uniform_samples))
|
||||
"""Sample from the Gumbel distribution, protect from overflows."""
|
||||
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
||||
return -torch.log(-torch.log(uniform_samples))
|
||||
|
||||
|
||||
def rand_gumbel_like(x):
|
||||
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
||||
return g
|
||||
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
||||
return g
|
||||
|
||||
|
||||
def slice_segments(x, ids_str, segment_size=4):
|
||||
ret = torch.zeros_like(x[:, :, :segment_size])
|
||||
for i in range(x.size(0)):
|
||||
idx_str = ids_str[i]
|
||||
idx_end = idx_str + segment_size
|
||||
ret[i] = x[i, :, idx_str:idx_end]
|
||||
return ret
|
||||
ret = torch.zeros_like(x[:, :, :segment_size])
|
||||
for i in range(x.size(0)):
|
||||
idx_str = ids_str[i]
|
||||
idx_end = idx_str + segment_size
|
||||
ret[i] = x[i, :, idx_str:idx_end]
|
||||
return ret
|
||||
|
||||
|
||||
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
||||
b, d, t = x.size()
|
||||
if x_lengths is None:
|
||||
x_lengths = t
|
||||
ids_str_max = x_lengths - segment_size + 1
|
||||
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
||||
ret = slice_segments(x, ids_str, segment_size)
|
||||
return ret, ids_str
|
||||
b, d, t = x.size()
|
||||
if x_lengths is None:
|
||||
x_lengths = t
|
||||
ids_str_max = x_lengths - segment_size + 1
|
||||
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
||||
ret = slice_segments(x, ids_str, segment_size)
|
||||
return ret, ids_str
|
||||
|
||||
|
||||
def get_timing_signal_1d(
|
||||
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
||||
position = torch.arange(length, dtype=torch.float)
|
||||
num_timescales = channels // 2
|
||||
log_timescale_increment = (
|
||||
math.log(float(max_timescale) / float(min_timescale)) /
|
||||
(num_timescales - 1))
|
||||
inv_timescales = min_timescale * torch.exp(
|
||||
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
||||
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
||||
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
||||
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
||||
signal = signal.view(1, channels, length)
|
||||
return signal
|
||||
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
||||
position = torch.arange(length, dtype=torch.float)
|
||||
num_timescales = channels // 2
|
||||
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
||||
num_timescales - 1
|
||||
)
|
||||
inv_timescales = min_timescale * torch.exp(
|
||||
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
||||
)
|
||||
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
||||
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
||||
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
||||
signal = signal.view(1, channels, length)
|
||||
return signal
|
||||
|
||||
|
||||
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return x + signal.to(dtype=x.dtype, device=x.device)
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return x + signal.to(dtype=x.dtype, device=x.device)
|
||||
|
||||
|
||||
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
||||
|
||||
|
||||
def subsequent_mask(length):
|
||||
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
||||
return mask
|
||||
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
||||
return mask
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
||||
n_channels_int = n_channels[0]
|
||||
in_act = input_a + input_b
|
||||
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
n_channels_int = n_channels[0]
|
||||
in_act = input_a + input_b
|
||||
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def shift_1d(x):
|
||||
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
||||
return x
|
||||
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
||||
return x
|
||||
|
||||
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def generate_path(duration, mask):
|
||||
"""
|
||||
duration: [b, 1, t_x]
|
||||
mask: [b, 1, t_y, t_x]
|
||||
"""
|
||||
device = duration.device
|
||||
|
||||
b, _, t_y, t_x = mask.shape
|
||||
cum_duration = torch.cumsum(duration, -1)
|
||||
|
||||
cum_duration_flat = cum_duration.view(b * t_x)
|
||||
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
||||
path = path.view(b, t_x, t_y)
|
||||
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
||||
path = path.unsqueeze(1).transpose(2,3) * mask
|
||||
return path
|
||||
"""
|
||||
duration: [b, 1, t_x]
|
||||
mask: [b, 1, t_y, t_x]
|
||||
"""
|
||||
device = duration.device
|
||||
|
||||
b, _, t_y, t_x = mask.shape
|
||||
cum_duration = torch.cumsum(duration, -1)
|
||||
|
||||
cum_duration_flat = cum_duration.view(b * t_x)
|
||||
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
||||
path = path.view(b, t_x, t_y)
|
||||
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
||||
path = path.unsqueeze(1).transpose(2, 3) * mask
|
||||
return path
|
||||
|
||||
|
||||
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
||||
if isinstance(parameters, torch.Tensor):
|
||||
parameters = [parameters]
|
||||
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
||||
norm_type = float(norm_type)
|
||||
if clip_value is not None:
|
||||
clip_value = float(clip_value)
|
||||
|
||||
total_norm = 0
|
||||
for p in parameters:
|
||||
param_norm = p.grad.data.norm(norm_type)
|
||||
total_norm += param_norm.item() ** norm_type
|
||||
if isinstance(parameters, torch.Tensor):
|
||||
parameters = [parameters]
|
||||
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
||||
norm_type = float(norm_type)
|
||||
if clip_value is not None:
|
||||
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
||||
total_norm = total_norm ** (1. / norm_type)
|
||||
return total_norm
|
||||
clip_value = float(clip_value)
|
||||
|
||||
total_norm = 0
|
||||
for p in parameters:
|
||||
param_norm = p.grad.data.norm(norm_type)
|
||||
total_norm += param_norm.item() ** norm_type
|
||||
if clip_value is not None:
|
||||
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
||||
total_norm = total_norm ** (1.0 / norm_type)
|
||||
return total_norm
|
||||
|
||||
|
||||
def squeeze(x, x_mask=None, n_sqz=2):
|
||||
b, c, t = x.size()
|
||||
b, c, t = x.size()
|
||||
|
||||
t = (t // n_sqz) * n_sqz
|
||||
x = x[:, :, :t]
|
||||
x_sqz = x.view(b, c, t // n_sqz, n_sqz)
|
||||
x_sqz = x_sqz.permute(0, 3, 1, 2).contiguous().view(b, c * n_sqz, t // n_sqz)
|
||||
t = (t // n_sqz) * n_sqz
|
||||
x = x[:, :, :t]
|
||||
x_sqz = x.view(b, c, t // n_sqz, n_sqz)
|
||||
x_sqz = x_sqz.permute(0, 3, 1, 2).contiguous().view(b, c * n_sqz, t // n_sqz)
|
||||
|
||||
if x_mask is not None:
|
||||
x_mask = x_mask[:, :, n_sqz - 1::n_sqz]
|
||||
else:
|
||||
x_mask = torch.ones(b, 1, t // n_sqz).to(device=x.device, dtype=x.dtype)
|
||||
return x_sqz * x_mask, x_mask
|
||||
if x_mask is not None:
|
||||
x_mask = x_mask[:, :, n_sqz - 1 :: n_sqz]
|
||||
else:
|
||||
x_mask = torch.ones(b, 1, t // n_sqz).to(device=x.device, dtype=x.dtype)
|
||||
return x_sqz * x_mask, x_mask
|
||||
|
||||
|
||||
def unsqueeze(x, x_mask=None, n_sqz=2):
|
||||
b, c, t = x.size()
|
||||
b, c, t = x.size()
|
||||
|
||||
x_unsqz = x.view(b, n_sqz, c // n_sqz, t)
|
||||
x_unsqz = x_unsqz.permute(0, 2, 3, 1).contiguous().view(b, c // n_sqz, t * n_sqz)
|
||||
x_unsqz = x.view(b, n_sqz, c // n_sqz, t)
|
||||
x_unsqz = x_unsqz.permute(0, 2, 3, 1).contiguous().view(b, c // n_sqz, t * n_sqz)
|
||||
|
||||
if x_mask is not None:
|
||||
x_mask = x_mask.unsqueeze(-1).repeat(1, 1, 1, n_sqz).view(b, 1, t * n_sqz)
|
||||
else:
|
||||
x_mask = torch.ones(b, 1, t * n_sqz).to(device=x.device, dtype=x.dtype)
|
||||
return x_unsqz * x_mask, x_mask
|
||||
if x_mask is not None:
|
||||
x_mask = x_mask.unsqueeze(-1).repeat(1, 1, 1, n_sqz).view(b, 1, t * n_sqz)
|
||||
else:
|
||||
x_mask = torch.ones(b, 1, t * n_sqz).to(device=x.device, dtype=x.dtype)
|
||||
return x_unsqz * x_mask, x_mask
|
||||
|
@ -76,10 +76,8 @@ def kmeans(samples, num_clusters: int, num_iters: int = 10):
|
||||
|
||||
print("kmeans start ... ")
|
||||
for _ in tqdm(range(num_iters)):
|
||||
diffs = rearrange(samples, "n d -> n () d") - rearrange(
|
||||
means, "c d -> () c d"
|
||||
)
|
||||
dists = -(diffs ** 2).sum(dim=-1)
|
||||
diffs = rearrange(samples, "n d -> n () d") - rearrange(means, "c d -> () c d")
|
||||
dists = -(diffs**2).sum(dim=-1)
|
||||
|
||||
buckets = dists.max(dim=-1).indices
|
||||
bins = torch.bincount(buckets, minlength=num_clusters)
|
||||
@ -110,6 +108,7 @@ class EuclideanCodebook(nn.Module):
|
||||
that have an exponential moving average cluster size less than the specified threshold with
|
||||
randomly selected vector from the current batch.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
@ -122,7 +121,9 @@ class EuclideanCodebook(nn.Module):
|
||||
):
|
||||
super().__init__()
|
||||
self.decay = decay
|
||||
init_fn: tp.Union[tp.Callable[..., torch.Tensor], tp.Any] = uniform_init if not kmeans_init else torch.zeros
|
||||
init_fn: tp.Union[tp.Callable[..., torch.Tensor], tp.Any] = (
|
||||
uniform_init if not kmeans_init else torch.zeros
|
||||
)
|
||||
embed = init_fn(codebook_size, dim)
|
||||
|
||||
self.codebook_size = codebook_size
|
||||
@ -147,7 +148,7 @@ class EuclideanCodebook(nn.Module):
|
||||
self.cluster_size.data.copy_(cluster_size)
|
||||
self.inited.data.copy_(torch.Tensor([True]))
|
||||
# Make sure all buffers across workers are in sync after initialization
|
||||
#broadcast_tensors(self.buffers())
|
||||
# broadcast_tensors(self.buffers())
|
||||
|
||||
def replace_(self, samples, mask):
|
||||
modified_codebook = torch.where(
|
||||
@ -165,7 +166,7 @@ class EuclideanCodebook(nn.Module):
|
||||
|
||||
batch_samples = rearrange(batch_samples, "... d -> (...) d")
|
||||
self.replace_(batch_samples, mask=expired_codes)
|
||||
#broadcast_tensors(self.buffers())
|
||||
# broadcast_tensors(self.buffers())
|
||||
|
||||
def preprocess(self, x):
|
||||
x = rearrange(x, "... d -> (...) d")
|
||||
@ -246,6 +247,7 @@ class VectorQuantization(nn.Module):
|
||||
randomly selected vector from the current batch.
|
||||
commitment_weight (float): Weight for commitment loss.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
@ -256,22 +258,31 @@ class VectorQuantization(nn.Module):
|
||||
kmeans_init: bool = True,
|
||||
kmeans_iters: int = 50,
|
||||
threshold_ema_dead_code: int = 2,
|
||||
commitment_weight: float = 1.,
|
||||
commitment_weight: float = 1.0,
|
||||
):
|
||||
super().__init__()
|
||||
_codebook_dim: int = default(codebook_dim, dim)
|
||||
|
||||
requires_projection = _codebook_dim != dim
|
||||
self.project_in = (nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity())
|
||||
self.project_out = (nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity())
|
||||
self.project_in = (
|
||||
nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity()
|
||||
)
|
||||
self.project_out = (
|
||||
nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity()
|
||||
)
|
||||
|
||||
self.epsilon = epsilon
|
||||
self.commitment_weight = commitment_weight
|
||||
|
||||
self._codebook = EuclideanCodebook(dim=_codebook_dim, codebook_size=codebook_size,
|
||||
kmeans_init=kmeans_init, kmeans_iters=kmeans_iters,
|
||||
decay=decay, epsilon=epsilon,
|
||||
threshold_ema_dead_code=threshold_ema_dead_code)
|
||||
self._codebook = EuclideanCodebook(
|
||||
dim=_codebook_dim,
|
||||
codebook_size=codebook_size,
|
||||
kmeans_init=kmeans_init,
|
||||
kmeans_iters=kmeans_iters,
|
||||
decay=decay,
|
||||
epsilon=epsilon,
|
||||
threshold_ema_dead_code=threshold_ema_dead_code,
|
||||
)
|
||||
self.codebook_size = codebook_size
|
||||
|
||||
@property
|
||||
@ -316,13 +327,16 @@ class ResidualVectorQuantization(nn.Module):
|
||||
"""Residual vector quantization implementation.
|
||||
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
|
||||
"""
|
||||
|
||||
def __init__(self, *, num_quantizers, **kwargs):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList(
|
||||
[VectorQuantization(**kwargs) for _ in range(num_quantizers)]
|
||||
)
|
||||
|
||||
def forward(self, x, n_q: tp.Optional[int] = None, layers: tp.Optional[list] = None):
|
||||
def forward(
|
||||
self, x, n_q: tp.Optional[int] = None, layers: tp.Optional[list] = None
|
||||
):
|
||||
quantized_out = 0.0
|
||||
residual = x
|
||||
|
||||
@ -345,7 +359,9 @@ class ResidualVectorQuantization(nn.Module):
|
||||
out_losses, out_indices = map(torch.stack, (all_losses, all_indices))
|
||||
return quantized_out, out_indices, out_losses, out_quantized
|
||||
|
||||
def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int]= None) -> torch.Tensor:
|
||||
def encode(
|
||||
self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int] = None
|
||||
) -> torch.Tensor:
|
||||
residual = x
|
||||
all_indices = []
|
||||
n_q = n_q or len(self.layers)
|
||||
@ -358,10 +374,10 @@ class ResidualVectorQuantization(nn.Module):
|
||||
out_indices = torch.stack(all_indices)
|
||||
return out_indices
|
||||
|
||||
def decode(self, q_indices: torch.Tensor, st: int=0) -> torch.Tensor:
|
||||
def decode(self, q_indices: torch.Tensor, st: int = 0) -> torch.Tensor:
|
||||
quantized_out = torch.tensor(0.0, device=q_indices.device)
|
||||
for i, indices in enumerate(q_indices):
|
||||
layer = self.layers[st + i]
|
||||
quantized = layer.decode(indices)
|
||||
quantized_out = quantized_out + quantized
|
||||
return quantized_out
|
||||
return quantized_out
|
||||
|
@ -1,6 +1,6 @@
|
||||
import time,logging
|
||||
import time, logging
|
||||
import os
|
||||
import random,traceback
|
||||
import random, traceback
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.utils.data
|
||||
@ -16,41 +16,44 @@ import torch
|
||||
import requests
|
||||
from scipy.io import wavfile
|
||||
from io import BytesIO
|
||||
|
||||
# from config import exp_dir
|
||||
from my_utils import load_audio
|
||||
|
||||
|
||||
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
||||
"""
|
||||
1) loads audio, speaker_id, text pairs
|
||||
2) normalizes text and converts them to sequences of integers
|
||||
3) computes spectrograms from audio files.
|
||||
1) loads audio, speaker_id, text pairs
|
||||
2) normalizes text and converts them to sequences of integers
|
||||
3) computes spectrograms from audio files.
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, val=False):
|
||||
exp_dir=hparams.exp_dir
|
||||
self.path2="%s/2-name2text.txt"%exp_dir
|
||||
self.path4="%s/4-cnhubert"%exp_dir
|
||||
self.path5="%s/5-wav32k"%exp_dir
|
||||
exp_dir = hparams.exp_dir
|
||||
self.path2 = "%s/2-name2text.txt" % exp_dir
|
||||
self.path4 = "%s/4-cnhubert" % exp_dir
|
||||
self.path5 = "%s/5-wav32k" % exp_dir
|
||||
assert os.path.exists(self.path2)
|
||||
assert os.path.exists(self.path4)
|
||||
assert os.path.exists(self.path5)
|
||||
names4=set([name[:-3]for name in list(os.listdir(self.path4))])#去除.pt后缀
|
||||
names5=set(os.listdir(self.path5))
|
||||
self.phoneme_data={}
|
||||
with open(self.path2,"r",encoding="utf8")as f:
|
||||
lines=f.read().strip("\n").split("\n")
|
||||
names4 = set([name[:-3] for name in list(os.listdir(self.path4))]) # 去除.pt后缀
|
||||
names5 = set(os.listdir(self.path5))
|
||||
self.phoneme_data = {}
|
||||
with open(self.path2, "r", encoding="utf8") as f:
|
||||
lines = f.read().strip("\n").split("\n")
|
||||
|
||||
for line in lines:
|
||||
tmp=line.split("\t")
|
||||
if(len(tmp)!=4):continue
|
||||
self.phoneme_data[tmp[0]]=[tmp[1]]
|
||||
tmp = line.split("\t")
|
||||
if len(tmp) != 4:
|
||||
continue
|
||||
self.phoneme_data[tmp[0]] = [tmp[1]]
|
||||
|
||||
self.audiopaths_sid_text=list(set(self.phoneme_data)&names4&names5)
|
||||
tmp=self.audiopaths_sid_text
|
||||
leng=len(tmp)
|
||||
min_num=100
|
||||
if(leng<min_num):
|
||||
self.audiopaths_sid_text=[]
|
||||
self.audiopaths_sid_text = list(set(self.phoneme_data) & names4 & names5)
|
||||
tmp = self.audiopaths_sid_text
|
||||
leng = len(tmp)
|
||||
min_num = 100
|
||||
if leng < min_num:
|
||||
self.audiopaths_sid_text = []
|
||||
for _ in range(max(2, int(min_num / leng))):
|
||||
self.audiopaths_sid_text += tmp
|
||||
self.max_wav_value = hparams.max_wav_value
|
||||
@ -69,20 +72,20 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
||||
|
||||
audiopaths_sid_text_new = []
|
||||
lengths = []
|
||||
skipped_phone = 0
|
||||
skipped_dur = 0
|
||||
skipped_phone = 0
|
||||
skipped_dur = 0
|
||||
for audiopath in tqdm(self.audiopaths_sid_text):
|
||||
try:
|
||||
phoneme = self.phoneme_data[audiopath][0]
|
||||
phoneme = phoneme.split(' ')
|
||||
phoneme = phoneme.split(" ")
|
||||
phoneme_ids = cleaned_text_to_sequence(phoneme)
|
||||
except Exception:
|
||||
print(f"{audiopath} not in self.phoneme_data !")
|
||||
skipped_phone += 1
|
||||
skipped_phone += 1
|
||||
continue
|
||||
size=os.path.getsize("%s/%s"%(self.path5,audiopath))
|
||||
size = os.path.getsize("%s/%s" % (self.path5, audiopath))
|
||||
duration = size / self.sampling_rate / 2
|
||||
if (54 > duration > 0.6 or self.val):
|
||||
if 54 > duration > 0.6 or self.val:
|
||||
audiopaths_sid_text_new.append([audiopath, phoneme_ids])
|
||||
lengths.append(size // (2 * self.hop_length))
|
||||
else:
|
||||
@ -90,7 +93,7 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
||||
continue
|
||||
print("skipped_phone: ", skipped_phone, ", skipped_dur: ", skipped_dur)
|
||||
print("total left: ", len(audiopaths_sid_text_new))
|
||||
assert len(audiopaths_sid_text_new)>1#至少能凑够batch size,这里todo
|
||||
assert len(audiopaths_sid_text_new) > 1 # 至少能凑够batch size,这里todo
|
||||
self.audiopaths_sid_text = audiopaths_sid_text_new
|
||||
self.lengths = lengths
|
||||
|
||||
@ -98,30 +101,41 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
||||
audiopath, phoneme_ids = audiopath_sid_text
|
||||
text = torch.FloatTensor(phoneme_ids)
|
||||
try:
|
||||
spec, wav = self.get_audio("%s/%s"%(self.path5,audiopath))
|
||||
spec, wav = self.get_audio("%s/%s" % (self.path5, audiopath))
|
||||
with torch.no_grad():
|
||||
ssl = torch.load("%s/%s.pt"%(self.path4,audiopath),map_location="cpu")
|
||||
if(ssl.shape[-1]!=spec.shape[-1]):
|
||||
typee=ssl.dtype
|
||||
ssl=F.pad(ssl.float(),(0,1),mode="replicate").to(typee)
|
||||
ssl.requires_grad=False
|
||||
ssl = torch.load(
|
||||
"%s/%s.pt" % (self.path4, audiopath), map_location="cpu"
|
||||
)
|
||||
if ssl.shape[-1] != spec.shape[-1]:
|
||||
typee = ssl.dtype
|
||||
ssl = F.pad(ssl.float(), (0, 1), mode="replicate").to(typee)
|
||||
ssl.requires_grad = False
|
||||
except:
|
||||
traceback.print_exc()
|
||||
spec = torch.zeros(1025, 100)
|
||||
wav = torch.zeros(1, 100*self.hop_length)
|
||||
ssl=torch.zeros(1,768,100)
|
||||
text=text[-1:]
|
||||
wav = torch.zeros(1, 100 * self.hop_length)
|
||||
ssl = torch.zeros(1, 768, 100)
|
||||
text = text[-1:]
|
||||
print("load audio or ssl error!!!!!!", audiopath)
|
||||
# print(ssl.requires_grad,spec.requires_grad,wav.requires_grad,text.requires_grad)
|
||||
return (ssl, spec, wav, text)
|
||||
|
||||
def get_audio(self, filename):
|
||||
audio_array = load_audio(filename,self.sampling_rate)#load_audio的方法是已经归一化到-1~1之间的,不用再/32768
|
||||
audio_array = load_audio(
|
||||
filename, self.sampling_rate
|
||||
) # load_audio的方法是已经归一化到-1~1之间的,不用再/32768
|
||||
# print(filename,audio_array.max(),audio_array.min(),audio_array.mean())
|
||||
audio=torch.FloatTensor(audio_array)#/32768
|
||||
audio = torch.FloatTensor(audio_array) # /32768
|
||||
audio_norm = audio
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
spec = spectrogram_torch(audio_norm, self.filter_length,self.sampling_rate, self.hop_length, self.win_length,center=False)
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
self.filter_length,
|
||||
self.sampling_rate,
|
||||
self.hop_length,
|
||||
self.win_length,
|
||||
center=False,
|
||||
)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
return spec, audio_norm
|
||||
|
||||
@ -131,39 +145,51 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
||||
|
||||
def __getitem__(self, index):
|
||||
# with torch.no_grad():
|
||||
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
||||
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
||||
|
||||
def __len__(self):
|
||||
return len(self.audiopaths_sid_text)
|
||||
|
||||
def random_slice(self, ssl, wav, mel):
|
||||
assert abs(ssl.shape[-1]- wav.shape[-1]//self.hop_length) < 3, ("first", ssl.shape, wav.shape)
|
||||
assert abs(ssl.shape[-1] - wav.shape[-1] // self.hop_length) < 3, (
|
||||
"first",
|
||||
ssl.shape,
|
||||
wav.shape,
|
||||
)
|
||||
|
||||
len_mel = mel.shape[1]
|
||||
if self.val:
|
||||
reference_mel = mel[:, :len_mel//3]
|
||||
reference_mel = mel[:, : len_mel // 3]
|
||||
return reference_mel, ssl, wav, mel
|
||||
dir = random.randint(0, 1)
|
||||
sep_point = random.randint(int(len_mel//3), int(len_mel//3*2))
|
||||
sep_point = random.randint(int(len_mel // 3), int(len_mel // 3 * 2))
|
||||
|
||||
if dir == 0:
|
||||
reference_mel = mel[:, :sep_point]
|
||||
ssl = ssl[:, :, sep_point:]
|
||||
wav2 = wav[:, sep_point*self.hop_length:]
|
||||
wav2 = wav[:, sep_point * self.hop_length :]
|
||||
mel = mel[:, sep_point:]
|
||||
else:
|
||||
reference_mel = mel[:, sep_point:]
|
||||
ssl = ssl[:, :, :sep_point]
|
||||
wav2 = wav[:, :sep_point*self.hop_length]
|
||||
wav2 = wav[:, : sep_point * self.hop_length]
|
||||
mel = mel[:, :sep_point]
|
||||
|
||||
assert abs(ssl.shape[-1]- wav2.shape[-1]//self.hop_length) < 3, (ssl.shape, wav.shape,wav2.shape, mel.shape, sep_point,self.hop_length, sep_point*self.hop_length, dir)
|
||||
assert abs(ssl.shape[-1] - wav2.shape[-1] // self.hop_length) < 3, (
|
||||
ssl.shape,
|
||||
wav.shape,
|
||||
wav2.shape,
|
||||
mel.shape,
|
||||
sep_point,
|
||||
self.hop_length,
|
||||
sep_point * self.hop_length,
|
||||
dir,
|
||||
)
|
||||
return reference_mel, ssl, wav2, mel
|
||||
|
||||
|
||||
class TextAudioSpeakerCollate():
|
||||
""" Zero-pads model inputs and targets
|
||||
"""
|
||||
class TextAudioSpeakerCollate:
|
||||
"""Zero-pads model inputs and targets"""
|
||||
|
||||
def __init__(self, return_ids=False):
|
||||
self.return_ids = return_ids
|
||||
@ -176,8 +202,8 @@ class TextAudioSpeakerCollate():
|
||||
"""
|
||||
# Right zero-pad all one-hot text sequences to max input length
|
||||
_, ids_sorted_decreasing = torch.sort(
|
||||
torch.LongTensor([x[1].size(1) for x in batch]),
|
||||
dim=0, descending=True)
|
||||
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
|
||||
)
|
||||
|
||||
max_ssl_len = max([x[0].size(2) for x in batch])
|
||||
max_ssl_len = int(2 * ((max_ssl_len // 2) + 1))
|
||||
@ -194,7 +220,7 @@ class TextAudioSpeakerCollate():
|
||||
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
||||
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
||||
ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len)
|
||||
text_padded = torch.LongTensor(len(batch), max_text_len)
|
||||
text_padded = torch.LongTensor(len(batch), max_text_len)
|
||||
|
||||
spec_padded.zero_()
|
||||
wav_padded.zero_()
|
||||
@ -205,23 +231,31 @@ class TextAudioSpeakerCollate():
|
||||
row = batch[ids_sorted_decreasing[i]]
|
||||
|
||||
ssl = row[0]
|
||||
ssl_padded[i, :, :ssl.size(2)] = ssl[0, :, :]
|
||||
ssl_padded[i, :, : ssl.size(2)] = ssl[0, :, :]
|
||||
ssl_lengths[i] = ssl.size(2)
|
||||
|
||||
spec = row[1]
|
||||
spec_padded[i, :, :spec.size(1)] = spec
|
||||
spec_padded[i, :, : spec.size(1)] = spec
|
||||
spec_lengths[i] = spec.size(1)
|
||||
|
||||
wav = row[2]
|
||||
wav_padded[i, :, :wav.size(1)] = wav
|
||||
wav_padded[i, :, : wav.size(1)] = wav
|
||||
wav_lengths[i] = wav.size(1)
|
||||
|
||||
text = row[3]
|
||||
text_padded[i, :text.size(0)] = text
|
||||
text_padded[i, : text.size(0)] = text
|
||||
text_lengths[i] = text.size(0)
|
||||
|
||||
|
||||
return ssl_padded, ssl_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, text_padded, text_lengths
|
||||
return (
|
||||
ssl_padded,
|
||||
ssl_lengths,
|
||||
spec_padded,
|
||||
spec_lengths,
|
||||
wav_padded,
|
||||
wav_lengths,
|
||||
text_padded,
|
||||
text_lengths,
|
||||
)
|
||||
|
||||
|
||||
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||
@ -234,7 +268,15 @@ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
||||
"""
|
||||
|
||||
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
|
||||
def __init__(
|
||||
self,
|
||||
dataset,
|
||||
batch_size,
|
||||
boundaries,
|
||||
num_replicas=None,
|
||||
rank=None,
|
||||
shuffle=True,
|
||||
):
|
||||
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
||||
self.lengths = dataset.lengths
|
||||
# print(233333333333333,self.lengths,dir(dataset))
|
||||
@ -254,7 +296,7 @@ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||
buckets[idx_bucket].append(i)
|
||||
|
||||
for i in range(len(buckets) - 1, 0, -1):
|
||||
# for i in range(len(buckets) - 1, -1, -1):
|
||||
# for i in range(len(buckets) - 1, -1, -1):
|
||||
if len(buckets[i]) == 0:
|
||||
buckets.pop(i)
|
||||
self.boundaries.pop(i + 1)
|
||||
@ -263,7 +305,9 @@ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||
for i in range(len(buckets)):
|
||||
len_bucket = len(buckets[i])
|
||||
total_batch_size = self.num_replicas * self.batch_size
|
||||
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
|
||||
rem = (
|
||||
total_batch_size - (len_bucket % total_batch_size)
|
||||
) % total_batch_size
|
||||
num_samples_per_bucket.append(len_bucket + rem)
|
||||
return buckets, num_samples_per_bucket
|
||||
|
||||
@ -289,14 +333,23 @@ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||
|
||||
# add extra samples to make it evenly divisible
|
||||
rem = num_samples_bucket - len_bucket
|
||||
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
||||
ids_bucket = (
|
||||
ids_bucket
|
||||
+ ids_bucket * (rem // len_bucket)
|
||||
+ ids_bucket[: (rem % len_bucket)]
|
||||
)
|
||||
|
||||
# subsample
|
||||
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
||||
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
|
||||
|
||||
# batching
|
||||
for j in range(len(ids_bucket) // self.batch_size):
|
||||
batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
|
||||
batch = [
|
||||
bucket[idx]
|
||||
for idx in ids_bucket[
|
||||
j * self.batch_size : (j + 1) * self.batch_size
|
||||
]
|
||||
]
|
||||
batches.append(batch)
|
||||
|
||||
if self.shuffle:
|
||||
|
@ -5,64 +5,69 @@ from torch.nn import functional as F
|
||||
|
||||
|
||||
def feature_loss(fmap_r, fmap_g):
|
||||
loss = 0
|
||||
for dr, dg in zip(fmap_r, fmap_g):
|
||||
for rl, gl in zip(dr, dg):
|
||||
rl = rl.float().detach()
|
||||
gl = gl.float()
|
||||
loss += torch.mean(torch.abs(rl - gl))
|
||||
loss = 0
|
||||
for dr, dg in zip(fmap_r, fmap_g):
|
||||
for rl, gl in zip(dr, dg):
|
||||
rl = rl.float().detach()
|
||||
gl = gl.float()
|
||||
loss += torch.mean(torch.abs(rl - gl))
|
||||
|
||||
return loss * 2
|
||||
return loss * 2
|
||||
|
||||
|
||||
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
||||
loss = 0
|
||||
r_losses = []
|
||||
g_losses = []
|
||||
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||
dr = dr.float()
|
||||
dg = dg.float()
|
||||
r_loss = torch.mean((1-dr)**2)
|
||||
g_loss = torch.mean(dg**2)
|
||||
loss += (r_loss + g_loss)
|
||||
r_losses.append(r_loss.item())
|
||||
g_losses.append(g_loss.item())
|
||||
loss = 0
|
||||
r_losses = []
|
||||
g_losses = []
|
||||
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||
dr = dr.float()
|
||||
dg = dg.float()
|
||||
r_loss = torch.mean((1 - dr) ** 2)
|
||||
g_loss = torch.mean(dg**2)
|
||||
loss += r_loss + g_loss
|
||||
r_losses.append(r_loss.item())
|
||||
g_losses.append(g_loss.item())
|
||||
|
||||
return loss, r_losses, g_losses
|
||||
return loss, r_losses, g_losses
|
||||
|
||||
|
||||
def generator_loss(disc_outputs):
|
||||
loss = 0
|
||||
gen_losses = []
|
||||
for dg in disc_outputs:
|
||||
dg = dg.float()
|
||||
l = torch.mean((1-dg)**2)
|
||||
gen_losses.append(l)
|
||||
loss += l
|
||||
loss = 0
|
||||
gen_losses = []
|
||||
for dg in disc_outputs:
|
||||
dg = dg.float()
|
||||
l = torch.mean((1 - dg) ** 2)
|
||||
gen_losses.append(l)
|
||||
loss += l
|
||||
|
||||
return loss, gen_losses
|
||||
return loss, gen_losses
|
||||
|
||||
|
||||
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
||||
"""
|
||||
z_p, logs_q: [b, h, t_t]
|
||||
m_p, logs_p: [b, h, t_t]
|
||||
"""
|
||||
z_p = z_p.float()
|
||||
logs_q = logs_q.float()
|
||||
m_p = m_p.float()
|
||||
logs_p = logs_p.float()
|
||||
z_mask = z_mask.float()
|
||||
"""
|
||||
z_p, logs_q: [b, h, t_t]
|
||||
m_p, logs_p: [b, h, t_t]
|
||||
"""
|
||||
z_p = z_p.float()
|
||||
logs_q = logs_q.float()
|
||||
m_p = m_p.float()
|
||||
logs_p = logs_p.float()
|
||||
z_mask = z_mask.float()
|
||||
|
||||
kl = logs_p - logs_q - 0.5
|
||||
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
|
||||
kl = torch.sum(kl * z_mask)
|
||||
l = kl / torch.sum(z_mask)
|
||||
return l
|
||||
|
||||
kl = logs_p - logs_q - 0.5
|
||||
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
||||
kl = torch.sum(kl * z_mask)
|
||||
l = kl / torch.sum(z_mask)
|
||||
return l
|
||||
|
||||
def mle_loss(z, m, logs, logdet, mask):
|
||||
l = torch.sum(logs) + 0.5 * torch.sum(torch.exp(-2 * logs) * ((z - m)**2)) # neg normal likelihood w/o the constant term
|
||||
l = l - torch.sum(logdet) # log jacobian determinant
|
||||
l = l / torch.sum(torch.ones_like(z) * mask) # averaging across batch, channel and time axes
|
||||
l = l + 0.5 * math.log(2 * math.pi) # add the remaining constant term
|
||||
return l
|
||||
l = torch.sum(logs) + 0.5 * torch.sum(
|
||||
torch.exp(-2 * logs) * ((z - m) ** 2)
|
||||
) # neg normal likelihood w/o the constant term
|
||||
l = l - torch.sum(logdet) # log jacobian determinant
|
||||
l = l / torch.sum(
|
||||
torch.ones_like(z) * mask
|
||||
) # averaging across batch, channel and time axes
|
||||
l = l + 0.5 * math.log(2 * math.pi) # add the remaining constant term
|
||||
return l
|
||||
|
@ -49,21 +49,37 @@ hann_window = {}
|
||||
|
||||
|
||||
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
||||
if torch.min(y) < -1.:
|
||||
print('min value is ', torch.min(y))
|
||||
if torch.max(y) > 1.:
|
||||
print('max value is ', torch.max(y))
|
||||
if torch.min(y) < -1.0:
|
||||
print("min value is ", torch.min(y))
|
||||
if torch.max(y) > 1.0:
|
||||
print("max value is ", torch.max(y))
|
||||
|
||||
global hann_window
|
||||
dtype_device = str(y.dtype) + '_' + str(y.device)
|
||||
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
||||
dtype_device = str(y.dtype) + "_" + str(y.device)
|
||||
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
||||
if wnsize_dtype_device not in hann_window:
|
||||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
||||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
||||
dtype=y.dtype, device=y.device
|
||||
)
|
||||
|
||||
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1),
|
||||
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
||||
mode="reflect",
|
||||
)
|
||||
y = y.squeeze(1)
|
||||
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
||||
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
||||
spec = torch.stft(
|
||||
y,
|
||||
n_fft,
|
||||
hop_length=hop_size,
|
||||
win_length=win_size,
|
||||
window=hann_window[wnsize_dtype_device],
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=False,
|
||||
)
|
||||
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||||
return spec
|
||||
@ -71,37 +87,63 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
||||
|
||||
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
||||
global mel_basis
|
||||
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
||||
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
||||
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
||||
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
||||
if fmax_dtype_device not in mel_basis:
|
||||
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
||||
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
||||
mel = librosa_mel_fn(
|
||||
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
||||
)
|
||||
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
||||
dtype=spec.dtype, device=spec.device
|
||||
)
|
||||
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||||
spec = spectral_normalize_torch(spec)
|
||||
return spec
|
||||
|
||||
|
||||
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
||||
if torch.min(y) < -1.:
|
||||
print('min value is ', torch.min(y))
|
||||
if torch.max(y) > 1.:
|
||||
print('max value is ', torch.max(y))
|
||||
def mel_spectrogram_torch(
|
||||
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
||||
):
|
||||
if torch.min(y) < -1.0:
|
||||
print("min value is ", torch.min(y))
|
||||
if torch.max(y) > 1.0:
|
||||
print("max value is ", torch.max(y))
|
||||
|
||||
global mel_basis, hann_window
|
||||
dtype_device = str(y.dtype) + '_' + str(y.device)
|
||||
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
||||
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
||||
dtype_device = str(y.dtype) + "_" + str(y.device)
|
||||
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
||||
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
||||
if fmax_dtype_device not in mel_basis:
|
||||
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
||||
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
||||
mel = librosa_mel_fn(
|
||||
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
||||
)
|
||||
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
||||
dtype=y.dtype, device=y.device
|
||||
)
|
||||
if wnsize_dtype_device not in hann_window:
|
||||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
||||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
||||
dtype=y.dtype, device=y.device
|
||||
)
|
||||
|
||||
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1),
|
||||
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
||||
mode="reflect",
|
||||
)
|
||||
y = y.squeeze(1)
|
||||
|
||||
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
||||
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
||||
spec = torch.stft(
|
||||
y,
|
||||
n_fft,
|
||||
hop_length=hop_size,
|
||||
win_length=win_size,
|
||||
window=hann_window[wnsize_dtype_device],
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=False,
|
||||
)
|
||||
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||||
|
||||
|
@ -12,12 +12,21 @@ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||
from module.commons import init_weights, get_padding
|
||||
from module.mrte_model import MRTE
|
||||
from module.quantize import ResidualVectorQuantizer
|
||||
from module.quantize import ResidualVectorQuantizer
|
||||
from text import symbols
|
||||
from torch.cuda.amp import autocast
|
||||
|
||||
|
||||
class StochasticDurationPredictor(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
n_flows=4,
|
||||
gin_channels=0,
|
||||
):
|
||||
super().__init__()
|
||||
filter_channels = in_channels # it needs to be removed from future version.
|
||||
self.in_channels = in_channels
|
||||
@ -31,21 +40,29 @@ class StochasticDurationPredictor(nn.Module):
|
||||
self.flows = nn.ModuleList()
|
||||
self.flows.append(modules.ElementwiseAffine(2))
|
||||
for i in range(n_flows):
|
||||
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
||||
self.flows.append(
|
||||
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
||||
)
|
||||
self.flows.append(modules.Flip())
|
||||
|
||||
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
||||
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
||||
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
||||
self.post_convs = modules.DDSConv(
|
||||
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
||||
)
|
||||
self.post_flows = nn.ModuleList()
|
||||
self.post_flows.append(modules.ElementwiseAffine(2))
|
||||
for i in range(4):
|
||||
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
||||
self.post_flows.append(
|
||||
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
||||
)
|
||||
self.post_flows.append(modules.Flip())
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
||||
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
||||
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
||||
self.convs = modules.DDSConv(
|
||||
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
||||
)
|
||||
if gin_channels != 0:
|
||||
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
||||
|
||||
@ -66,7 +83,10 @@ class StochasticDurationPredictor(nn.Module):
|
||||
h_w = self.post_pre(w)
|
||||
h_w = self.post_convs(h_w, x_mask)
|
||||
h_w = self.post_proj(h_w) * x_mask
|
||||
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
||||
e_q = (
|
||||
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
|
||||
* x_mask
|
||||
)
|
||||
z_q = e_q
|
||||
for flow in self.post_flows:
|
||||
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
||||
@ -74,8 +94,13 @@ class StochasticDurationPredictor(nn.Module):
|
||||
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
||||
u = torch.sigmoid(z_u) * x_mask
|
||||
z0 = (w - u) * x_mask
|
||||
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
|
||||
logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q
|
||||
logdet_tot_q += torch.sum(
|
||||
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
|
||||
)
|
||||
logq = (
|
||||
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
|
||||
- logdet_tot_q
|
||||
)
|
||||
|
||||
logdet_tot = 0
|
||||
z0, logdet = self.log_flow(z0, x_mask)
|
||||
@ -84,12 +109,18 @@ class StochasticDurationPredictor(nn.Module):
|
||||
for flow in flows:
|
||||
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
||||
logdet_tot = logdet_tot + logdet
|
||||
nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot
|
||||
nll = (
|
||||
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
|
||||
- logdet_tot
|
||||
)
|
||||
return nll + logq # [b]
|
||||
else:
|
||||
flows = list(reversed(self.flows))
|
||||
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
||||
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
||||
z = (
|
||||
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
|
||||
* noise_scale
|
||||
)
|
||||
for flow in flows:
|
||||
z = flow(z, x_mask, g=x, reverse=reverse)
|
||||
z0, z1 = torch.split(z, [1, 1], 1)
|
||||
@ -98,7 +129,9 @@ class StochasticDurationPredictor(nn.Module):
|
||||
|
||||
|
||||
class DurationPredictor(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
||||
def __init__(
|
||||
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
@ -108,9 +141,13 @@ class DurationPredictor(nn.Module):
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.conv_1 = nn.Conv1d(
|
||||
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
||||
)
|
||||
self.norm_1 = modules.LayerNorm(filter_channels)
|
||||
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.conv_2 = nn.Conv1d(
|
||||
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
||||
)
|
||||
self.norm_2 = modules.LayerNorm(filter_channels)
|
||||
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
||||
|
||||
@ -135,15 +172,17 @@ class DurationPredictor(nn.Module):
|
||||
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
latent_channels=192):
|
||||
def __init__(
|
||||
self,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
latent_channels=192,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
@ -160,17 +199,14 @@ class TextEncoder(nn.Module):
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers//2,
|
||||
n_layers // 2,
|
||||
kernel_size,
|
||||
p_dropout)
|
||||
p_dropout,
|
||||
)
|
||||
|
||||
self.encoder_text = attentions.Encoder(
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout)
|
||||
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
||||
)
|
||||
self.text_embedding = nn.Embedding(len(symbols), hidden_channels)
|
||||
|
||||
self.mrte = MRTE()
|
||||
@ -179,21 +215,25 @@ class TextEncoder(nn.Module):
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers//2,
|
||||
n_layers // 2,
|
||||
kernel_size,
|
||||
p_dropout)
|
||||
|
||||
p_dropout,
|
||||
)
|
||||
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, y, y_lengths, text, text_lengths, ge, test=None):
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
|
||||
y.dtype
|
||||
)
|
||||
|
||||
y = self.ssl_proj(y * y_mask) * y_mask
|
||||
y = self.encoder_ssl(y * y_mask, y_mask)
|
||||
|
||||
text_mask = torch.unsqueeze(commons.sequence_mask(text_lengths, text.size(1)), 1).to(y.dtype)
|
||||
if test == 1 :
|
||||
text_mask = torch.unsqueeze(
|
||||
commons.sequence_mask(text_lengths, text.size(1)), 1
|
||||
).to(y.dtype)
|
||||
if test == 1:
|
||||
text[:, :] = 0
|
||||
text = self.text_embedding(text).transpose(1, 2)
|
||||
text = self.encoder_text(text * text_mask, text_mask)
|
||||
@ -208,9 +248,9 @@ class TextEncoder(nn.Module):
|
||||
def extract_latent(self, x):
|
||||
x = self.ssl_proj(x)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(x)
|
||||
return codes.transpose(0,1)
|
||||
def decode_latent(self, codes, y_mask, refer,refer_mask, ge):
|
||||
return codes.transpose(0, 1)
|
||||
|
||||
def decode_latent(self, codes, y_mask, refer, refer_mask, ge):
|
||||
quantized = self.quantizer.decode(codes)
|
||||
|
||||
y = self.vq_proj(quantized) * y_mask
|
||||
@ -224,15 +264,18 @@ class TextEncoder(nn.Module):
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
return y, m, logs, y_mask, quantized
|
||||
|
||||
|
||||
class ResidualCouplingBlock(nn.Module):
|
||||
def __init__(self,
|
||||
channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
n_flows=4,
|
||||
gin_channels=0):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
n_flows=4,
|
||||
gin_channels=0,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.hidden_channels = hidden_channels
|
||||
@ -245,8 +288,16 @@ class ResidualCouplingBlock(nn.Module):
|
||||
self.flows = nn.ModuleList()
|
||||
for i in range(n_flows):
|
||||
self.flows.append(
|
||||
modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
|
||||
gin_channels=gin_channels, mean_only=True))
|
||||
modules.ResidualCouplingLayer(
|
||||
channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=gin_channels,
|
||||
mean_only=True,
|
||||
)
|
||||
)
|
||||
self.flows.append(modules.Flip())
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
@ -260,14 +311,16 @@ class ResidualCouplingBlock(nn.Module):
|
||||
|
||||
|
||||
class PosteriorEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
@ -278,13 +331,21 @@ class PosteriorEncoder(nn.Module):
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
||||
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
||||
self.enc = modules.WN(
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, x, x_lengths, g=None):
|
||||
if(g!=None):
|
||||
if g != None:
|
||||
g = g.detach()
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
||||
x.dtype
|
||||
)
|
||||
x = self.pre(x) * x_mask
|
||||
x = self.enc(x, x_mask, g=g)
|
||||
stats = self.proj(x) * x_mask
|
||||
@ -294,14 +355,16 @@ class PosteriorEncoder(nn.Module):
|
||||
|
||||
|
||||
class WNEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
@ -312,11 +375,20 @@ class WNEncoder(nn.Module):
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
||||
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
||||
self.enc = modules.WN(
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
self.norm = modules.LayerNorm(out_channels)
|
||||
|
||||
def forward(self, x, x_lengths, g=None):
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
||||
x.dtype
|
||||
)
|
||||
x = self.pre(x) * x_mask
|
||||
x = self.enc(x, x_mask, g=g)
|
||||
out = self.proj(x) * x_mask
|
||||
@ -325,24 +397,45 @@ class WNEncoder(nn.Module):
|
||||
|
||||
|
||||
class Generator(torch.nn.Module):
|
||||
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
||||
upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
||||
def __init__(
|
||||
self,
|
||||
initial_channel,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=0,
|
||||
):
|
||||
super(Generator, self).__init__()
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
self.num_upsamples = len(upsample_rates)
|
||||
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
||||
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
||||
self.conv_pre = Conv1d(
|
||||
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
||||
)
|
||||
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
||||
|
||||
self.ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
||||
self.ups.append(weight_norm(
|
||||
ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
|
||||
k, u, padding=(k - u) // 2)))
|
||||
self.ups.append(
|
||||
weight_norm(
|
||||
ConvTranspose1d(
|
||||
upsample_initial_channel // (2**i),
|
||||
upsample_initial_channel // (2 ** (i + 1)),
|
||||
k,
|
||||
u,
|
||||
padding=(k - u) // 2,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = upsample_initial_channel // (2 ** (i + 1))
|
||||
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
||||
for j, (k, d) in enumerate(
|
||||
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
||||
):
|
||||
self.resblocks.append(resblock(ch, k, d))
|
||||
|
||||
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
||||
@ -373,7 +466,7 @@ class Generator(torch.nn.Module):
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
print('Removing weight norm...')
|
||||
print("Removing weight norm...")
|
||||
for l in self.ups:
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
@ -386,13 +479,55 @@ class DiscriminatorP(torch.nn.Module):
|
||||
self.period = period
|
||||
self.use_spectral_norm = use_spectral_norm
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
self.convs = nn.ModuleList([
|
||||
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||||
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||||
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||||
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||||
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
||||
])
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
norm_f(
|
||||
Conv2d(
|
||||
1,
|
||||
32,
|
||||
(kernel_size, 1),
|
||||
(stride, 1),
|
||||
padding=(get_padding(kernel_size, 1), 0),
|
||||
)
|
||||
),
|
||||
norm_f(
|
||||
Conv2d(
|
||||
32,
|
||||
128,
|
||||
(kernel_size, 1),
|
||||
(stride, 1),
|
||||
padding=(get_padding(kernel_size, 1), 0),
|
||||
)
|
||||
),
|
||||
norm_f(
|
||||
Conv2d(
|
||||
128,
|
||||
512,
|
||||
(kernel_size, 1),
|
||||
(stride, 1),
|
||||
padding=(get_padding(kernel_size, 1), 0),
|
||||
)
|
||||
),
|
||||
norm_f(
|
||||
Conv2d(
|
||||
512,
|
||||
1024,
|
||||
(kernel_size, 1),
|
||||
(stride, 1),
|
||||
padding=(get_padding(kernel_size, 1), 0),
|
||||
)
|
||||
),
|
||||
norm_f(
|
||||
Conv2d(
|
||||
1024,
|
||||
1024,
|
||||
(kernel_size, 1),
|
||||
1,
|
||||
padding=(get_padding(kernel_size, 1), 0),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
||||
|
||||
def forward(self, x):
|
||||
@ -421,14 +556,16 @@ class DiscriminatorS(torch.nn.Module):
|
||||
def __init__(self, use_spectral_norm=False):
|
||||
super(DiscriminatorS, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
self.convs = nn.ModuleList([
|
||||
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
||||
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
||||
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
||||
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
||||
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
||||
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
||||
])
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
||||
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
||||
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
||||
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
||||
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
||||
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
||||
]
|
||||
)
|
||||
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
||||
|
||||
def forward(self, x):
|
||||
@ -451,7 +588,9 @@ class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
periods = [2, 3, 5, 7, 11]
|
||||
|
||||
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
||||
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
||||
discs = discs + [
|
||||
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
||||
]
|
||||
self.discriminators = nn.ModuleList(discs)
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
@ -469,31 +608,40 @@ class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class ReferenceEncoder(nn.Module):
|
||||
'''
|
||||
"""
|
||||
inputs --- [N, Ty/r, n_mels*r] mels
|
||||
outputs --- [N, ref_enc_gru_size]
|
||||
'''
|
||||
"""
|
||||
|
||||
def __init__(self, spec_channels, gin_channels=0):
|
||||
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
ref_enc_filters = [32, 32, 64, 64, 128, 128]
|
||||
K = len(ref_enc_filters)
|
||||
filters = [1] + ref_enc_filters
|
||||
convs = [weight_norm(nn.Conv2d(in_channels=filters[i],
|
||||
out_channels=filters[i + 1],
|
||||
kernel_size=(3, 3),
|
||||
stride=(2, 2),
|
||||
padding=(1, 1))) for i in range(K)]
|
||||
convs = [
|
||||
weight_norm(
|
||||
nn.Conv2d(
|
||||
in_channels=filters[i],
|
||||
out_channels=filters[i + 1],
|
||||
kernel_size=(3, 3),
|
||||
stride=(2, 2),
|
||||
padding=(1, 1),
|
||||
)
|
||||
)
|
||||
for i in range(K)
|
||||
]
|
||||
self.convs = nn.ModuleList(convs)
|
||||
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)])
|
||||
|
||||
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
|
||||
self.gru = nn.GRU(input_size=ref_enc_filters[-1] * out_channels,
|
||||
hidden_size=256 // 2,
|
||||
batch_first=True)
|
||||
self.gru = nn.GRU(
|
||||
input_size=ref_enc_filters[-1] * out_channels,
|
||||
hidden_size=256 // 2,
|
||||
batch_first=True,
|
||||
)
|
||||
self.proj = nn.Linear(128, gin_channels)
|
||||
|
||||
def forward(self, inputs):
|
||||
@ -527,23 +675,31 @@ class Quantizer_module(torch.nn.Module):
|
||||
self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e)
|
||||
|
||||
def forward(self, x):
|
||||
d = torch.sum(x ** 2, 1, keepdim=True) + torch.sum(self.embedding.weight ** 2, 1) - 2 * torch.matmul(x, self.embedding.weight.T)
|
||||
d = (
|
||||
torch.sum(x**2, 1, keepdim=True)
|
||||
+ torch.sum(self.embedding.weight**2, 1)
|
||||
- 2 * torch.matmul(x, self.embedding.weight.T)
|
||||
)
|
||||
min_indicies = torch.argmin(d, 1)
|
||||
z_q = self.embedding(min_indicies)
|
||||
return z_q, min_indicies
|
||||
|
||||
|
||||
class Quantizer(torch.nn.Module):
|
||||
def __init__(self, embed_dim=512, n_code_groups=4, n_codes=160):
|
||||
super(Quantizer, self).__init__()
|
||||
assert embed_dim % n_code_groups == 0
|
||||
self.quantizer_modules = nn.ModuleList([
|
||||
Quantizer_module(n_codes, embed_dim // n_code_groups) for _ in range(n_code_groups)
|
||||
])
|
||||
self.quantizer_modules = nn.ModuleList(
|
||||
[
|
||||
Quantizer_module(n_codes, embed_dim // n_code_groups)
|
||||
for _ in range(n_code_groups)
|
||||
]
|
||||
)
|
||||
self.n_code_groups = n_code_groups
|
||||
self.embed_dim = embed_dim
|
||||
|
||||
def forward(self, xin):
|
||||
#B, C, T
|
||||
# B, C, T
|
||||
B, C, T = xin.shape
|
||||
xin = xin.transpose(1, 2)
|
||||
x = xin.reshape(-1, self.embed_dim)
|
||||
@ -553,38 +709,41 @@ class Quantizer(torch.nn.Module):
|
||||
for _x, m in zip(x, self.quantizer_modules):
|
||||
_z_q, _min_indicies = m(_x)
|
||||
z_q.append(_z_q)
|
||||
min_indicies.append(_min_indicies) #B * T,
|
||||
min_indicies.append(_min_indicies) # B * T,
|
||||
z_q = torch.cat(z_q, -1).reshape(xin.shape)
|
||||
loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean((z_q - xin.detach()) ** 2)
|
||||
loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean(
|
||||
(z_q - xin.detach()) ** 2
|
||||
)
|
||||
z_q = xin + (z_q - xin).detach()
|
||||
z_q = z_q.transpose(1, 2)
|
||||
codes = torch.stack(min_indicies, -1).reshape(B, T, self.n_code_groups)
|
||||
return z_q, loss, codes.transpose(1, 2)
|
||||
|
||||
def embed(self, x):
|
||||
#idx: N, 4, T
|
||||
x=x.transpose(1, 2)
|
||||
# idx: N, 4, T
|
||||
x = x.transpose(1, 2)
|
||||
x = torch.split(x, 1, 2)
|
||||
ret = []
|
||||
for q, embed in zip(x, self.quantizer_modules):
|
||||
q = embed.embedding(q.squeeze(-1))
|
||||
ret.append(q)
|
||||
ret = torch.cat(ret, -1)
|
||||
return ret.transpose(1, 2) #N, C, T
|
||||
return ret.transpose(1, 2) # N, C, T
|
||||
|
||||
|
||||
class CodePredictor(nn.Module):
|
||||
def __init__(self,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
n_q=8,
|
||||
dims=1024,
|
||||
ssl_dim=768
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
n_q=8,
|
||||
dims=1024,
|
||||
ssl_dim=768,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
@ -594,19 +753,18 @@ class CodePredictor(nn.Module):
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.vq_proj = nn.Conv1d(ssl_dim, hidden_channels, 1)
|
||||
self.ref_enc = modules.MelStyleEncoder(ssl_dim, style_vector_dim=hidden_channels)
|
||||
self.ref_enc = modules.MelStyleEncoder(
|
||||
ssl_dim, style_vector_dim=hidden_channels
|
||||
)
|
||||
|
||||
self.encoder = attentions.Encoder(
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout)
|
||||
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
||||
)
|
||||
|
||||
self.out_proj = nn.Conv1d(hidden_channels, (n_q-1) * dims, 1)
|
||||
self.out_proj = nn.Conv1d(hidden_channels, (n_q - 1) * dims, 1)
|
||||
self.n_q = n_q
|
||||
self.dims = dims
|
||||
|
||||
def forward(self, x, x_mask, refer, codes, infer=False):
|
||||
x = x.detach()
|
||||
x = self.vq_proj(x * x_mask) * x_mask
|
||||
@ -614,7 +772,9 @@ class CodePredictor(nn.Module):
|
||||
x = x + g
|
||||
x = self.encoder(x * x_mask, x_mask)
|
||||
x = self.out_proj(x * x_mask) * x_mask
|
||||
logits = x.reshape(x.shape[0], self.n_q - 1, self.dims, x.shape[-1]).transpose(2, 3)
|
||||
logits = x.reshape(x.shape[0], self.n_q - 1, self.dims, x.shape[-1]).transpose(
|
||||
2, 3
|
||||
)
|
||||
target = codes[1:].transpose(0, 1)
|
||||
if not infer:
|
||||
logits = logits.reshape(-1, self.dims)
|
||||
@ -626,44 +786,44 @@ class CodePredictor(nn.Module):
|
||||
correct_top10 = torch.any(top10_preds == target.unsqueeze(-1), dim=-1)
|
||||
top3_acc = 100 * torch.mean(correct_top10.float()).detach().cpu().item()
|
||||
|
||||
print('Top-10 Accuracy:', top3_acc, "%")
|
||||
print("Top-10 Accuracy:", top3_acc, "%")
|
||||
|
||||
pred_codes = torch.argmax(logits, dim=-1)
|
||||
acc = 100 * torch.mean((pred_codes == target).float()).detach().cpu().item()
|
||||
print('Top-1 Accuracy:', acc, "%")
|
||||
print("Top-1 Accuracy:", acc, "%")
|
||||
|
||||
return pred_codes.transpose(0, 1)
|
||||
|
||||
|
||||
|
||||
class SynthesizerTrn(nn.Module):
|
||||
"""
|
||||
Synthesizer for Training
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
spec_channels,
|
||||
segment_size,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
n_speakers=0,
|
||||
gin_channels=0,
|
||||
use_sdp=True,
|
||||
semantic_frame_rate=None,
|
||||
freeze_quantizer=None,
|
||||
**kwargs):
|
||||
Synthesizer for Training
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
spec_channels,
|
||||
segment_size,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
n_speakers=0,
|
||||
gin_channels=0,
|
||||
use_sdp=True,
|
||||
semantic_frame_rate=None,
|
||||
freeze_quantizer=None,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
@ -685,34 +845,50 @@ class SynthesizerTrn(nn.Module):
|
||||
|
||||
self.use_sdp = use_sdp
|
||||
self.enc_p = TextEncoder(
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout)
|
||||
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
||||
upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
||||
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
|
||||
gin_channels=gin_channels)
|
||||
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
)
|
||||
self.dec = Generator(
|
||||
inter_channels,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.enc_q = PosteriorEncoder(
|
||||
spec_channels,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
5,
|
||||
1,
|
||||
16,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.flow = ResidualCouplingBlock(
|
||||
inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels
|
||||
)
|
||||
|
||||
self.ref_enc = modules.MelStyleEncoder(spec_channels, style_vector_dim=gin_channels)
|
||||
self.ref_enc = modules.MelStyleEncoder(
|
||||
spec_channels, style_vector_dim=gin_channels
|
||||
)
|
||||
|
||||
ssl_dim = 768
|
||||
assert semantic_frame_rate in ['25hz', "50hz"]
|
||||
assert semantic_frame_rate in ["25hz", "50hz"]
|
||||
self.semantic_frame_rate = semantic_frame_rate
|
||||
if semantic_frame_rate == '25hz':
|
||||
if semantic_frame_rate == "25hz":
|
||||
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
|
||||
else:
|
||||
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
|
||||
|
||||
self.quantizer = ResidualVectorQuantizer(
|
||||
dimension=ssl_dim,
|
||||
n_q=1,
|
||||
bins=1024
|
||||
)
|
||||
self.quantizer = ResidualVectorQuantizer(dimension=ssl_dim, n_q=1, bins=1024)
|
||||
if freeze_quantizer:
|
||||
self.ssl_proj.requires_grad_(False)
|
||||
self.quantizer.requires_grad_(False)
|
||||
@ -721,56 +897,85 @@ class SynthesizerTrn(nn.Module):
|
||||
# self.enc_p.mrte.requires_grad_(False)
|
||||
|
||||
def forward(self, ssl, y, y_lengths, text, text_lengths):
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
|
||||
y.dtype
|
||||
)
|
||||
ge = self.ref_enc(y * y_mask, y_mask)
|
||||
|
||||
with autocast(enabled=False):
|
||||
ssl = self.ssl_proj(ssl)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl, layers=[0])
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(
|
||||
ssl, layers=[0]
|
||||
)
|
||||
|
||||
if self.semantic_frame_rate == '25hz':
|
||||
quantized = F.interpolate(quantized, size=int(quantized.shape[-1] * 2), mode="nearest")
|
||||
if self.semantic_frame_rate == "25hz":
|
||||
quantized = F.interpolate(
|
||||
quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
|
||||
)
|
||||
|
||||
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
|
||||
x, m_p, logs_p, y_mask = self.enc_p(
|
||||
quantized, y_lengths, text, text_lengths, ge
|
||||
)
|
||||
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=ge)
|
||||
z_p = self.flow(z, y_mask, g=ge)
|
||||
|
||||
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
||||
z_slice, ids_slice = commons.rand_slice_segments(
|
||||
z, y_lengths, self.segment_size
|
||||
)
|
||||
o = self.dec(z_slice, g=ge)
|
||||
return o, commit_loss, ids_slice, y_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q), quantized
|
||||
return (
|
||||
o,
|
||||
commit_loss,
|
||||
ids_slice,
|
||||
y_mask,
|
||||
y_mask,
|
||||
(z, z_p, m_p, logs_p, m_q, logs_q),
|
||||
quantized,
|
||||
)
|
||||
|
||||
def infer(self, ssl, y, y_lengths, text, text_lengths, test=None, noise_scale=0.5):
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
|
||||
y.dtype
|
||||
)
|
||||
ge = self.ref_enc(y * y_mask, y_mask)
|
||||
|
||||
ssl = self.ssl_proj(ssl)
|
||||
ssl = self.ssl_proj(ssl)
|
||||
quantized, codes, commit_loss, _ = self.quantizer(ssl, layers=[0])
|
||||
if self.semantic_frame_rate == '25hz':
|
||||
quantized = F.interpolate(quantized, size=int(quantized.shape[-1] * 2), mode="nearest")
|
||||
if self.semantic_frame_rate == "25hz":
|
||||
quantized = F.interpolate(
|
||||
quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
|
||||
)
|
||||
|
||||
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge, test=test)
|
||||
x, m_p, logs_p, y_mask = self.enc_p(
|
||||
quantized, y_lengths, text, text_lengths, ge, test=test
|
||||
)
|
||||
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
||||
|
||||
z = self.flow(z_p, y_mask, g=ge, reverse=True)
|
||||
|
||||
o = self.dec((z * y_mask)[:, :, :], g=ge)
|
||||
return o,y_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
return o, y_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(self, codes,text, refer, noise_scale=0.5):
|
||||
def decode(self, codes, text, refer, noise_scale=0.5):
|
||||
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
||||
refer_mask = torch.unsqueeze(commons.sequence_mask(refer_lengths, refer.size(2)), 1).to(refer.dtype)
|
||||
refer_mask = torch.unsqueeze(
|
||||
commons.sequence_mask(refer_lengths, refer.size(2)), 1
|
||||
).to(refer.dtype)
|
||||
ge = self.ref_enc(refer * refer_mask, refer_mask)
|
||||
|
||||
y_lengths = torch.LongTensor([codes.size(2)*2]).to(codes.device)
|
||||
y_lengths = torch.LongTensor([codes.size(2) * 2]).to(codes.device)
|
||||
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
|
||||
|
||||
quantized = self.quantizer.decode(codes)
|
||||
if self.semantic_frame_rate == '25hz':
|
||||
quantized = F.interpolate(quantized, size=int(quantized.shape[-1] * 2), mode="nearest")
|
||||
if self.semantic_frame_rate == "25hz":
|
||||
quantized = F.interpolate(
|
||||
quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
|
||||
)
|
||||
|
||||
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
|
||||
x, m_p, logs_p, y_mask = self.enc_p(
|
||||
quantized, y_lengths, text, text_lengths, ge
|
||||
)
|
||||
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
||||
|
||||
z = self.flow(z_p, y_mask, g=ge, reverse=True)
|
||||
@ -779,6 +984,6 @@ class SynthesizerTrn(nn.Module):
|
||||
return o
|
||||
|
||||
def extract_latent(self, x):
|
||||
ssl = self.ssl_proj(x)
|
||||
ssl = self.ssl_proj(x)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
|
||||
return codes.transpose(0,1)
|
||||
return codes.transpose(0, 1)
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -5,46 +5,74 @@ from torch import nn
|
||||
from torch.nn.utils import remove_weight_norm, weight_norm
|
||||
from module.attentions import MultiHeadAttention
|
||||
|
||||
|
||||
class MRTE(nn.Module):
|
||||
def __init__(self,
|
||||
content_enc_channels=192,
|
||||
hidden_size=512,
|
||||
out_channels=192,
|
||||
kernel_size=5,
|
||||
n_heads=4,
|
||||
ge_layer = 2
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
content_enc_channels=192,
|
||||
hidden_size=512,
|
||||
out_channels=192,
|
||||
kernel_size=5,
|
||||
n_heads=4,
|
||||
ge_layer=2,
|
||||
):
|
||||
super(MRTE, self).__init__()
|
||||
self.cross_attention = MultiHeadAttention(hidden_size,hidden_size,n_heads)
|
||||
self.c_pre = nn.Conv1d(content_enc_channels,hidden_size, 1)
|
||||
self.text_pre = nn.Conv1d(content_enc_channels,hidden_size, 1)
|
||||
self.c_post = nn.Conv1d(hidden_size,out_channels, 1)
|
||||
self.cross_attention = MultiHeadAttention(hidden_size, hidden_size, n_heads)
|
||||
self.c_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
|
||||
self.text_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
|
||||
self.c_post = nn.Conv1d(hidden_size, out_channels, 1)
|
||||
|
||||
def forward(self, ssl_enc, ssl_mask, text, text_mask, ge, test=None):
|
||||
if(ge==None):ge=0
|
||||
if ge == None:
|
||||
ge = 0
|
||||
attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1)
|
||||
|
||||
ssl_enc = self.c_pre(ssl_enc * ssl_mask)
|
||||
text_enc = self.text_pre(text * text_mask)
|
||||
if test != None:
|
||||
if test == 0:
|
||||
x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge
|
||||
x = (
|
||||
self.cross_attention(
|
||||
ssl_enc * ssl_mask, text_enc * text_mask, attn_mask
|
||||
)
|
||||
+ ssl_enc
|
||||
+ ge
|
||||
)
|
||||
elif test == 1:
|
||||
x = ssl_enc + ge
|
||||
elif test ==2:
|
||||
x = self.cross_attention(ssl_enc*0 * ssl_mask, text_enc * text_mask, attn_mask) + ge
|
||||
elif test == 2:
|
||||
x = (
|
||||
self.cross_attention(
|
||||
ssl_enc * 0 * ssl_mask, text_enc * text_mask, attn_mask
|
||||
)
|
||||
+ ge
|
||||
)
|
||||
else:
|
||||
raise ValueError("test should be 0,1,2")
|
||||
else:
|
||||
x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge
|
||||
x = (
|
||||
self.cross_attention(
|
||||
ssl_enc * ssl_mask, text_enc * text_mask, attn_mask
|
||||
)
|
||||
+ ssl_enc
|
||||
+ ge
|
||||
)
|
||||
x = self.c_post(x * ssl_mask)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
class SpeakerEncoder(torch.nn.Module):
|
||||
def __init__(self, mel_n_channels=80, model_num_layers=2, model_hidden_size=256, model_embedding_size=256):
|
||||
def __init__(
|
||||
self,
|
||||
mel_n_channels=80,
|
||||
model_num_layers=2,
|
||||
model_hidden_size=256,
|
||||
model_embedding_size=256,
|
||||
):
|
||||
super(SpeakerEncoder, self).__init__()
|
||||
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
|
||||
self.lstm = nn.LSTM(
|
||||
mel_n_channels, model_hidden_size, model_num_layers, batch_first=True
|
||||
)
|
||||
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
@ -56,13 +84,15 @@ class SpeakerEncoder(torch.nn.Module):
|
||||
|
||||
|
||||
class MELEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
@ -81,80 +111,82 @@ class MELEncoder(nn.Module):
|
||||
x = self.enc(x)
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
class WN(torch.nn.Module):
|
||||
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers):
|
||||
super(WN, self).__init__()
|
||||
assert(kernel_size % 2 == 1)
|
||||
self.hidden_channels =hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers):
|
||||
super(WN, self).__init__()
|
||||
assert kernel_size % 2 == 1
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
|
||||
self.in_layers = torch.nn.ModuleList()
|
||||
self.res_skip_layers = torch.nn.ModuleList()
|
||||
self.in_layers = torch.nn.ModuleList()
|
||||
self.res_skip_layers = torch.nn.ModuleList()
|
||||
|
||||
for i in range(n_layers):
|
||||
dilation = dilation_rate ** i
|
||||
padding = int((kernel_size * dilation - dilation) / 2)
|
||||
in_layer = nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
||||
dilation=dilation, padding=padding)
|
||||
in_layer = weight_norm(in_layer)
|
||||
self.in_layers.append(in_layer)
|
||||
for i in range(n_layers):
|
||||
dilation = dilation_rate**i
|
||||
padding = int((kernel_size * dilation - dilation) / 2)
|
||||
in_layer = nn.Conv1d(
|
||||
hidden_channels,
|
||||
2 * hidden_channels,
|
||||
kernel_size,
|
||||
dilation=dilation,
|
||||
padding=padding,
|
||||
)
|
||||
in_layer = weight_norm(in_layer)
|
||||
self.in_layers.append(in_layer)
|
||||
|
||||
# last one is not necessary
|
||||
if i < n_layers - 1:
|
||||
res_skip_channels = 2 * hidden_channels
|
||||
else:
|
||||
res_skip_channels = hidden_channels
|
||||
# last one is not necessary
|
||||
if i < n_layers - 1:
|
||||
res_skip_channels = 2 * hidden_channels
|
||||
else:
|
||||
res_skip_channels = hidden_channels
|
||||
|
||||
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
||||
res_skip_layer = weight_norm(res_skip_layer, name='weight')
|
||||
self.res_skip_layers.append(res_skip_layer)
|
||||
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
||||
res_skip_layer = weight_norm(res_skip_layer, name="weight")
|
||||
self.res_skip_layers.append(res_skip_layer)
|
||||
|
||||
def forward(self, x):
|
||||
output = torch.zeros_like(x)
|
||||
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
||||
def forward(self, x):
|
||||
output = torch.zeros_like(x)
|
||||
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
||||
|
||||
for i in range(self.n_layers):
|
||||
x_in = self.in_layers[i](x)
|
||||
for i in range(self.n_layers):
|
||||
x_in = self.in_layers[i](x)
|
||||
|
||||
acts = fused_add_tanh_sigmoid_multiply(
|
||||
x_in,
|
||||
n_channels_tensor)
|
||||
acts = fused_add_tanh_sigmoid_multiply(x_in, n_channels_tensor)
|
||||
|
||||
res_skip_acts = self.res_skip_layers[i](acts)
|
||||
if i < self.n_layers - 1:
|
||||
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
||||
x = (x + res_acts)
|
||||
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
||||
else:
|
||||
output = output + res_skip_acts
|
||||
return output
|
||||
res_skip_acts = self.res_skip_layers[i](acts)
|
||||
if i < self.n_layers - 1:
|
||||
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
||||
x = x + res_acts
|
||||
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
||||
else:
|
||||
output = output + res_skip_acts
|
||||
return output
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.in_layers:
|
||||
remove_weight_norm(l)
|
||||
for l in self.res_skip_layers:
|
||||
remove_weight_norm(l)
|
||||
def remove_weight_norm(self):
|
||||
for l in self.in_layers:
|
||||
remove_weight_norm(l)
|
||||
for l in self.res_skip_layers:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def fused_add_tanh_sigmoid_multiply(input, n_channels):
|
||||
n_channels_int = n_channels[0]
|
||||
t_act = torch.tanh(input[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(input[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
n_channels_int = n_channels[0]
|
||||
t_act = torch.tanh(input[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(input[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
content_enc = torch.randn(3,192,100)
|
||||
content_mask = torch.ones(3,1,100)
|
||||
ref_mel = torch.randn(3,128,30)
|
||||
ref_mask = torch.ones(3,1,30)
|
||||
if __name__ == "__main__":
|
||||
content_enc = torch.randn(3, 192, 100)
|
||||
content_mask = torch.ones(3, 1, 100)
|
||||
ref_mel = torch.randn(3, 128, 30)
|
||||
ref_mask = torch.ones(3, 1, 30)
|
||||
model = MRTE()
|
||||
out = model(content_enc,content_mask,ref_mel,ref_mask)
|
||||
print(out.shape)
|
||||
out = model(content_enc, content_mask, ref_mel, ref_mask)
|
||||
print(out.shape)
|
||||
|
@ -38,6 +38,7 @@ class ResidualVectorQuantizer(nn.Module):
|
||||
that have an exponential moving average cluster size less than the specified threshold with
|
||||
randomly selected vector from the current batch.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dimension: int = 256,
|
||||
@ -66,7 +67,12 @@ class ResidualVectorQuantizer(nn.Module):
|
||||
threshold_ema_dead_code=self.threshold_ema_dead_code,
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor, n_q: tp.Optional[int] = None, layers: tp.Optional[list] = None) -> QuantizedResult:
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
n_q: tp.Optional[int] = None,
|
||||
layers: tp.Optional[list] = None,
|
||||
) -> QuantizedResult:
|
||||
"""Residual vector quantization on the given input tensor.
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
@ -79,12 +85,17 @@ class ResidualVectorQuantizer(nn.Module):
|
||||
"""
|
||||
n_q = n_q if n_q else self.n_q
|
||||
if layers and max(layers) >= n_q:
|
||||
raise ValueError(f'Last layer index in layers: A {max(layers)}. Number of quantizers in RVQ: B {self.n_q}. A must less than B.')
|
||||
quantized, codes, commit_loss, quantized_list = self.vq(x, n_q=n_q, layers=layers)
|
||||
raise ValueError(
|
||||
f"Last layer index in layers: A {max(layers)}. Number of quantizers in RVQ: B {self.n_q}. A must less than B."
|
||||
)
|
||||
quantized, codes, commit_loss, quantized_list = self.vq(
|
||||
x, n_q=n_q, layers=layers
|
||||
)
|
||||
return quantized, codes, torch.mean(commit_loss), quantized_list
|
||||
|
||||
|
||||
def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int] = None) -> torch.Tensor:
|
||||
def encode(
|
||||
self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int] = None
|
||||
) -> torch.Tensor:
|
||||
"""Encode a given input tensor with the specified sample rate at the given bandwidth.
|
||||
The RVQ encode method sets the appropriate number of quantizer to use
|
||||
and returns indices for each quantizer.
|
||||
@ -105,4 +116,4 @@ class ResidualVectorQuantizer(nn.Module):
|
||||
st (int): Start to decode input codes from which layers. Default: 0.
|
||||
"""
|
||||
quantized = self.vq.decode(codes, st=st)
|
||||
return quantized
|
||||
return quantized
|
||||
|
@ -9,66 +9,63 @@ DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
||||
DEFAULT_MIN_DERIVATIVE = 1e-3
|
||||
|
||||
|
||||
def piecewise_rational_quadratic_transform(inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails=None,
|
||||
tail_bound=1.,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||
|
||||
def piecewise_rational_quadratic_transform(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails=None,
|
||||
tail_bound=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
if tails is None:
|
||||
spline_fn = rational_quadratic_spline
|
||||
spline_kwargs = {}
|
||||
else:
|
||||
spline_fn = unconstrained_rational_quadratic_spline
|
||||
spline_kwargs = {
|
||||
'tails': tails,
|
||||
'tail_bound': tail_bound
|
||||
}
|
||||
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
||||
|
||||
outputs, logabsdet = spline_fn(
|
||||
inputs=inputs,
|
||||
unnormalized_widths=unnormalized_widths,
|
||||
unnormalized_heights=unnormalized_heights,
|
||||
unnormalized_derivatives=unnormalized_derivatives,
|
||||
inverse=inverse,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative,
|
||||
**spline_kwargs
|
||||
inputs=inputs,
|
||||
unnormalized_widths=unnormalized_widths,
|
||||
unnormalized_heights=unnormalized_heights,
|
||||
unnormalized_derivatives=unnormalized_derivatives,
|
||||
inverse=inverse,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative,
|
||||
**spline_kwargs
|
||||
)
|
||||
return outputs, logabsdet
|
||||
|
||||
|
||||
def searchsorted(bin_locations, inputs, eps=1e-6):
|
||||
bin_locations[..., -1] += eps
|
||||
return torch.sum(
|
||||
inputs[..., None] >= bin_locations,
|
||||
dim=-1
|
||||
) - 1
|
||||
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
||||
|
||||
|
||||
def unconstrained_rational_quadratic_spline(inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails='linear',
|
||||
tail_bound=1.,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||
def unconstrained_rational_quadratic_spline(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails="linear",
|
||||
tail_bound=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
||||
outside_interval_mask = ~inside_interval_mask
|
||||
|
||||
outputs = torch.zeros_like(inputs)
|
||||
logabsdet = torch.zeros_like(inputs)
|
||||
|
||||
if tails == 'linear':
|
||||
if tails == "linear":
|
||||
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
||||
constant = np.log(np.exp(1 - min_derivative) - 1)
|
||||
unnormalized_derivatives[..., 0] = constant
|
||||
@ -77,45 +74,57 @@ def unconstrained_rational_quadratic_spline(inputs,
|
||||
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
||||
logabsdet[outside_interval_mask] = 0
|
||||
else:
|
||||
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
||||
raise RuntimeError("{} tails are not implemented.".format(tails))
|
||||
|
||||
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
||||
(
|
||||
outputs[inside_interval_mask],
|
||||
logabsdet[inside_interval_mask],
|
||||
) = rational_quadratic_spline(
|
||||
inputs=inputs[inside_interval_mask],
|
||||
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
||||
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
||||
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
||||
inverse=inverse,
|
||||
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
||||
left=-tail_bound,
|
||||
right=tail_bound,
|
||||
bottom=-tail_bound,
|
||||
top=tail_bound,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative
|
||||
min_derivative=min_derivative,
|
||||
)
|
||||
|
||||
return outputs, logabsdet
|
||||
|
||||
def rational_quadratic_spline(inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
left=0., right=1., bottom=0., top=1.,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||
|
||||
def rational_quadratic_spline(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
left=0.0,
|
||||
right=1.0,
|
||||
bottom=0.0,
|
||||
top=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
if torch.min(inputs) < left or torch.max(inputs) > right:
|
||||
raise ValueError('Input to a transform is not within its domain')
|
||||
raise ValueError("Input to a transform is not within its domain")
|
||||
|
||||
num_bins = unnormalized_widths.shape[-1]
|
||||
|
||||
if min_bin_width * num_bins > 1.0:
|
||||
raise ValueError('Minimal bin width too large for the number of bins')
|
||||
raise ValueError("Minimal bin width too large for the number of bins")
|
||||
if min_bin_height * num_bins > 1.0:
|
||||
raise ValueError('Minimal bin height too large for the number of bins')
|
||||
raise ValueError("Minimal bin height too large for the number of bins")
|
||||
|
||||
widths = F.softmax(unnormalized_widths, dim=-1)
|
||||
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
||||
cumwidths = torch.cumsum(widths, dim=-1)
|
||||
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
||||
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
||||
cumwidths = (right - left) * cumwidths + left
|
||||
cumwidths[..., 0] = left
|
||||
cumwidths[..., -1] = right
|
||||
@ -126,7 +135,7 @@ def rational_quadratic_spline(inputs,
|
||||
heights = F.softmax(unnormalized_heights, dim=-1)
|
||||
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
||||
cumheights = torch.cumsum(heights, dim=-1)
|
||||
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
||||
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
||||
cumheights = (top - bottom) * cumheights + bottom
|
||||
cumheights[..., 0] = bottom
|
||||
cumheights[..., -1] = top
|
||||
@ -150,15 +159,13 @@ def rational_quadratic_spline(inputs,
|
||||
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
if inverse:
|
||||
a = (((inputs - input_cumheights) * (input_derivatives
|
||||
+ input_derivatives_plus_one
|
||||
- 2 * input_delta)
|
||||
+ input_heights * (input_delta - input_derivatives)))
|
||||
b = (input_heights * input_derivatives
|
||||
- (inputs - input_cumheights) * (input_derivatives
|
||||
+ input_derivatives_plus_one
|
||||
- 2 * input_delta))
|
||||
c = - input_delta * (inputs - input_cumheights)
|
||||
a = (inputs - input_cumheights) * (
|
||||
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||||
) + input_heights * (input_delta - input_derivatives)
|
||||
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
||||
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||||
)
|
||||
c = -input_delta * (inputs - input_cumheights)
|
||||
|
||||
discriminant = b.pow(2) - 4 * a * c
|
||||
assert (discriminant >= 0).all()
|
||||
@ -167,11 +174,15 @@ def rational_quadratic_spline(inputs,
|
||||
outputs = root * input_bin_widths + input_cumwidths
|
||||
|
||||
theta_one_minus_theta = root * (1 - root)
|
||||
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta)
|
||||
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - root).pow(2))
|
||||
denominator = input_delta + (
|
||||
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta
|
||||
)
|
||||
derivative_numerator = input_delta.pow(2) * (
|
||||
input_derivatives_plus_one * root.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - root).pow(2)
|
||||
)
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, -logabsdet
|
||||
@ -179,15 +190,20 @@ def rational_quadratic_spline(inputs,
|
||||
theta = (inputs - input_cumwidths) / input_bin_widths
|
||||
theta_one_minus_theta = theta * (1 - theta)
|
||||
|
||||
numerator = input_heights * (input_delta * theta.pow(2)
|
||||
+ input_derivatives * theta_one_minus_theta)
|
||||
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta)
|
||||
numerator = input_heights * (
|
||||
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
||||
)
|
||||
denominator = input_delta + (
|
||||
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta
|
||||
)
|
||||
outputs = input_cumheights + numerator / denominator
|
||||
|
||||
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - theta).pow(2))
|
||||
derivative_numerator = input_delta.pow(2) * (
|
||||
input_derivatives_plus_one * theta.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - theta).pow(2)
|
||||
)
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, logabsdet
|
||||
|
@ -1,50 +1,81 @@
|
||||
import os,torch,sys
|
||||
import os, torch, sys
|
||||
from subprocess import Popen
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from config import text_path,wav_dir,n_card,n_process_per_card,exp_name,n_parts,exp_dir
|
||||
os.makedirs("%s/logs_s1"%exp_dir,exist_ok=True)
|
||||
os.makedirs("%s/logs_s2"%exp_dir,exist_ok=True)
|
||||
from config import (
|
||||
text_path,
|
||||
wav_dir,
|
||||
n_card,
|
||||
exp_name,
|
||||
n_parts,
|
||||
exp_dir,
|
||||
)
|
||||
|
||||
os.makedirs("%s/logs_s1" % exp_dir, exist_ok=True)
|
||||
os.makedirs("%s/logs_s2" % exp_dir, exist_ok=True)
|
||||
##############step1
|
||||
ps=[]
|
||||
ps = []
|
||||
for i_part in range(n_parts):
|
||||
cmd="python prepare/1-get-text.py %s %s %s %s %s %s"%(text_path,wav_dir,exp_name,i_part,n_parts,i_part%n_card)
|
||||
cmd = "python prepare/1-get-text.py %s %s %s %s %s %s" % (
|
||||
text_path,
|
||||
wav_dir,
|
||||
exp_name,
|
||||
i_part,
|
||||
n_parts,
|
||||
i_part % n_card,
|
||||
)
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps.append(p)
|
||||
for p in ps:
|
||||
p.wait()
|
||||
|
||||
opt=[]
|
||||
opt = []
|
||||
for i_part in range(n_parts):
|
||||
txt_path = "%s/2-name2text-%s.txt" % (exp_dir, i_part)
|
||||
with open(txt_path,"r")as f:
|
||||
opt+=f.read().strip("\n").split("\n")
|
||||
with open(txt_path, "r") as f:
|
||||
opt += f.read().strip("\n").split("\n")
|
||||
os.remove(txt_path)
|
||||
with open("%s/2-name2text.txt"%exp_dir,"w")as f:f.write("\n".join(opt)+"\n")
|
||||
with open("%s/2-name2text.txt" % exp_dir, "w") as f:
|
||||
f.write("\n".join(opt) + "\n")
|
||||
|
||||
############step2
|
||||
ps=[]
|
||||
ps = []
|
||||
for i_part in range(n_parts):
|
||||
cmd="python prepare/2-get-hubert-wav32k.py %s %s %s %s %s %s"%(text_path,wav_dir,exp_name,i_part,n_parts,i_part%n_card)
|
||||
cmd = "python prepare/2-get-hubert-wav32k.py %s %s %s %s %s %s" % (
|
||||
text_path,
|
||||
wav_dir,
|
||||
exp_name,
|
||||
i_part,
|
||||
n_parts,
|
||||
i_part % n_card,
|
||||
)
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps.append(p)
|
||||
for p in ps:
|
||||
p.wait()
|
||||
#############step3
|
||||
ps=[]
|
||||
ps = []
|
||||
for i_part in range(n_parts):
|
||||
cmd="python prepare/3-get-semantic.py %s %s %s %s %s"%(text_path,exp_name,i_part,n_parts,i_part%n_card)
|
||||
cmd = "python prepare/3-get-semantic.py %s %s %s %s %s" % (
|
||||
text_path,
|
||||
exp_name,
|
||||
i_part,
|
||||
n_parts,
|
||||
i_part % n_card,
|
||||
)
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps.append(p)
|
||||
for p in ps:
|
||||
p.wait()
|
||||
opt=["item_name semantic_audio"]
|
||||
opt = ["item_name semantic_audio"]
|
||||
for i_part in range(n_parts):
|
||||
semantic_path = "%s/6-name2semantic-%s.tsv" % (exp_dir, i_part)
|
||||
with open(semantic_path,"r")as f:
|
||||
opt+=f.read().strip("\n").split("\n")
|
||||
with open(semantic_path, "r") as f:
|
||||
opt += f.read().strip("\n").split("\n")
|
||||
os.remove(semantic_path)
|
||||
with open("%s/6-name2semantic.tsv"%exp_dir,"w")as f:f.write("\n".join(opt)+"\n")
|
||||
with open("%s/6-name2semantic.tsv" % exp_dir, "w") as f:
|
||||
f.write("\n".join(opt) + "\n")
|
||||
|
@ -2,16 +2,16 @@
|
||||
|
||||
import os
|
||||
|
||||
inp_text= os.environ.get("inp_text")
|
||||
inp_wav_dir= os.environ.get("inp_wav_dir")
|
||||
exp_name= os.environ.get("exp_name")
|
||||
i_part= os.environ.get("i_part")
|
||||
all_parts= os.environ.get("all_parts")
|
||||
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
|
||||
opt_dir= os.environ.get("opt_dir")
|
||||
bert_pretrained_dir= os.environ.get("bert_pretrained_dir")
|
||||
is_half=eval(os.environ.get("is_half","True"))
|
||||
import sys,numpy as np,traceback,pdb
|
||||
inp_text = os.environ.get("inp_text")
|
||||
inp_wav_dir = os.environ.get("inp_wav_dir")
|
||||
exp_name = os.environ.get("exp_name")
|
||||
i_part = os.environ.get("i_part")
|
||||
all_parts = os.environ.get("all_parts")
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES")
|
||||
opt_dir = os.environ.get("opt_dir")
|
||||
bert_pretrained_dir = os.environ.get("bert_pretrained_dir")
|
||||
is_half = eval(os.environ.get("is_half", "True"))
|
||||
import sys, numpy as np, traceback, pdb
|
||||
import os.path
|
||||
from glob import glob
|
||||
from tqdm import tqdm
|
||||
@ -31,25 +31,29 @@ import numpy as np
|
||||
|
||||
from time import time as ttime
|
||||
import shutil
|
||||
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
|
||||
dir=os.path.dirname(path)
|
||||
name=os.path.basename(path)
|
||||
tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
|
||||
torch.save(fea,tmp_path)
|
||||
shutil.move(tmp_path,"%s/%s"%(dir,name))
|
||||
|
||||
txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part)
|
||||
if(os.path.exists(txt_path)==False):
|
||||
bert_dir="%s/3-bert"%(opt_dir)
|
||||
os.makedirs(opt_dir,exist_ok=True)
|
||||
os.makedirs(bert_dir,exist_ok=True)
|
||||
device="cuda:0"
|
||||
|
||||
def my_save(fea, path): #####fix issue: torch.save doesn't support chinese path
|
||||
dir = os.path.dirname(path)
|
||||
name = os.path.basename(path)
|
||||
tmp_path = "%s/%s%s.pth" % (dir, ttime(), i_part)
|
||||
torch.save(fea, tmp_path)
|
||||
shutil.move(tmp_path, "%s/%s" % (dir, name))
|
||||
|
||||
|
||||
txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
|
||||
if os.path.exists(txt_path) == False:
|
||||
bert_dir = "%s/3-bert" % (opt_dir)
|
||||
os.makedirs(opt_dir, exist_ok=True)
|
||||
os.makedirs(bert_dir, exist_ok=True)
|
||||
device = "cuda:0"
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir)
|
||||
bert_model=AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir)
|
||||
if (is_half == True):
|
||||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir)
|
||||
if is_half == True:
|
||||
bert_model = bert_model.half().to(device)
|
||||
else:
|
||||
bert_model = bert_model.to(device)
|
||||
|
||||
def get_bert_feature(text, word2ph):
|
||||
with torch.no_grad():
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
@ -67,51 +71,55 @@ if(os.path.exists(txt_path)==False):
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
|
||||
return phone_level_feature.T
|
||||
def process(data,res):
|
||||
for name,text,lan in data:
|
||||
|
||||
def process(data, res):
|
||||
for name, text, lan in data:
|
||||
try:
|
||||
name=os.path.basename(name)
|
||||
phones, word2ph, norm_text=clean_text(text.replace("%", '-').replace('¥', ','),lan)
|
||||
path_bert="%s/%s.pt"%(bert_dir,name)
|
||||
if (os.path.exists(path_bert) == False and lan == "zh"):
|
||||
name = os.path.basename(name)
|
||||
phones, word2ph, norm_text = clean_text(
|
||||
text.replace("%", "-").replace("¥", ","), lan
|
||||
)
|
||||
path_bert = "%s/%s.pt" % (bert_dir, name)
|
||||
if os.path.exists(path_bert) == False and lan == "zh":
|
||||
bert_feature = get_bert_feature(norm_text, word2ph)
|
||||
assert bert_feature.shape[-1] == len(phones)
|
||||
# torch.save(bert_feature, path_bert)
|
||||
my_save(bert_feature, path_bert)
|
||||
phones = " ".join(phones)
|
||||
# res.append([name,phones])
|
||||
res.append([name,phones, word2ph, norm_text])
|
||||
res.append([name, phones, word2ph, norm_text])
|
||||
except:
|
||||
print(name, text, traceback.format_exc())
|
||||
|
||||
todo=[]
|
||||
res=[]
|
||||
with open(inp_text,"r",encoding="utf8")as f:
|
||||
lines=f.read().strip("\n").split("\n")
|
||||
todo = []
|
||||
res = []
|
||||
with open(inp_text, "r", encoding="utf8") as f:
|
||||
lines = f.read().strip("\n").split("\n")
|
||||
|
||||
language_v1_to_language_v2={
|
||||
"ZH":"zh",
|
||||
"zh":"zh",
|
||||
"JP":"ja",
|
||||
"jp":"ja",
|
||||
"JA":"ja",
|
||||
"ja":"ja",
|
||||
"EN":"en",
|
||||
"en":"en",
|
||||
"En":"en",
|
||||
language_v1_to_language_v2 = {
|
||||
"ZH": "zh",
|
||||
"zh": "zh",
|
||||
"JP": "ja",
|
||||
"jp": "ja",
|
||||
"JA": "ja",
|
||||
"ja": "ja",
|
||||
"EN": "en",
|
||||
"en": "en",
|
||||
"En": "en",
|
||||
}
|
||||
for line in lines[int(i_part)::int(all_parts)]:
|
||||
for line in lines[int(i_part) :: int(all_parts)]:
|
||||
try:
|
||||
wav_name,spk_name,language,text=line.split("|")
|
||||
wav_name, spk_name, language, text = line.split("|")
|
||||
# todo.append([name,text,"zh"])
|
||||
todo.append([wav_name,text,language_v1_to_language_v2.get(language,language)])
|
||||
todo.append(
|
||||
[wav_name, text, language_v1_to_language_v2.get(language, language)]
|
||||
)
|
||||
except:
|
||||
print(line,traceback.format_exc())
|
||||
|
||||
process(todo,res)
|
||||
opt=[]
|
||||
for name,phones, word2ph, norm_text in res:
|
||||
opt.append("%s\t%s\t%s\t%s"%(name,phones, word2ph, norm_text))
|
||||
with open(txt_path,"w",encoding="utf8")as f:
|
||||
f.write("\n".join(opt)+"\n")
|
||||
print(line, traceback.format_exc())
|
||||
|
||||
process(todo, res)
|
||||
opt = []
|
||||
for name, phones, word2ph, norm_text in res:
|
||||
opt.append("%s\t%s\t%s\t%s" % (name, phones, word2ph, norm_text))
|
||||
with open(txt_path, "w", encoding="utf8") as f:
|
||||
f.write("\n".join(opt) + "\n")
|
||||
|
@ -1,20 +1,23 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import sys,os
|
||||
inp_text= os.environ.get("inp_text")
|
||||
inp_wav_dir= os.environ.get("inp_wav_dir")
|
||||
exp_name= os.environ.get("exp_name")
|
||||
i_part= os.environ.get("i_part")
|
||||
all_parts= os.environ.get("all_parts")
|
||||
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
|
||||
from feature_extractor import cnhubert
|
||||
opt_dir= os.environ.get("opt_dir")
|
||||
cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir")
|
||||
is_half=eval(os.environ.get("is_half","True"))
|
||||
import sys, os
|
||||
|
||||
import pdb,traceback,numpy as np,logging
|
||||
inp_text = os.environ.get("inp_text")
|
||||
inp_wav_dir = os.environ.get("inp_wav_dir")
|
||||
exp_name = os.environ.get("exp_name")
|
||||
i_part = os.environ.get("i_part")
|
||||
all_parts = os.environ.get("all_parts")
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES")
|
||||
from feature_extractor import cnhubert
|
||||
|
||||
opt_dir = os.environ.get("opt_dir")
|
||||
cnhubert.cnhubert_base_path = os.environ.get("cnhubert_base_dir")
|
||||
is_half = eval(os.environ.get("is_half", "True"))
|
||||
|
||||
import pdb, traceback, numpy as np, logging
|
||||
from scipy.io import wavfile
|
||||
import librosa,torch
|
||||
import librosa, torch
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from my_utils import load_audio
|
||||
@ -32,63 +35,75 @@ from my_utils import load_audio
|
||||
|
||||
from time import time as ttime
|
||||
import shutil
|
||||
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
|
||||
dir=os.path.dirname(path)
|
||||
name=os.path.basename(path)
|
||||
tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
|
||||
torch.save(fea,tmp_path)
|
||||
shutil.move(tmp_path,"%s/%s"%(dir,name))
|
||||
|
||||
hubert_dir="%s/4-cnhubert"%(opt_dir)
|
||||
wav32dir="%s/5-wav32k"%(opt_dir)
|
||||
os.makedirs(opt_dir,exist_ok=True)
|
||||
os.makedirs(hubert_dir,exist_ok=True)
|
||||
os.makedirs(wav32dir,exist_ok=True)
|
||||
|
||||
maxx=0.95
|
||||
alpha=0.5
|
||||
device="cuda:0"
|
||||
model=cnhubert.get_model()
|
||||
if(is_half==True):
|
||||
model=model.half().to(device)
|
||||
def my_save(fea, path): #####fix issue: torch.save doesn't support chinese path
|
||||
dir = os.path.dirname(path)
|
||||
name = os.path.basename(path)
|
||||
tmp_path = "%s/%s%s.pth" % (dir, ttime(), i_part)
|
||||
torch.save(fea, tmp_path)
|
||||
shutil.move(tmp_path, "%s/%s" % (dir, name))
|
||||
|
||||
|
||||
hubert_dir = "%s/4-cnhubert" % (opt_dir)
|
||||
wav32dir = "%s/5-wav32k" % (opt_dir)
|
||||
os.makedirs(opt_dir, exist_ok=True)
|
||||
os.makedirs(hubert_dir, exist_ok=True)
|
||||
os.makedirs(wav32dir, exist_ok=True)
|
||||
|
||||
maxx = 0.95
|
||||
alpha = 0.5
|
||||
device = "cuda:0"
|
||||
model = cnhubert.get_model()
|
||||
if is_half == True:
|
||||
model = model.half().to(device)
|
||||
else:
|
||||
model = model.to(device)
|
||||
|
||||
|
||||
def name2go(wav_name):
|
||||
hubert_path="%s/%s.pt"%(hubert_dir,wav_name)
|
||||
if(os.path.exists(hubert_path)):return
|
||||
wav_path="%s/%s"%(inp_wav_dir,wav_name)
|
||||
hubert_path = "%s/%s.pt" % (hubert_dir, wav_name)
|
||||
if os.path.exists(hubert_path):
|
||||
return
|
||||
wav_path = "%s/%s" % (inp_wav_dir, wav_name)
|
||||
tmp_audio = load_audio(wav_path, 32000)
|
||||
tmp_max = np.abs(tmp_audio).max()
|
||||
if tmp_max > 2.2:
|
||||
print("%s-%s-%s-filtered" % (idx0, idx1, tmp_max))
|
||||
return
|
||||
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * tmp_audio
|
||||
tmp_audio = librosa.resample(
|
||||
tmp_audio32, orig_sr=32000, target_sr=16000
|
||||
)
|
||||
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha * 32768)) + (
|
||||
(1 - alpha) * 32768
|
||||
) * tmp_audio
|
||||
tmp_audio = librosa.resample(tmp_audio32, orig_sr=32000, target_sr=16000)
|
||||
tensor_wav16 = torch.from_numpy(tmp_audio)
|
||||
if (is_half == True):
|
||||
tensor_wav16=tensor_wav16.half().to(device)
|
||||
if is_half == True:
|
||||
tensor_wav16 = tensor_wav16.half().to(device)
|
||||
else:
|
||||
tensor_wav16 = tensor_wav16.to(device)
|
||||
ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215])
|
||||
if np.isnan(ssl.detach().numpy()).sum()!= 0:return
|
||||
ssl = (
|
||||
model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"]
|
||||
.transpose(1, 2)
|
||||
.cpu()
|
||||
) # torch.Size([1, 768, 215])
|
||||
if np.isnan(ssl.detach().numpy()).sum() != 0:
|
||||
return
|
||||
wavfile.write(
|
||||
"%s/%s"%(wav32dir,wav_name),
|
||||
"%s/%s" % (wav32dir, wav_name),
|
||||
32000,
|
||||
tmp_audio32.astype("int16"),
|
||||
)
|
||||
# torch.save(ssl,hubert_path )
|
||||
my_save(ssl,hubert_path )
|
||||
my_save(ssl, hubert_path)
|
||||
|
||||
with open(inp_text,"r",encoding="utf8")as f:
|
||||
lines=f.read().strip("\n").split("\n")
|
||||
|
||||
for line in lines[int(i_part)::int(all_parts)]:
|
||||
with open(inp_text, "r", encoding="utf8") as f:
|
||||
lines = f.read().strip("\n").split("\n")
|
||||
|
||||
for line in lines[int(i_part) :: int(all_parts)]:
|
||||
try:
|
||||
# wav_name,text=line.split("\t")
|
||||
wav_name, spk_name, language, text = line.split("|")
|
||||
wav_name=os.path.basename(wav_name)
|
||||
wav_name = os.path.basename(wav_name)
|
||||
name2go(wav_name)
|
||||
except:
|
||||
print(line,traceback.format_exc())
|
||||
print(line, traceback.format_exc())
|
||||
|
@ -1,24 +1,27 @@
|
||||
import os
|
||||
inp_text= os.environ.get("inp_text")
|
||||
exp_name= os.environ.get("exp_name")
|
||||
i_part= os.environ.get("i_part")
|
||||
all_parts= os.environ.get("all_parts")
|
||||
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
|
||||
opt_dir= os.environ.get("opt_dir")
|
||||
pretrained_s2G= os.environ.get("pretrained_s2G")
|
||||
s2config_path= os.environ.get("s2config_path")
|
||||
is_half=eval(os.environ.get("is_half","True"))
|
||||
import math,traceback
|
||||
|
||||
inp_text = os.environ.get("inp_text")
|
||||
exp_name = os.environ.get("exp_name")
|
||||
i_part = os.environ.get("i_part")
|
||||
all_parts = os.environ.get("all_parts")
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES")
|
||||
opt_dir = os.environ.get("opt_dir")
|
||||
pretrained_s2G = os.environ.get("pretrained_s2G")
|
||||
s2config_path = os.environ.get("s2config_path")
|
||||
is_half = eval(os.environ.get("is_half", "True"))
|
||||
import math, traceback
|
||||
import multiprocessing
|
||||
import sys,pdb
|
||||
import sys, pdb
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from random import shuffle
|
||||
import torch.multiprocessing as mp
|
||||
from glob import glob
|
||||
from tqdm import tqdm
|
||||
import logging,librosa,utils,torch
|
||||
import logging, librosa, utils, torch
|
||||
from module.models import SynthesizerTrn
|
||||
|
||||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||||
# from config import pretrained_s2G
|
||||
|
||||
@ -30,52 +33,58 @@ logging.getLogger("numba").setLevel(logging.WARNING)
|
||||
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
|
||||
|
||||
|
||||
hubert_dir="%s/4-cnhubert"%(opt_dir)
|
||||
semantic_path="%s/6-name2semantic-%s.tsv"%(opt_dir,i_part)
|
||||
if(os.path.exists(semantic_path)==False):
|
||||
os.makedirs(opt_dir,exist_ok=True)
|
||||
hubert_dir = "%s/4-cnhubert" % (opt_dir)
|
||||
semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
|
||||
if os.path.exists(semantic_path) == False:
|
||||
os.makedirs(opt_dir, exist_ok=True)
|
||||
|
||||
device="cuda:0"
|
||||
device = "cuda:0"
|
||||
hps = utils.get_hparams_from_file(s2config_path)
|
||||
vq_model = SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model)
|
||||
if(is_half==True):
|
||||
vq_model=vq_model.half().to(device)
|
||||
**hps.model
|
||||
)
|
||||
if is_half == True:
|
||||
vq_model = vq_model.half().to(device)
|
||||
else:
|
||||
vq_model = vq_model.to(device)
|
||||
vq_model.eval()
|
||||
# utils.load_checkpoint(utils.latest_checkpoint_path(hps.s2_ckpt_dir, "G_*.pth"), vq_model, None, True)
|
||||
# utils.load_checkpoint(pretrained_s2G, vq_model, None, True)
|
||||
print(vq_model.load_state_dict(torch.load(pretrained_s2G,map_location="cpu")["weight"], strict=False))
|
||||
print(
|
||||
vq_model.load_state_dict(
|
||||
torch.load(pretrained_s2G, map_location="cpu")["weight"], strict=False
|
||||
)
|
||||
)
|
||||
|
||||
def name2go(wav_name,lines):
|
||||
def name2go(wav_name, lines):
|
||||
hubert_path = "%s/%s.pt" % (hubert_dir, wav_name)
|
||||
if(os.path.exists(hubert_path)==False):return
|
||||
if os.path.exists(hubert_path) == False:
|
||||
return
|
||||
ssl_content = torch.load(hubert_path, map_location="cpu")
|
||||
if(is_half==True):
|
||||
ssl_content=ssl_content.half().to(device)
|
||||
if is_half == True:
|
||||
ssl_content = ssl_content.half().to(device)
|
||||
else:
|
||||
ssl_content = ssl_content.to(device)
|
||||
codes = vq_model.extract_latent(ssl_content)
|
||||
semantic = " ".join([str(i) for i in codes[0, 0, :].tolist()])
|
||||
lines.append("%s\t%s"%(wav_name,semantic))
|
||||
lines.append("%s\t%s" % (wav_name, semantic))
|
||||
|
||||
with open(inp_text,"r",encoding="utf8")as f:
|
||||
lines=f.read().strip("\n").split("\n")
|
||||
with open(inp_text, "r", encoding="utf8") as f:
|
||||
lines = f.read().strip("\n").split("\n")
|
||||
|
||||
lines1=[]
|
||||
for line in lines[int(i_part)::int(all_parts)]:
|
||||
lines1 = []
|
||||
for line in lines[int(i_part) :: int(all_parts)]:
|
||||
# print(line)
|
||||
try:
|
||||
# wav_name,text=line.split("\t")
|
||||
wav_name, spk_name, language, text = line.split("|")
|
||||
wav_name=os.path.basename(wav_name)
|
||||
wav_name = os.path.basename(wav_name)
|
||||
# name2go(name,lines1)
|
||||
name2go(wav_name,lines1)
|
||||
name2go(wav_name, lines1)
|
||||
except:
|
||||
print(line,traceback.format_exc())
|
||||
with open(semantic_path,"w",encoding="utf8")as f:f.write("\n".join(lines1))
|
||||
|
||||
print(line, traceback.format_exc())
|
||||
with open(semantic_path, "w", encoding="utf8") as f:
|
||||
f.write("\n".join(lines1))
|
||||
|
@ -1,11 +1,12 @@
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
from collections import OrderedDict
|
||||
|
||||
import torch
|
||||
from i18n.i18n import I18nAuto
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
|
||||
i18n = I18nAuto()
|
||||
|
||||
|
||||
def savee(ckpt, name, epoch, steps, hps):
|
||||
try:
|
||||
opt = OrderedDict()
|
||||
@ -15,8 +16,8 @@ def savee(ckpt, name, epoch, steps, hps):
|
||||
continue
|
||||
opt["weight"][key] = ckpt[key].half()
|
||||
opt["config"] = hps
|
||||
opt["info"] = "%sepoch_%siteration" % (epoch,steps)
|
||||
torch.save(opt, "%s/%s.pth" % (hps.save_weight_dir,name))
|
||||
opt["info"] = "%sepoch_%siteration" % (epoch, steps)
|
||||
torch.save(opt, "%s/%s.pth" % (hps.save_weight_dir, name))
|
||||
return "Success."
|
||||
except:
|
||||
return traceback.format_exc()
|
||||
|
@ -2,56 +2,84 @@
|
||||
import os
|
||||
import pdb
|
||||
|
||||
if("_CUDA_VISIBLE_DEVICES"in os.environ):
|
||||
os.environ["CUDA_VISIBLE_DEVICES"]=os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch,platform
|
||||
import torch, platform
|
||||
from pytorch_lightning import seed_everything
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.callbacks import ModelCheckpoint
|
||||
from pytorch_lightning.loggers import TensorBoardLogger#WandbLogger
|
||||
from pytorch_lightning.loggers import TensorBoardLogger # WandbLogger
|
||||
from pytorch_lightning.strategies import DDPStrategy
|
||||
from AR.data.data_module import Text2SemanticDataModule
|
||||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||
from AR.utils.io import load_yaml_config
|
||||
logging.getLogger('numba').setLevel(logging.WARNING)
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||||
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
||||
torch.set_float32_matmul_precision("high")
|
||||
from AR.utils import get_newest_ckpt
|
||||
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
class my_model_ckpt(ModelCheckpoint):
|
||||
def __init__(self,config,if_save_latest,if_save_every_weights,half_weights_save_dir,exp_name,**kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
if_save_latest,
|
||||
if_save_every_weights,
|
||||
half_weights_save_dir,
|
||||
exp_name,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.if_save_latest=if_save_latest
|
||||
self.if_save_every_weights=if_save_every_weights
|
||||
self.half_weights_save_dir=half_weights_save_dir
|
||||
self.exp_name=exp_name
|
||||
self.config=config
|
||||
self.if_save_latest = if_save_latest
|
||||
self.if_save_every_weights = if_save_every_weights
|
||||
self.half_weights_save_dir = half_weights_save_dir
|
||||
self.exp_name = exp_name
|
||||
self.config = config
|
||||
|
||||
def on_train_epoch_end(self, trainer, pl_module):
|
||||
if not self._should_skip_saving_checkpoint(trainer) and self._should_save_on_train_epoch_end(trainer):
|
||||
if not self._should_skip_saving_checkpoint(
|
||||
trainer
|
||||
) and self._should_save_on_train_epoch_end(trainer):
|
||||
monitor_candidates = self._monitor_candidates(trainer)
|
||||
if self._every_n_epochs >= 1 and (trainer.current_epoch + 1) % self._every_n_epochs == 0:
|
||||
if(self.if_save_latest==True):####如果设置只保存最后一个ckpt,在保存下一个ckpt后要清理掉之前的所有ckpt
|
||||
to_clean=list(os.listdir(self.dirpath))
|
||||
if (
|
||||
self._every_n_epochs >= 1
|
||||
and (trainer.current_epoch + 1) % self._every_n_epochs == 0
|
||||
):
|
||||
if (
|
||||
self.if_save_latest == True
|
||||
): ####如果设置只保存最后一个ckpt,在保存下一个ckpt后要清理掉之前的所有ckpt
|
||||
to_clean = list(os.listdir(self.dirpath))
|
||||
self._save_topk_checkpoint(trainer, monitor_candidates)
|
||||
if (self.if_save_latest == True):
|
||||
if self.if_save_latest == True:
|
||||
for name in to_clean:
|
||||
try:
|
||||
os.remove("%s/%s"%(self.dirpath,name))
|
||||
except:pass
|
||||
if(self.if_save_every_weights==True):
|
||||
to_save_od=OrderedDict()
|
||||
to_save_od["weight"]=OrderedDict()
|
||||
dictt=trainer.strategy._lightning_module.state_dict()
|
||||
for key in dictt:to_save_od["weight"][key]=dictt[key].half()
|
||||
to_save_od["config"]=self.config
|
||||
to_save_od["info"]="GPT-e%s"%(trainer.current_epoch+1)
|
||||
torch.save(to_save_od,"%s/%s-e%s.ckpt"%(self.half_weights_save_dir,self.exp_name,trainer.current_epoch+1))
|
||||
os.remove("%s/%s" % (self.dirpath, name))
|
||||
except:
|
||||
pass
|
||||
if self.if_save_every_weights == True:
|
||||
to_save_od = OrderedDict()
|
||||
to_save_od["weight"] = OrderedDict()
|
||||
dictt = trainer.strategy._lightning_module.state_dict()
|
||||
for key in dictt:
|
||||
to_save_od["weight"][key] = dictt[key].half()
|
||||
to_save_od["config"] = self.config
|
||||
to_save_od["info"] = "GPT-e%s" % (trainer.current_epoch + 1)
|
||||
torch.save(
|
||||
to_save_od,
|
||||
"%s/%s-e%s.ckpt"
|
||||
% (
|
||||
self.half_weights_save_dir,
|
||||
self.exp_name,
|
||||
trainer.current_epoch + 1,
|
||||
),
|
||||
)
|
||||
self._save_last_checkpoint(trainer, monitor_candidates)
|
||||
|
||||
|
||||
@ -61,41 +89,45 @@ def main(args):
|
||||
output_dir = Path(config["output_dir"])
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
ckpt_dir = output_dir / 'ckpt'
|
||||
ckpt_dir = output_dir / "ckpt"
|
||||
ckpt_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
seed_everything(config["train"]["seed"], workers=True)
|
||||
ckpt_callback: ModelCheckpoint = my_model_ckpt(
|
||||
config=config,
|
||||
if_save_latest=config["train"]["if_save_latest"], if_save_every_weights=config["train"]["if_save_every_weights"], half_weights_save_dir=config["train"]["half_weights_save_dir"], exp_name=config["train"]["exp_name"],
|
||||
if_save_latest=config["train"]["if_save_latest"],
|
||||
if_save_every_weights=config["train"]["if_save_every_weights"],
|
||||
half_weights_save_dir=config["train"]["half_weights_save_dir"],
|
||||
exp_name=config["train"]["exp_name"],
|
||||
save_top_k=-1,
|
||||
monitor='top_3_acc',
|
||||
mode='max',
|
||||
monitor="top_3_acc",
|
||||
mode="max",
|
||||
save_on_train_epoch_end=True,
|
||||
every_n_epochs=config["train"]["save_every_n_epoch"],
|
||||
dirpath=ckpt_dir,
|
||||
)
|
||||
logger = TensorBoardLogger(
|
||||
name=output_dir.stem,
|
||||
save_dir=output_dir
|
||||
)
|
||||
logger = TensorBoardLogger(name=output_dir.stem, save_dir=output_dir)
|
||||
trainer: Trainer = Trainer(
|
||||
max_epochs=config["train"]["epochs"],
|
||||
accelerator='gpu',
|
||||
accelerator="gpu",
|
||||
# val_check_interval=9999999999999999999999,###不要验证
|
||||
# check_val_every_n_epoch=None,
|
||||
limit_val_batches=0,
|
||||
devices=-1,
|
||||
benchmark=False,
|
||||
fast_dev_run=False,
|
||||
strategy=DDPStrategy(process_group_backend="nccl"if platform.system()!="Windows"else "gloo"),
|
||||
strategy=DDPStrategy(
|
||||
process_group_backend="nccl" if platform.system() != "Windows" else "gloo"
|
||||
),
|
||||
precision=config["train"]["precision"],
|
||||
logger=logger,num_sanity_val_steps=0,
|
||||
callbacks=[ckpt_callback])
|
||||
logger=logger,
|
||||
num_sanity_val_steps=0,
|
||||
callbacks=[ckpt_callback],
|
||||
)
|
||||
|
||||
model: Text2SemanticLightningModule = Text2SemanticLightningModule(
|
||||
config, output_dir)
|
||||
config, output_dir
|
||||
)
|
||||
|
||||
data_module: Text2SemanticDataModule = Text2SemanticDataModule(
|
||||
config,
|
||||
@ -116,14 +148,15 @@ def main(args):
|
||||
|
||||
|
||||
# srun --gpus-per-node=1 --ntasks-per-node=1 python train.py --path-to-configuration configurations/default.yaml
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
'-c',
|
||||
'--config_file',
|
||||
"-c",
|
||||
"--config_file",
|
||||
type=str,
|
||||
default='configs/s1longer.yaml',
|
||||
help='path of config file')
|
||||
default="configs/s1longer.yaml",
|
||||
help="path of config file",
|
||||
)
|
||||
# args for dataset
|
||||
# parser.add_argument('--train_semantic_path',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/6-name2semantic.tsv')
|
||||
# parser.add_argument('--train_phoneme_path', type=str, default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/2-name2text.txt')
|
||||
|
@ -1,4 +1,5 @@
|
||||
import utils,os
|
||||
import utils, os
|
||||
|
||||
hps = utils.get_hparams(stage=2)
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",")
|
||||
import torch
|
||||
@ -6,11 +7,12 @@ from torch.nn import functional as F
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed as dist,traceback
|
||||
import torch.distributed as dist, traceback
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.cuda.amp import autocast, GradScaler
|
||||
from tqdm import tqdm
|
||||
import logging,traceback
|
||||
import logging, traceback
|
||||
|
||||
logging.getLogger("matplotlib").setLevel(logging.INFO)
|
||||
logging.getLogger("h5py").setLevel(logging.INFO)
|
||||
logging.getLogger("numba").setLevel(logging.INFO)
|
||||
@ -20,37 +22,42 @@ from module import commons
|
||||
from module.data_utils import (
|
||||
TextAudioSpeakerLoader,
|
||||
TextAudioSpeakerCollate,
|
||||
DistributedBucketSampler
|
||||
DistributedBucketSampler,
|
||||
)
|
||||
from module.models import (
|
||||
SynthesizerTrn,
|
||||
MultiPeriodDiscriminator,
|
||||
)
|
||||
from module.losses import (
|
||||
generator_loss,
|
||||
discriminator_loss,
|
||||
feature_loss,
|
||||
kl_loss
|
||||
)
|
||||
from module.losses import generator_loss, discriminator_loss, feature_loss, kl_loss
|
||||
from module.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
||||
from process_ckpt import savee
|
||||
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = False
|
||||
###反正A100fp32更快,那试试tf32吧
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
torch.set_float32_matmul_precision('medium')#最低精度但最快(也就快一丁点),对于结果造成不了影响
|
||||
torch.set_float32_matmul_precision("medium") # 最低精度但最快(也就快一丁点),对于结果造成不了影响
|
||||
# from config import pretrained_s2G,pretrained_s2D
|
||||
global_step = 0
|
||||
|
||||
|
||||
def main():
|
||||
"""Assume Single Node Multi GPUs Training Only"""
|
||||
assert torch.cuda.is_available(), "CPU training is not allowed."
|
||||
|
||||
n_gpus = torch.cuda.device_count()
|
||||
os.environ['MASTER_ADDR'] = 'localhost'
|
||||
os.environ['MASTER_PORT'] = str(randint(20000, 55555))
|
||||
os.environ["MASTER_ADDR"] = "localhost"
|
||||
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
|
||||
|
||||
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
|
||||
mp.spawn(
|
||||
run,
|
||||
nprocs=n_gpus,
|
||||
args=(
|
||||
n_gpus,
|
||||
hps,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def run(rank, n_gpus, hps):
|
||||
@ -62,21 +69,54 @@ def run(rank, n_gpus, hps):
|
||||
writer = SummaryWriter(log_dir=hps.s2_ckpt_dir)
|
||||
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval"))
|
||||
|
||||
dist.init_process_group(backend='gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus,rank=rank)
|
||||
dist.init_process_group(
|
||||
backend="gloo" if os.name == "nt" else "nccl",
|
||||
init_method="env://",
|
||||
world_size=n_gpus,
|
||||
rank=rank,
|
||||
)
|
||||
torch.manual_seed(hps.train.seed)
|
||||
torch.cuda.set_device(rank)
|
||||
|
||||
train_dataset = TextAudioSpeakerLoader(hps.data)########
|
||||
train_dataset = TextAudioSpeakerLoader(hps.data) ########
|
||||
train_sampler = DistributedBucketSampler(
|
||||
train_dataset,
|
||||
hps.train.batch_size,
|
||||
[32, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900],
|
||||
[
|
||||
32,
|
||||
300,
|
||||
400,
|
||||
500,
|
||||
600,
|
||||
700,
|
||||
800,
|
||||
900,
|
||||
1000,
|
||||
1100,
|
||||
1200,
|
||||
1300,
|
||||
1400,
|
||||
1500,
|
||||
1600,
|
||||
1700,
|
||||
1800,
|
||||
1900,
|
||||
],
|
||||
num_replicas=n_gpus,
|
||||
rank=rank,
|
||||
shuffle=True)
|
||||
shuffle=True,
|
||||
)
|
||||
collate_fn = TextAudioSpeakerCollate()
|
||||
train_loader = DataLoader(train_dataset, num_workers=6, shuffle=False, pin_memory=True,
|
||||
collate_fn=collate_fn, batch_sampler=train_sampler,persistent_workers=True,prefetch_factor=16)
|
||||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
num_workers=6,
|
||||
shuffle=False,
|
||||
pin_memory=True,
|
||||
collate_fn=collate_fn,
|
||||
batch_sampler=train_sampler,
|
||||
persistent_workers=True,
|
||||
prefetch_factor=16,
|
||||
)
|
||||
# if rank == 0:
|
||||
# eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data, val=True)
|
||||
# eval_loader = DataLoader(eval_dataset, num_workers=0, shuffle=False,
|
||||
@ -87,17 +127,21 @@ def run(rank, n_gpus, hps):
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model).cuda(rank)
|
||||
**hps.model,
|
||||
).cuda(rank)
|
||||
|
||||
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
||||
for name, param in net_g.named_parameters():
|
||||
if not param.requires_grad:
|
||||
print(name,"not requires_grad")
|
||||
print(name, "not requires_grad")
|
||||
|
||||
te_p = list(map(id, net_g.enc_p.text_embedding.parameters()))
|
||||
et_p = list(map(id, net_g.enc_p.encoder_text.parameters()))
|
||||
mrte_p = list(map(id, net_g.enc_p.mrte.parameters()))
|
||||
base_params = filter(lambda p: id(p) not in te_p+et_p+mrte_p and p.requires_grad, net_g.parameters())
|
||||
base_params = filter(
|
||||
lambda p: id(p) not in te_p + et_p + mrte_p and p.requires_grad,
|
||||
net_g.parameters(),
|
||||
)
|
||||
|
||||
# te_p=net_g.enc_p.text_embedding.parameters()
|
||||
# et_p=net_g.enc_p.encoder_text.parameters()
|
||||
@ -106,31 +150,46 @@ def run(rank, n_gpus, hps):
|
||||
optim_g = torch.optim.AdamW(
|
||||
# filter(lambda p: p.requires_grad, net_g.parameters()),###默认所有层lr一致
|
||||
[
|
||||
{"params":base_params,"lr":hps.train.learning_rate},
|
||||
{"params":net_g.enc_p.text_embedding.parameters(),"lr":hps.train.learning_rate*hps.train.text_low_lr_rate},
|
||||
{"params":net_g.enc_p.encoder_text.parameters(),"lr":hps.train.learning_rate*hps.train.text_low_lr_rate},
|
||||
{"params":net_g.enc_p.mrte.parameters(),"lr":hps.train.learning_rate*hps.train.text_low_lr_rate},
|
||||
{"params": base_params, "lr": hps.train.learning_rate},
|
||||
{
|
||||
"params": net_g.enc_p.text_embedding.parameters(),
|
||||
"lr": hps.train.learning_rate * hps.train.text_low_lr_rate,
|
||||
},
|
||||
{
|
||||
"params": net_g.enc_p.encoder_text.parameters(),
|
||||
"lr": hps.train.learning_rate * hps.train.text_low_lr_rate,
|
||||
},
|
||||
{
|
||||
"params": net_g.enc_p.mrte.parameters(),
|
||||
"lr": hps.train.learning_rate * hps.train.text_low_lr_rate,
|
||||
},
|
||||
],
|
||||
hps.train.learning_rate,
|
||||
betas=hps.train.betas,
|
||||
eps=hps.train.eps)
|
||||
eps=hps.train.eps,
|
||||
)
|
||||
optim_d = torch.optim.AdamW(
|
||||
net_d.parameters(),
|
||||
hps.train.learning_rate,
|
||||
betas=hps.train.betas,
|
||||
eps=hps.train.eps)
|
||||
net_g = DDP(net_g, device_ids=[rank],find_unused_parameters=True)
|
||||
net_d = DDP(net_d, device_ids=[rank],find_unused_parameters=True)
|
||||
eps=hps.train.eps,
|
||||
)
|
||||
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
||||
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
||||
|
||||
try: # 如果能加载自动resume
|
||||
_, _, _, epoch_str = utils.load_checkpoint(
|
||||
utils.latest_checkpoint_path("%s/logs_s2"%hps.data.exp_dir, "D_*.pth"), net_d, optim_d
|
||||
utils.latest_checkpoint_path("%s/logs_s2" % hps.data.exp_dir, "D_*.pth"),
|
||||
net_d,
|
||||
optim_d,
|
||||
) # D多半加载没事
|
||||
if rank == 0:
|
||||
logger.info("loaded D")
|
||||
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
|
||||
_, _, _, epoch_str = utils.load_checkpoint(
|
||||
utils.latest_checkpoint_path("%s/logs_s2"%hps.data.exp_dir, "G_*.pth"), net_g, optim_g
|
||||
utils.latest_checkpoint_path("%s/logs_s2" % hps.data.exp_dir, "G_*.pth"),
|
||||
net_g,
|
||||
optim_g,
|
||||
)
|
||||
global_step = (epoch_str - 1) * len(train_loader)
|
||||
# epoch_str = 1
|
||||
@ -144,7 +203,8 @@ def run(rank, n_gpus, hps):
|
||||
logger.info("loaded pretrained %s" % hps.train.pretrained_s2G)
|
||||
print(
|
||||
net_g.module.load_state_dict(
|
||||
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],strict=False
|
||||
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
|
||||
strict=False,
|
||||
)
|
||||
) ##测试不加载优化器
|
||||
if hps.train.pretrained_s2D != "":
|
||||
@ -159,8 +219,12 @@ def run(rank, n_gpus, hps):
|
||||
# scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
||||
# scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
||||
|
||||
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=-1)
|
||||
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=-1)
|
||||
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
||||
optim_g, gamma=hps.train.lr_decay, last_epoch=-1
|
||||
)
|
||||
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
||||
optim_d, gamma=hps.train.lr_decay, last_epoch=-1
|
||||
)
|
||||
for _ in range(epoch_str):
|
||||
scheduler_g.step()
|
||||
scheduler_d.step()
|
||||
@ -169,17 +233,39 @@ def run(rank, n_gpus, hps):
|
||||
|
||||
for epoch in range(epoch_str, hps.train.epochs + 1):
|
||||
if rank == 0:
|
||||
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
|
||||
# [train_loader, eval_loader], logger, [writer, writer_eval])
|
||||
[train_loader, None], logger, [writer, writer_eval])
|
||||
train_and_evaluate(
|
||||
rank,
|
||||
epoch,
|
||||
hps,
|
||||
[net_g, net_d],
|
||||
[optim_g, optim_d],
|
||||
[scheduler_g, scheduler_d],
|
||||
scaler,
|
||||
# [train_loader, eval_loader], logger, [writer, writer_eval])
|
||||
[train_loader, None],
|
||||
logger,
|
||||
[writer, writer_eval],
|
||||
)
|
||||
else:
|
||||
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
|
||||
[train_loader, None], None, None)
|
||||
train_and_evaluate(
|
||||
rank,
|
||||
epoch,
|
||||
hps,
|
||||
[net_g, net_d],
|
||||
[optim_g, optim_d],
|
||||
[scheduler_g, scheduler_d],
|
||||
scaler,
|
||||
[train_loader, None],
|
||||
None,
|
||||
None,
|
||||
)
|
||||
scheduler_g.step()
|
||||
scheduler_d.step()
|
||||
|
||||
|
||||
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
|
||||
def train_and_evaluate(
|
||||
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
|
||||
):
|
||||
net_g, net_d = nets
|
||||
optim_g, optim_d = optims
|
||||
# scheduler_g, scheduler_d = schedulers
|
||||
@ -192,17 +278,39 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
|
||||
|
||||
net_g.train()
|
||||
net_d.train()
|
||||
for batch_idx, (ssl, ssl_lengths, spec, spec_lengths, y, y_lengths, text, text_lengths) in tqdm(enumerate(train_loader)):
|
||||
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
|
||||
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
|
||||
for batch_idx, (
|
||||
ssl,
|
||||
ssl_lengths,
|
||||
spec,
|
||||
spec_lengths,
|
||||
y,
|
||||
y_lengths,
|
||||
text,
|
||||
text_lengths,
|
||||
) in tqdm(enumerate(train_loader)):
|
||||
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
ssl = ssl.cuda(rank, non_blocking=True)
|
||||
ssl.requires_grad=False
|
||||
ssl.requires_grad = False
|
||||
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
|
||||
text, text_lengths = text.cuda(rank, non_blocking=True), text_lengths.cuda(rank, non_blocking=True)
|
||||
text, text_lengths = text.cuda(rank, non_blocking=True), text_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
y_hat, kl_ssl, ids_slice, x_mask, z_mask, \
|
||||
(z, z_p, m_p, logs_p, m_q, logs_q), stats_ssl = net_g(ssl, spec, spec_lengths, text, text_lengths)
|
||||
(
|
||||
y_hat,
|
||||
kl_ssl,
|
||||
ids_slice,
|
||||
x_mask,
|
||||
z_mask,
|
||||
(z, z_p, m_p, logs_p, m_q, logs_q),
|
||||
stats_ssl,
|
||||
) = net_g(ssl, spec, spec_lengths, text, text_lengths)
|
||||
|
||||
mel = spec_to_mel_torch(
|
||||
spec,
|
||||
@ -210,8 +318,11 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax)
|
||||
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
|
||||
hps.data.mel_fmax,
|
||||
)
|
||||
y_mel = commons.slice_segments(
|
||||
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
|
||||
)
|
||||
y_hat_mel = mel_spectrogram_torch(
|
||||
y_hat.squeeze(1),
|
||||
hps.data.filter_length,
|
||||
@ -220,15 +331,19 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
|
||||
hps.data.hop_length,
|
||||
hps.data.win_length,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax
|
||||
hps.data.mel_fmax,
|
||||
)
|
||||
|
||||
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
|
||||
y = commons.slice_segments(
|
||||
y, ids_slice * hps.data.hop_length, hps.train.segment_size
|
||||
) # slice
|
||||
|
||||
# Discriminator
|
||||
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
||||
with autocast(enabled=False):
|
||||
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
|
||||
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
||||
y_d_hat_r, y_d_hat_g
|
||||
)
|
||||
loss_disc_all = loss_disc
|
||||
optim_d.zero_grad()
|
||||
scaler.scale(loss_disc_all).backward()
|
||||
@ -256,32 +371,54 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
|
||||
|
||||
if rank == 0:
|
||||
if global_step % hps.train.log_interval == 0:
|
||||
lr = optim_g.param_groups[0]['lr']
|
||||
lr = optim_g.param_groups[0]["lr"]
|
||||
losses = [loss_disc, loss_gen, loss_fm, loss_mel, kl_ssl, loss_kl]
|
||||
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
||||
epoch,
|
||||
100. * batch_idx / len(train_loader)))
|
||||
logger.info(
|
||||
"Train Epoch: {} [{:.0f}%]".format(
|
||||
epoch, 100.0 * batch_idx / len(train_loader)
|
||||
)
|
||||
)
|
||||
logger.info([x.item() for x in losses] + [global_step, lr])
|
||||
|
||||
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
|
||||
"grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
|
||||
scalar_dict = {
|
||||
"loss/g/total": loss_gen_all,
|
||||
"loss/d/total": loss_disc_all,
|
||||
"learning_rate": lr,
|
||||
"grad_norm_d": grad_norm_d,
|
||||
"grad_norm_g": grad_norm_g,
|
||||
}
|
||||
scalar_dict.update(
|
||||
{"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl_ssl": kl_ssl, "loss/g/kl": loss_kl})
|
||||
{
|
||||
"loss/g/fm": loss_fm,
|
||||
"loss/g/mel": loss_mel,
|
||||
"loss/g/kl_ssl": kl_ssl,
|
||||
"loss/g/kl": loss_kl,
|
||||
}
|
||||
)
|
||||
|
||||
# scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
|
||||
# scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
|
||||
# scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
|
||||
image_dict = {
|
||||
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
|
||||
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
|
||||
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
|
||||
"all/stats_ssl": utils.plot_spectrogram_to_numpy(stats_ssl[0].data.cpu().numpy()),
|
||||
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
||||
y_mel[0].data.cpu().numpy()
|
||||
),
|
||||
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
||||
y_hat_mel[0].data.cpu().numpy()
|
||||
),
|
||||
"all/mel": utils.plot_spectrogram_to_numpy(
|
||||
mel[0].data.cpu().numpy()
|
||||
),
|
||||
"all/stats_ssl": utils.plot_spectrogram_to_numpy(
|
||||
stats_ssl[0].data.cpu().numpy()
|
||||
),
|
||||
}
|
||||
utils.summarize(
|
||||
writer=writer,
|
||||
global_step=global_step,
|
||||
images=image_dict,
|
||||
scalars=scalar_dict)
|
||||
scalars=scalar_dict,
|
||||
)
|
||||
global_step += 1
|
||||
if epoch % hps.train.save_every_epoch == 0 and rank == 0:
|
||||
if hps.train.if_save_latest == 0:
|
||||
@ -290,14 +427,18 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join("%s/logs_s2"%hps.data.exp_dir, "G_{}.pth".format(global_step)),
|
||||
os.path.join(
|
||||
"%s/logs_s2" % hps.data.exp_dir, "G_{}.pth".format(global_step)
|
||||
),
|
||||
)
|
||||
utils.save_checkpoint(
|
||||
net_d,
|
||||
optim_d,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join("%s/logs_s2"%hps.data.exp_dir, "D_{}.pth".format(global_step)),
|
||||
os.path.join(
|
||||
"%s/logs_s2" % hps.data.exp_dir, "D_{}.pth".format(global_step)
|
||||
),
|
||||
)
|
||||
else:
|
||||
utils.save_checkpoint(
|
||||
@ -305,14 +446,18 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join("%s/logs_s2"%hps.data.exp_dir, "G_{}.pth".format(233333333333)),
|
||||
os.path.join(
|
||||
"%s/logs_s2" % hps.data.exp_dir, "G_{}.pth".format(233333333333)
|
||||
),
|
||||
)
|
||||
utils.save_checkpoint(
|
||||
net_d,
|
||||
optim_d,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join("%s/logs_s2"%hps.data.exp_dir, "D_{}.pth".format(233333333333)),
|
||||
os.path.join(
|
||||
"%s/logs_s2" % hps.data.exp_dir, "D_{}.pth".format(233333333333)
|
||||
),
|
||||
)
|
||||
if rank == 0 and hps.train.if_save_every_weights == True:
|
||||
if hasattr(net_g, "module"):
|
||||
@ -334,11 +479,8 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
|
||||
if rank == 0:
|
||||
logger.info('====> Epoch: {}'.format(epoch))
|
||||
|
||||
logger.info("====> Epoch: {}".format(epoch))
|
||||
|
||||
|
||||
def evaluate(hps, generator, eval_loader, writer_eval):
|
||||
@ -347,15 +489,25 @@ def evaluate(hps, generator, eval_loader, writer_eval):
|
||||
audio_dict = {}
|
||||
print("Evaluating ...")
|
||||
with torch.no_grad():
|
||||
for batch_idx, (ssl, ssl_lengths, spec, spec_lengths, y, y_lengths, text, text_lengths) in enumerate(eval_loader):
|
||||
for batch_idx, (
|
||||
ssl,
|
||||
ssl_lengths,
|
||||
spec,
|
||||
spec_lengths,
|
||||
y,
|
||||
y_lengths,
|
||||
text,
|
||||
text_lengths,
|
||||
) in enumerate(eval_loader):
|
||||
print(111)
|
||||
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
|
||||
y, y_lengths = y.cuda(), y_lengths.cuda()
|
||||
ssl = ssl.cuda()
|
||||
text, text_lengths = text.cuda(), text_lengths.cuda()
|
||||
for test in [0, 1]:
|
||||
|
||||
y_hat, mask, *_ = generator.module.infer(ssl,spec, spec_lengths,text, text_lengths, test=test)
|
||||
y_hat, mask, *_ = generator.module.infer(
|
||||
ssl, spec, spec_lengths, text, text_lengths, test=test
|
||||
)
|
||||
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
||||
|
||||
mel = spec_to_mel_torch(
|
||||
@ -364,7 +516,8 @@ def evaluate(hps, generator, eval_loader, writer_eval):
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax)
|
||||
hps.data.mel_fmax,
|
||||
)
|
||||
y_hat_mel = mel_spectrogram_torch(
|
||||
y_hat.squeeze(1).float(),
|
||||
hps.data.filter_length,
|
||||
@ -373,16 +526,26 @@ def evaluate(hps, generator, eval_loader, writer_eval):
|
||||
hps.data.hop_length,
|
||||
hps.data.win_length,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax
|
||||
hps.data.mel_fmax,
|
||||
)
|
||||
image_dict.update({
|
||||
f"gen/mel_{batch_idx}_{test}": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
|
||||
})
|
||||
audio_dict.update({
|
||||
f"gen/audio_{batch_idx}_{test}": y_hat[0, :, :y_hat_lengths[0]]
|
||||
})
|
||||
image_dict.update({f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
|
||||
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, :y_lengths[0]]})
|
||||
image_dict.update(
|
||||
{
|
||||
f"gen/mel_{batch_idx}_{test}": utils.plot_spectrogram_to_numpy(
|
||||
y_hat_mel[0].cpu().numpy()
|
||||
)
|
||||
}
|
||||
)
|
||||
audio_dict.update(
|
||||
{f"gen/audio_{batch_idx}_{test}": y_hat[0, :, : y_hat_lengths[0]]}
|
||||
)
|
||||
image_dict.update(
|
||||
{
|
||||
f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
|
||||
mel[0].cpu().numpy()
|
||||
)
|
||||
}
|
||||
)
|
||||
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]})
|
||||
|
||||
# y_hat, mask, *_ = generator.module.infer(ssl, spec_lengths, speakers, y=None)
|
||||
# audio_dict.update({
|
||||
@ -394,9 +557,10 @@ def evaluate(hps, generator, eval_loader, writer_eval):
|
||||
global_step=global_step,
|
||||
images=image_dict,
|
||||
audios=audio_dict,
|
||||
audio_sampling_rate=hps.data.sampling_rate
|
||||
audio_sampling_rate=hps.data.sampling_rate,
|
||||
)
|
||||
generator.train()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@ -6,49 +6,56 @@ import cn2an
|
||||
from pypinyin import lazy_pinyin, Style
|
||||
|
||||
import sys
|
||||
|
||||
sys.path.append("/data/docker/liujing04/gpt-vits/gpt-vits-master")
|
||||
|
||||
from text.symbols import punctuation
|
||||
from text.tone_sandhi import ToneSandhi
|
||||
|
||||
current_file_path = os.path.dirname(__file__)
|
||||
pinyin_to_symbol_map = {line.split("\t")[0]: line.strip().split("\t")[1] for line in
|
||||
open(os.path.join(current_file_path, 'opencpop-strict.txt')).readlines()}
|
||||
pinyin_to_symbol_map = {
|
||||
line.split("\t")[0]: line.strip().split("\t")[1]
|
||||
for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines()
|
||||
}
|
||||
|
||||
import jieba.posseg as psg
|
||||
|
||||
|
||||
rep_map = {
|
||||
':': ',',
|
||||
';': ',',
|
||||
',': ',',
|
||||
'。': '.',
|
||||
'!': '!',
|
||||
'?': '?',
|
||||
'\n': '.',
|
||||
":": ",",
|
||||
";": ",",
|
||||
",": ",",
|
||||
"。": ".",
|
||||
"!": "!",
|
||||
"?": "?",
|
||||
"\n": ".",
|
||||
"·": ",",
|
||||
'、': ",",
|
||||
'...': '…',
|
||||
'$': '.',
|
||||
'/': ',',
|
||||
'—': "-"
|
||||
"、": ",",
|
||||
"...": "…",
|
||||
"$": ".",
|
||||
"/": ",",
|
||||
"—": "-",
|
||||
}
|
||||
|
||||
tone_modifier = ToneSandhi()
|
||||
|
||||
|
||||
def replace_punctuation(text):
|
||||
text = text.replace("嗯", "恩").replace("呣","母")
|
||||
pattern = re.compile('|'.join(re.escape(p) for p in rep_map.keys()))
|
||||
text = text.replace("嗯", "恩").replace("呣", "母")
|
||||
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
||||
|
||||
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
||||
|
||||
replaced_text = re.sub(r'[^\u4e00-\u9fa5'+"".join(punctuation)+r']+', '', replaced_text)
|
||||
replaced_text = re.sub(
|
||||
r"[^\u4e00-\u9fa5" + "".join(punctuation) + r"]+", "", replaced_text
|
||||
)
|
||||
|
||||
return replaced_text
|
||||
|
||||
|
||||
def g2p(text):
|
||||
pattern = r'(?<=[{0}])\s*'.format(''.join(punctuation))
|
||||
sentences = [i for i in re.split(pattern, text) if i.strip()!='']
|
||||
pattern = r"(?<=[{0}])\s*".format("".join(punctuation))
|
||||
sentences = [i for i in re.split(pattern, text) if i.strip() != ""]
|
||||
phones, word2ph = _g2p(sentences)
|
||||
return phones, word2ph
|
||||
|
||||
@ -56,10 +63,10 @@ def g2p(text):
|
||||
def _get_initials_finals(word):
|
||||
initials = []
|
||||
finals = []
|
||||
orig_initials = lazy_pinyin(
|
||||
word, neutral_tone_with_five=True, style=Style.INITIALS)
|
||||
orig_initials = lazy_pinyin(word, neutral_tone_with_five=True, style=Style.INITIALS)
|
||||
orig_finals = lazy_pinyin(
|
||||
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
||||
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3
|
||||
)
|
||||
for c, v in zip(orig_initials, orig_finals):
|
||||
initials.append(c)
|
||||
finals.append(v)
|
||||
@ -72,17 +79,16 @@ def _g2p(segments):
|
||||
for seg in segments:
|
||||
pinyins = []
|
||||
# Replace all English words in the sentence
|
||||
seg = re.sub('[a-zA-Z]+', '', seg)
|
||||
seg = re.sub("[a-zA-Z]+", "", seg)
|
||||
seg_cut = psg.lcut(seg)
|
||||
initials = []
|
||||
finals = []
|
||||
seg_cut = tone_modifier.pre_merge_for_modify(seg_cut)
|
||||
for word, pos in seg_cut:
|
||||
if pos == 'eng':
|
||||
if pos == "eng":
|
||||
continue
|
||||
sub_initials, sub_finals = _get_initials_finals(word)
|
||||
sub_finals = tone_modifier.modified_tone(word, pos,
|
||||
sub_finals)
|
||||
sub_finals = tone_modifier.modified_tone(word, pos, sub_finals)
|
||||
initials.append(sub_initials)
|
||||
finals.append(sub_finals)
|
||||
|
||||
@ -91,7 +97,7 @@ def _g2p(segments):
|
||||
finals = sum(finals, [])
|
||||
#
|
||||
for c, v in zip(initials, finals):
|
||||
raw_pinyin = c+v
|
||||
raw_pinyin = c + v
|
||||
# NOTE: post process for pypinyin outputs
|
||||
# we discriminate i, ii and iii
|
||||
if c == v:
|
||||
@ -102,40 +108,40 @@ def _g2p(segments):
|
||||
v_without_tone = v[:-1]
|
||||
tone = v[-1]
|
||||
|
||||
pinyin = c+v_without_tone
|
||||
assert tone in '12345'
|
||||
pinyin = c + v_without_tone
|
||||
assert tone in "12345"
|
||||
|
||||
if c:
|
||||
# 多音节
|
||||
v_rep_map = {
|
||||
"uei": 'ui',
|
||||
'iou': 'iu',
|
||||
'uen': 'un',
|
||||
"uei": "ui",
|
||||
"iou": "iu",
|
||||
"uen": "un",
|
||||
}
|
||||
if v_without_tone in v_rep_map.keys():
|
||||
pinyin = c+v_rep_map[v_without_tone]
|
||||
pinyin = c + v_rep_map[v_without_tone]
|
||||
else:
|
||||
# 单音节
|
||||
pinyin_rep_map = {
|
||||
'ing': 'ying',
|
||||
'i': 'yi',
|
||||
'in': 'yin',
|
||||
'u': 'wu',
|
||||
"ing": "ying",
|
||||
"i": "yi",
|
||||
"in": "yin",
|
||||
"u": "wu",
|
||||
}
|
||||
if pinyin in pinyin_rep_map.keys():
|
||||
pinyin = pinyin_rep_map[pinyin]
|
||||
else:
|
||||
single_rep_map = {
|
||||
'v': 'yu',
|
||||
'e': 'e',
|
||||
'i': 'y',
|
||||
'u': 'w',
|
||||
"v": "yu",
|
||||
"e": "e",
|
||||
"i": "y",
|
||||
"u": "w",
|
||||
}
|
||||
if pinyin[0] in single_rep_map.keys():
|
||||
pinyin = single_rep_map[pinyin[0]]+pinyin[1:]
|
||||
pinyin = single_rep_map[pinyin[0]] + pinyin[1:]
|
||||
|
||||
assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin)
|
||||
new_c, new_v = pinyin_to_symbol_map[pinyin].split(' ')
|
||||
new_c, new_v = pinyin_to_symbol_map[pinyin].split(" ")
|
||||
new_v = new_v + tone
|
||||
phone = [new_c, new_v]
|
||||
word2ph.append(len(phone))
|
||||
@ -144,9 +150,8 @@ def _g2p(segments):
|
||||
return phones_list, word2ph
|
||||
|
||||
|
||||
|
||||
def text_normalize(text):
|
||||
numbers = re.findall(r'\d+(?:\.?\d+)?', text)
|
||||
numbers = re.findall(r"\d+(?:\.?\d+)?", text)
|
||||
for number in numbers:
|
||||
text = text.replace(number, cn2an.an2cn(number), 1)
|
||||
text = replace_punctuation(text)
|
||||
@ -154,7 +159,7 @@ def text_normalize(text):
|
||||
return text
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
text = "啊——但是《原神》是由,米哈\游自主,研发的一款全.新开放世界.冒险游戏"
|
||||
text = "呣呣呣~就是…大人的鼹鼠党吧?"
|
||||
text = "你好"
|
||||
|
@ -1,29 +1,27 @@
|
||||
from text import chinese, japanese, cleaned_text_to_sequence, symbols, english
|
||||
|
||||
language_module_map = {
|
||||
'zh': chinese,
|
||||
"ja": japanese,
|
||||
'en': english
|
||||
}
|
||||
language_module_map = {"zh": chinese, "ja": japanese, "en": english}
|
||||
special = [
|
||||
('%', 'zh', "SP"),
|
||||
('¥', 'zh', "SP2"),
|
||||
('^', 'zh', "SP3"),
|
||||
("%", "zh", "SP"),
|
||||
("¥", "zh", "SP2"),
|
||||
("^", "zh", "SP3"),
|
||||
# ('@', 'zh', "SP4")#不搞鬼畜了,和第二版保持一致吧
|
||||
]
|
||||
|
||||
|
||||
def clean_text(text, language):
|
||||
for special_s, special_l, target_symbol in special:
|
||||
if special_s in text and language == special_l:
|
||||
return clean_special(text, language, special_s, target_symbol)
|
||||
language_module = language_module_map[language]
|
||||
norm_text = language_module.text_normalize(text)
|
||||
if(language=="zh"):
|
||||
if language == "zh":
|
||||
phones, word2ph = language_module.g2p(norm_text)
|
||||
assert len(phones) == sum(word2ph)
|
||||
assert len(norm_text) == len(word2ph)
|
||||
else:
|
||||
phones = language_module.g2p(norm_text)
|
||||
word2ph=None
|
||||
word2ph = None
|
||||
|
||||
for ph in phones:
|
||||
assert ph in symbols
|
||||
@ -41,17 +39,17 @@ def clean_special(text, language, special_s, target_symbol):
|
||||
new_ph = []
|
||||
for ph in phones:
|
||||
assert ph in symbols
|
||||
if ph == ',':
|
||||
if ph == ",":
|
||||
new_ph.append(target_symbol)
|
||||
else:
|
||||
new_ph.append(ph)
|
||||
return new_ph
|
||||
|
||||
|
||||
def text_to_sequence(text, language):
|
||||
phones = clean_text(text)
|
||||
return cleaned_text_to_sequence(phones)
|
||||
|
||||
if __name__ == '__main__':
|
||||
print(clean_text("你好%啊啊啊额、还是到付红四方。", 'zh'))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(clean_text("你好%啊啊啊额、还是到付红四方。", "zh"))
|
||||
|
@ -8,20 +8,87 @@ from string import punctuation
|
||||
from text import symbols
|
||||
|
||||
current_file_path = os.path.dirname(__file__)
|
||||
CMU_DICT_PATH = os.path.join(current_file_path, 'cmudict.rep')
|
||||
CACHE_PATH = os.path.join(current_file_path, 'cmudict_cache.pickle')
|
||||
CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep")
|
||||
CACHE_PATH = os.path.join(current_file_path, "cmudict_cache.pickle")
|
||||
_g2p = G2p()
|
||||
|
||||
arpa = {'AH0', 'S', 'AH1', 'EY2', 'AE2', 'EH0', 'OW2', 'UH0', 'NG', 'B', 'G', 'AY0', 'M', 'AA0', 'F', 'AO0', 'ER2', 'UH1', 'IY1', 'AH2', 'DH', 'IY0', 'EY1', 'IH0', 'K', 'N', 'W', 'IY2', 'T', 'AA1', 'ER1', 'EH2', 'OY0', 'UH2', 'UW1', 'Z', 'AW2', 'AW1', 'V', 'UW2', 'AA2', 'ER', 'AW0', 'UW0', 'R', 'OW1', 'EH1', 'ZH', 'AE0', 'IH2', 'IH', 'Y', 'JH', 'P', 'AY1', 'EY0', 'OY2', 'TH', 'HH', 'D', 'ER0', 'CH', 'AO1', 'AE1', 'AO2', 'OY1', 'AY2', 'IH1', 'OW0', 'L', 'SH'}
|
||||
arpa = {
|
||||
"AH0",
|
||||
"S",
|
||||
"AH1",
|
||||
"EY2",
|
||||
"AE2",
|
||||
"EH0",
|
||||
"OW2",
|
||||
"UH0",
|
||||
"NG",
|
||||
"B",
|
||||
"G",
|
||||
"AY0",
|
||||
"M",
|
||||
"AA0",
|
||||
"F",
|
||||
"AO0",
|
||||
"ER2",
|
||||
"UH1",
|
||||
"IY1",
|
||||
"AH2",
|
||||
"DH",
|
||||
"IY0",
|
||||
"EY1",
|
||||
"IH0",
|
||||
"K",
|
||||
"N",
|
||||
"W",
|
||||
"IY2",
|
||||
"T",
|
||||
"AA1",
|
||||
"ER1",
|
||||
"EH2",
|
||||
"OY0",
|
||||
"UH2",
|
||||
"UW1",
|
||||
"Z",
|
||||
"AW2",
|
||||
"AW1",
|
||||
"V",
|
||||
"UW2",
|
||||
"AA2",
|
||||
"ER",
|
||||
"AW0",
|
||||
"UW0",
|
||||
"R",
|
||||
"OW1",
|
||||
"EH1",
|
||||
"ZH",
|
||||
"AE0",
|
||||
"IH2",
|
||||
"IH",
|
||||
"Y",
|
||||
"JH",
|
||||
"P",
|
||||
"AY1",
|
||||
"EY0",
|
||||
"OY2",
|
||||
"TH",
|
||||
"HH",
|
||||
"D",
|
||||
"ER0",
|
||||
"CH",
|
||||
"AO1",
|
||||
"AE1",
|
||||
"AO2",
|
||||
"OY1",
|
||||
"AY2",
|
||||
"IH1",
|
||||
"OW0",
|
||||
"L",
|
||||
"SH",
|
||||
}
|
||||
|
||||
|
||||
def replace_phs(phs):
|
||||
rep_map = {
|
||||
';': ',',
|
||||
':': ',',
|
||||
'\'': '-',
|
||||
'"': '-'
|
||||
}
|
||||
rep_map = {";": ",", ":": ",", "'": "-", '"': "-"}
|
||||
phs_new = []
|
||||
for ph in phs:
|
||||
if ph in symbols:
|
||||
@ -29,9 +96,10 @@ def replace_phs(phs):
|
||||
elif ph in rep_map.keys():
|
||||
phs_new.append(rep_map[ph])
|
||||
else:
|
||||
print('ph not in symbols: ', ph)
|
||||
print("ph not in symbols: ", ph)
|
||||
return phs_new
|
||||
|
||||
|
||||
def read_dict():
|
||||
g2p_dict = {}
|
||||
start_line = 49
|
||||
@ -41,13 +109,13 @@ def read_dict():
|
||||
while line:
|
||||
if line_index >= start_line:
|
||||
line = line.strip()
|
||||
word_split = line.split(' ')
|
||||
word_split = line.split(" ")
|
||||
word = word_split[0]
|
||||
|
||||
syllable_split = word_split[1].split(' - ')
|
||||
syllable_split = word_split[1].split(" - ")
|
||||
g2p_dict[word] = []
|
||||
for syllable in syllable_split:
|
||||
phone_split = syllable.split(' ')
|
||||
phone_split = syllable.split(" ")
|
||||
g2p_dict[word].append(phone_split)
|
||||
|
||||
line_index = line_index + 1
|
||||
@ -57,13 +125,13 @@ def read_dict():
|
||||
|
||||
|
||||
def cache_dict(g2p_dict, file_path):
|
||||
with open(file_path, 'wb') as pickle_file:
|
||||
with open(file_path, "wb") as pickle_file:
|
||||
pickle.dump(g2p_dict, pickle_file)
|
||||
|
||||
|
||||
def get_dict():
|
||||
if os.path.exists(CACHE_PATH):
|
||||
with open(CACHE_PATH, 'rb') as pickle_file:
|
||||
with open(CACHE_PATH, "rb") as pickle_file:
|
||||
g2p_dict = pickle.load(pickle_file)
|
||||
else:
|
||||
g2p_dict = read_dict()
|
||||
@ -71,6 +139,7 @@ def get_dict():
|
||||
|
||||
return g2p_dict
|
||||
|
||||
|
||||
eng_dict = get_dict()
|
||||
|
||||
|
||||
@ -78,8 +147,8 @@ def text_normalize(text):
|
||||
# todo: eng text normalize
|
||||
return text.replace(";", ",")
|
||||
|
||||
def g2p(text):
|
||||
|
||||
def g2p(text):
|
||||
phones = []
|
||||
words = re.split(r"([,;.\-\?\!\s+])", text)
|
||||
for w in words:
|
||||
@ -97,6 +166,7 @@ def g2p(text):
|
||||
|
||||
return replace_phs(phones)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# print(get_dict())
|
||||
print(g2p("hello"))
|
||||
@ -106,4 +176,4 @@ if __name__ == "__main__":
|
||||
# for group in syllables:
|
||||
# for ph in group:
|
||||
# all_phones.add(ph)
|
||||
# print(all_phones)
|
||||
# print(all_phones)
|
||||
|
@ -8,57 +8,63 @@ from text import symbols
|
||||
|
||||
# Regular expression matching Japanese without punctuation marks:
|
||||
_japanese_characters = re.compile(
|
||||
r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
||||
r"[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]"
|
||||
)
|
||||
|
||||
# Regular expression matching non-Japanese characters or punctuation marks:
|
||||
_japanese_marks = re.compile(
|
||||
r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
||||
r"[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]"
|
||||
)
|
||||
|
||||
# List of (symbol, Japanese) pairs for marks:
|
||||
_symbols_to_japanese = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
('%', 'パーセント')
|
||||
]]
|
||||
_symbols_to_japanese = [(re.compile("%s" % x[0]), x[1]) for x in [("%", "パーセント")]]
|
||||
|
||||
|
||||
# List of (consonant, sokuon) pairs:
|
||||
_real_sokuon = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
(r'Q([↑↓]*[kg])', r'k#\1'),
|
||||
(r'Q([↑↓]*[tdjʧ])', r't#\1'),
|
||||
(r'Q([↑↓]*[sʃ])', r's\1'),
|
||||
(r'Q([↑↓]*[pb])', r'p#\1')
|
||||
]]
|
||||
_real_sokuon = [
|
||||
(re.compile("%s" % x[0]), x[1])
|
||||
for x in [
|
||||
(r"Q([↑↓]*[kg])", r"k#\1"),
|
||||
(r"Q([↑↓]*[tdjʧ])", r"t#\1"),
|
||||
(r"Q([↑↓]*[sʃ])", r"s\1"),
|
||||
(r"Q([↑↓]*[pb])", r"p#\1"),
|
||||
]
|
||||
]
|
||||
|
||||
# List of (consonant, hatsuon) pairs:
|
||||
_real_hatsuon = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
(r'N([↑↓]*[pbm])', r'm\1'),
|
||||
(r'N([↑↓]*[ʧʥj])', r'n^\1'),
|
||||
(r'N([↑↓]*[tdn])', r'n\1'),
|
||||
(r'N([↑↓]*[kg])', r'ŋ\1')
|
||||
]]
|
||||
|
||||
_real_hatsuon = [
|
||||
(re.compile("%s" % x[0]), x[1])
|
||||
for x in [
|
||||
(r"N([↑↓]*[pbm])", r"m\1"),
|
||||
(r"N([↑↓]*[ʧʥj])", r"n^\1"),
|
||||
(r"N([↑↓]*[tdn])", r"n\1"),
|
||||
(r"N([↑↓]*[kg])", r"ŋ\1"),
|
||||
]
|
||||
]
|
||||
|
||||
|
||||
def post_replace_ph(ph):
|
||||
rep_map = {
|
||||
':': ',',
|
||||
';': ',',
|
||||
',': ',',
|
||||
'。': '.',
|
||||
'!': '!',
|
||||
'?': '?',
|
||||
'\n': '.',
|
||||
":": ",",
|
||||
";": ",",
|
||||
",": ",",
|
||||
"。": ".",
|
||||
"!": "!",
|
||||
"?": "?",
|
||||
"\n": ".",
|
||||
"·": ",",
|
||||
'、': ",",
|
||||
'...': '…'
|
||||
"、": ",",
|
||||
"...": "…",
|
||||
}
|
||||
if ph in rep_map.keys():
|
||||
ph = rep_map[ph]
|
||||
if ph in symbols:
|
||||
return ph
|
||||
if ph not in symbols:
|
||||
ph = 'UNK'
|
||||
ph = "UNK"
|
||||
return ph
|
||||
|
||||
|
||||
def symbols_to_japanese(text):
|
||||
for regex, replacement in _symbols_to_japanese:
|
||||
text = re.sub(regex, replacement, text)
|
||||
@ -66,7 +72,7 @@ def symbols_to_japanese(text):
|
||||
|
||||
|
||||
def preprocess_jap(text):
|
||||
'''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
|
||||
"""Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html"""
|
||||
text = symbols_to_japanese(text)
|
||||
sentences = re.split(_japanese_marks, text)
|
||||
marks = re.findall(_japanese_marks, text)
|
||||
@ -77,13 +83,15 @@ def preprocess_jap(text):
|
||||
text += p.split(" ")
|
||||
|
||||
if i < len(marks):
|
||||
text += [marks[i].replace(' ', '')]
|
||||
text += [marks[i].replace(" ", "")]
|
||||
return text
|
||||
|
||||
|
||||
def text_normalize(text):
|
||||
# todo: jap text normalize
|
||||
return text
|
||||
|
||||
|
||||
def g2p(norm_text):
|
||||
phones = preprocess_jap(norm_text)
|
||||
phones = [post_replace_ph(i) for i in phones]
|
||||
@ -91,7 +99,7 @@ def g2p(norm_text):
|
||||
return phones
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
for line in open("../../../Downloads/transcript_utf8.txt").readlines():
|
||||
text = line.split(":")[1]
|
||||
phones = g2p(text)
|
||||
|
@ -1,24 +1,397 @@
|
||||
import os
|
||||
|
||||
# punctuation = ['!', '?', '…', ",", ".","@"]#@是SP停顿
|
||||
punctuation = ['!', '?', '…', ",", "."]#@是SP停顿
|
||||
punctuation = ["!", "?", "…", ",", "."] # @是SP停顿
|
||||
punctuation.append("-")
|
||||
pu_symbols = punctuation + ["SP", 'SP2', 'SP3', "UNK"]
|
||||
pu_symbols = punctuation + ["SP", "SP2", "SP3", "UNK"]
|
||||
# pu_symbols = punctuation + ["SP", 'SP2', 'SP3','SP4', "UNK"]
|
||||
pad = '_'
|
||||
pad = "_"
|
||||
|
||||
c = ['AA', 'EE', 'OO', 'b', 'c', 'ch', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'm', 'n', 'p', 'q', 'r', 's', 'sh', 't', 'w', 'x', 'y', 'z', 'zh']
|
||||
v = ['E1', 'En1', 'a1', 'ai1', 'an1', 'ang1', 'ao1', 'e1', 'ei1', 'en1', 'eng1', 'er1', 'i1', 'i01', 'ia1', 'ian1', 'iang1', 'iao1', 'ie1', 'in1', 'ing1', 'iong1', 'ir1', 'iu1', 'o1', 'ong1', 'ou1', 'u1', 'ua1', 'uai1', 'uan1', 'uang1', 'ui1', 'un1', 'uo1', 'v1', 'van1', 've1', 'vn1', 'E2', 'En2', 'a2', 'ai2', 'an2', 'ang2', 'ao2', 'e2', 'ei2', 'en2', 'eng2', 'er2', 'i2', 'i02', 'ia2', 'ian2', 'iang2', 'iao2', 'ie2', 'in2', 'ing2', 'iong2', 'ir2', 'iu2', 'o2', 'ong2', 'ou2', 'u2', 'ua2', 'uai2', 'uan2', 'uang2', 'ui2', 'un2', 'uo2', 'v2', 'van2', 've2', 'vn2', 'E3', 'En3', 'a3', 'ai3', 'an3', 'ang3', 'ao3', 'e3', 'ei3', 'en3', 'eng3', 'er3', 'i3', 'i03', 'ia3', 'ian3', 'iang3', 'iao3', 'ie3', 'in3', 'ing3', 'iong3', 'ir3', 'iu3', 'o3', 'ong3', 'ou3', 'u3', 'ua3', 'uai3', 'uan3', 'uang3', 'ui3', 'un3', 'uo3', 'v3', 'van3', 've3', 'vn3', 'E4', 'En4', 'a4', 'ai4', 'an4', 'ang4', 'ao4', 'e4', 'ei4', 'en4', 'eng4', 'er4', 'i4', 'i04', 'ia4', 'ian4', 'iang4', 'iao4', 'ie4', 'in4', 'ing4', 'iong4', 'ir4', 'iu4', 'o4', 'ong4', 'ou4', 'u4', 'ua4', 'uai4', 'uan4', 'uang4', 'ui4', 'un4', 'uo4', 'v4', 'van4', 've4', 'vn4', 'E5', 'En5', 'a5', 'ai5', 'an5', 'ang5', 'ao5', 'e5', 'ei5', 'en5', 'eng5', 'er5', 'i5', 'i05', 'ia5', 'ian5', 'iang5', 'iao5', 'ie5', 'in5', 'ing5', 'iong5', 'ir5', 'iu5', 'o5', 'ong5', 'ou5', 'u5', 'ua5', 'uai5', 'uan5', 'uang5', 'ui5', 'un5', 'uo5', 'v5', 'van5', 've5', 'vn5']
|
||||
c = [
|
||||
"AA",
|
||||
"EE",
|
||||
"OO",
|
||||
"b",
|
||||
"c",
|
||||
"ch",
|
||||
"d",
|
||||
"f",
|
||||
"g",
|
||||
"h",
|
||||
"j",
|
||||
"k",
|
||||
"l",
|
||||
"m",
|
||||
"n",
|
||||
"p",
|
||||
"q",
|
||||
"r",
|
||||
"s",
|
||||
"sh",
|
||||
"t",
|
||||
"w",
|
||||
"x",
|
||||
"y",
|
||||
"z",
|
||||
"zh",
|
||||
]
|
||||
v = [
|
||||
"E1",
|
||||
"En1",
|
||||
"a1",
|
||||
"ai1",
|
||||
"an1",
|
||||
"ang1",
|
||||
"ao1",
|
||||
"e1",
|
||||
"ei1",
|
||||
"en1",
|
||||
"eng1",
|
||||
"er1",
|
||||
"i1",
|
||||
"i01",
|
||||
"ia1",
|
||||
"ian1",
|
||||
"iang1",
|
||||
"iao1",
|
||||
"ie1",
|
||||
"in1",
|
||||
"ing1",
|
||||
"iong1",
|
||||
"ir1",
|
||||
"iu1",
|
||||
"o1",
|
||||
"ong1",
|
||||
"ou1",
|
||||
"u1",
|
||||
"ua1",
|
||||
"uai1",
|
||||
"uan1",
|
||||
"uang1",
|
||||
"ui1",
|
||||
"un1",
|
||||
"uo1",
|
||||
"v1",
|
||||
"van1",
|
||||
"ve1",
|
||||
"vn1",
|
||||
"E2",
|
||||
"En2",
|
||||
"a2",
|
||||
"ai2",
|
||||
"an2",
|
||||
"ang2",
|
||||
"ao2",
|
||||
"e2",
|
||||
"ei2",
|
||||
"en2",
|
||||
"eng2",
|
||||
"er2",
|
||||
"i2",
|
||||
"i02",
|
||||
"ia2",
|
||||
"ian2",
|
||||
"iang2",
|
||||
"iao2",
|
||||
"ie2",
|
||||
"in2",
|
||||
"ing2",
|
||||
"iong2",
|
||||
"ir2",
|
||||
"iu2",
|
||||
"o2",
|
||||
"ong2",
|
||||
"ou2",
|
||||
"u2",
|
||||
"ua2",
|
||||
"uai2",
|
||||
"uan2",
|
||||
"uang2",
|
||||
"ui2",
|
||||
"un2",
|
||||
"uo2",
|
||||
"v2",
|
||||
"van2",
|
||||
"ve2",
|
||||
"vn2",
|
||||
"E3",
|
||||
"En3",
|
||||
"a3",
|
||||
"ai3",
|
||||
"an3",
|
||||
"ang3",
|
||||
"ao3",
|
||||
"e3",
|
||||
"ei3",
|
||||
"en3",
|
||||
"eng3",
|
||||
"er3",
|
||||
"i3",
|
||||
"i03",
|
||||
"ia3",
|
||||
"ian3",
|
||||
"iang3",
|
||||
"iao3",
|
||||
"ie3",
|
||||
"in3",
|
||||
"ing3",
|
||||
"iong3",
|
||||
"ir3",
|
||||
"iu3",
|
||||
"o3",
|
||||
"ong3",
|
||||
"ou3",
|
||||
"u3",
|
||||
"ua3",
|
||||
"uai3",
|
||||
"uan3",
|
||||
"uang3",
|
||||
"ui3",
|
||||
"un3",
|
||||
"uo3",
|
||||
"v3",
|
||||
"van3",
|
||||
"ve3",
|
||||
"vn3",
|
||||
"E4",
|
||||
"En4",
|
||||
"a4",
|
||||
"ai4",
|
||||
"an4",
|
||||
"ang4",
|
||||
"ao4",
|
||||
"e4",
|
||||
"ei4",
|
||||
"en4",
|
||||
"eng4",
|
||||
"er4",
|
||||
"i4",
|
||||
"i04",
|
||||
"ia4",
|
||||
"ian4",
|
||||
"iang4",
|
||||
"iao4",
|
||||
"ie4",
|
||||
"in4",
|
||||
"ing4",
|
||||
"iong4",
|
||||
"ir4",
|
||||
"iu4",
|
||||
"o4",
|
||||
"ong4",
|
||||
"ou4",
|
||||
"u4",
|
||||
"ua4",
|
||||
"uai4",
|
||||
"uan4",
|
||||
"uang4",
|
||||
"ui4",
|
||||
"un4",
|
||||
"uo4",
|
||||
"v4",
|
||||
"van4",
|
||||
"ve4",
|
||||
"vn4",
|
||||
"E5",
|
||||
"En5",
|
||||
"a5",
|
||||
"ai5",
|
||||
"an5",
|
||||
"ang5",
|
||||
"ao5",
|
||||
"e5",
|
||||
"ei5",
|
||||
"en5",
|
||||
"eng5",
|
||||
"er5",
|
||||
"i5",
|
||||
"i05",
|
||||
"ia5",
|
||||
"ian5",
|
||||
"iang5",
|
||||
"iao5",
|
||||
"ie5",
|
||||
"in5",
|
||||
"ing5",
|
||||
"iong5",
|
||||
"ir5",
|
||||
"iu5",
|
||||
"o5",
|
||||
"ong5",
|
||||
"ou5",
|
||||
"u5",
|
||||
"ua5",
|
||||
"uai5",
|
||||
"uan5",
|
||||
"uang5",
|
||||
"ui5",
|
||||
"un5",
|
||||
"uo5",
|
||||
"v5",
|
||||
"van5",
|
||||
"ve5",
|
||||
"vn5",
|
||||
]
|
||||
|
||||
v_without_tone = ['E', 'En', 'a', 'ai', 'an', 'ang', 'ao', 'e', 'ei', 'en', 'eng', 'er', 'i', 'i0', 'ia', 'ian', 'iang', 'iao', 'ie', 'in', 'ing', 'iong', 'ir', 'iu', 'o', 'ong', 'ou', 'u', 'ua', 'uai', 'uan', 'uang', 'ui', 'un', 'uo', 'v', 'van', 've', 'vn']
|
||||
v_without_tone = [
|
||||
"E",
|
||||
"En",
|
||||
"a",
|
||||
"ai",
|
||||
"an",
|
||||
"ang",
|
||||
"ao",
|
||||
"e",
|
||||
"ei",
|
||||
"en",
|
||||
"eng",
|
||||
"er",
|
||||
"i",
|
||||
"i0",
|
||||
"ia",
|
||||
"ian",
|
||||
"iang",
|
||||
"iao",
|
||||
"ie",
|
||||
"in",
|
||||
"ing",
|
||||
"iong",
|
||||
"ir",
|
||||
"iu",
|
||||
"o",
|
||||
"ong",
|
||||
"ou",
|
||||
"u",
|
||||
"ua",
|
||||
"uai",
|
||||
"uan",
|
||||
"uang",
|
||||
"ui",
|
||||
"un",
|
||||
"uo",
|
||||
"v",
|
||||
"van",
|
||||
"ve",
|
||||
"vn",
|
||||
]
|
||||
|
||||
# japanese
|
||||
ja_symbols = ['I', 'N', 'U', 'a', 'b', 'by', 'ch', 'cl', 'd', 'dy', 'e', 'f', 'g', 'gy', 'h', 'hy', 'i', 'j', 'k', 'ky',
|
||||
'm', 'my', 'n', 'ny', 'o', 'p', 'py', 'r', 'ry', 's', 'sh', 't', 'ts', 'u', 'v', 'w', 'y', 'z']
|
||||
ja_symbols = [
|
||||
"I",
|
||||
"N",
|
||||
"U",
|
||||
"a",
|
||||
"b",
|
||||
"by",
|
||||
"ch",
|
||||
"cl",
|
||||
"d",
|
||||
"dy",
|
||||
"e",
|
||||
"f",
|
||||
"g",
|
||||
"gy",
|
||||
"h",
|
||||
"hy",
|
||||
"i",
|
||||
"j",
|
||||
"k",
|
||||
"ky",
|
||||
"m",
|
||||
"my",
|
||||
"n",
|
||||
"ny",
|
||||
"o",
|
||||
"p",
|
||||
"py",
|
||||
"r",
|
||||
"ry",
|
||||
"s",
|
||||
"sh",
|
||||
"t",
|
||||
"ts",
|
||||
"u",
|
||||
"v",
|
||||
"w",
|
||||
"y",
|
||||
"z",
|
||||
]
|
||||
|
||||
arpa = {'AH0', 'S', 'AH1', 'EY2', 'AE2', 'EH0', 'OW2', 'UH0', 'NG', 'B', 'G', 'AY0', 'M', 'AA0', 'F', 'AO0', 'ER2', 'UH1', 'IY1', 'AH2', 'DH', 'IY0', 'EY1', 'IH0', 'K', 'N', 'W', 'IY2', 'T', 'AA1', 'ER1', 'EH2', 'OY0', 'UH2', 'UW1', 'Z', 'AW2', 'AW1', 'V', 'UW2', 'AA2', 'ER', 'AW0', 'UW0', 'R', 'OW1', 'EH1', 'ZH', 'AE0', 'IH2', 'IH', 'Y', 'JH', 'P', 'AY1', 'EY0', 'OY2', 'TH', 'HH', 'D', 'ER0', 'CH', 'AO1', 'AE1', 'AO2', 'OY1', 'AY2', 'IH1', 'OW0', 'L', 'SH'}
|
||||
arpa = {
|
||||
"AH0",
|
||||
"S",
|
||||
"AH1",
|
||||
"EY2",
|
||||
"AE2",
|
||||
"EH0",
|
||||
"OW2",
|
||||
"UH0",
|
||||
"NG",
|
||||
"B",
|
||||
"G",
|
||||
"AY0",
|
||||
"M",
|
||||
"AA0",
|
||||
"F",
|
||||
"AO0",
|
||||
"ER2",
|
||||
"UH1",
|
||||
"IY1",
|
||||
"AH2",
|
||||
"DH",
|
||||
"IY0",
|
||||
"EY1",
|
||||
"IH0",
|
||||
"K",
|
||||
"N",
|
||||
"W",
|
||||
"IY2",
|
||||
"T",
|
||||
"AA1",
|
||||
"ER1",
|
||||
"EH2",
|
||||
"OY0",
|
||||
"UH2",
|
||||
"UW1",
|
||||
"Z",
|
||||
"AW2",
|
||||
"AW1",
|
||||
"V",
|
||||
"UW2",
|
||||
"AA2",
|
||||
"ER",
|
||||
"AW0",
|
||||
"UW0",
|
||||
"R",
|
||||
"OW1",
|
||||
"EH1",
|
||||
"ZH",
|
||||
"AE0",
|
||||
"IH2",
|
||||
"IH",
|
||||
"Y",
|
||||
"JH",
|
||||
"P",
|
||||
"AY1",
|
||||
"EY0",
|
||||
"OY2",
|
||||
"TH",
|
||||
"HH",
|
||||
"D",
|
||||
"ER0",
|
||||
"CH",
|
||||
"AO1",
|
||||
"AE1",
|
||||
"AO2",
|
||||
"OY1",
|
||||
"AY2",
|
||||
"IH1",
|
||||
"OW0",
|
||||
"L",
|
||||
"SH",
|
||||
}
|
||||
|
||||
symbols = [pad] + c + v + ja_symbols + pu_symbols + list(arpa)
|
||||
symbols = sorted(set(symbols))
|
||||
if __name__ == '__main__':
|
||||
print(len(symbols))
|
||||
if __name__ == "__main__":
|
||||
print(len(symbols))
|
||||
|
@ -19,51 +19,442 @@ from pypinyin import lazy_pinyin
|
||||
from pypinyin import Style
|
||||
|
||||
|
||||
class ToneSandhi():
|
||||
class ToneSandhi:
|
||||
def __init__(self):
|
||||
self.must_neural_tone_words = {
|
||||
'麻烦', '麻利', '鸳鸯', '高粱', '骨头', '骆驼', '马虎', '首饰', '馒头', '馄饨', '风筝',
|
||||
'难为', '队伍', '阔气', '闺女', '门道', '锄头', '铺盖', '铃铛', '铁匠', '钥匙', '里脊',
|
||||
'里头', '部分', '那么', '道士', '造化', '迷糊', '连累', '这么', '这个', '运气', '过去',
|
||||
'软和', '转悠', '踏实', '跳蚤', '跟头', '趔趄', '财主', '豆腐', '讲究', '记性', '记号',
|
||||
'认识', '规矩', '见识', '裁缝', '补丁', '衣裳', '衣服', '衙门', '街坊', '行李', '行当',
|
||||
'蛤蟆', '蘑菇', '薄荷', '葫芦', '葡萄', '萝卜', '荸荠', '苗条', '苗头', '苍蝇', '芝麻',
|
||||
'舒服', '舒坦', '舌头', '自在', '膏药', '脾气', '脑袋', '脊梁', '能耐', '胳膊', '胭脂',
|
||||
'胡萝', '胡琴', '胡同', '聪明', '耽误', '耽搁', '耷拉', '耳朵', '老爷', '老实', '老婆',
|
||||
'老头', '老太', '翻腾', '罗嗦', '罐头', '编辑', '结实', '红火', '累赘', '糨糊', '糊涂',
|
||||
'精神', '粮食', '簸箕', '篱笆', '算计', '算盘', '答应', '笤帚', '笑语', '笑话', '窟窿',
|
||||
'窝囊', '窗户', '稳当', '稀罕', '称呼', '秧歌', '秀气', '秀才', '福气', '祖宗', '砚台',
|
||||
'码头', '石榴', '石头', '石匠', '知识', '眼睛', '眯缝', '眨巴', '眉毛', '相声', '盘算',
|
||||
'白净', '痢疾', '痛快', '疟疾', '疙瘩', '疏忽', '畜生', '生意', '甘蔗', '琵琶', '琢磨',
|
||||
'琉璃', '玻璃', '玫瑰', '玄乎', '狐狸', '状元', '特务', '牲口', '牙碜', '牌楼', '爽快',
|
||||
'爱人', '热闹', '烧饼', '烟筒', '烂糊', '点心', '炊帚', '灯笼', '火候', '漂亮', '滑溜',
|
||||
'溜达', '温和', '清楚', '消息', '浪头', '活泼', '比方', '正经', '欺负', '模糊', '槟榔',
|
||||
'棺材', '棒槌', '棉花', '核桃', '栅栏', '柴火', '架势', '枕头', '枇杷', '机灵', '本事',
|
||||
'木头', '木匠', '朋友', '月饼', '月亮', '暖和', '明白', '时候', '新鲜', '故事', '收拾',
|
||||
'收成', '提防', '挖苦', '挑剔', '指甲', '指头', '拾掇', '拳头', '拨弄', '招牌', '招呼',
|
||||
'抬举', '护士', '折腾', '扫帚', '打量', '打算', '打点', '打扮', '打听', '打发', '扎实',
|
||||
'扁担', '戒指', '懒得', '意识', '意思', '情形', '悟性', '怪物', '思量', '怎么', '念头',
|
||||
'念叨', '快活', '忙活', '志气', '心思', '得罪', '张罗', '弟兄', '开通', '应酬', '庄稼',
|
||||
'干事', '帮手', '帐篷', '希罕', '师父', '师傅', '巴结', '巴掌', '差事', '工夫', '岁数',
|
||||
'屁股', '尾巴', '少爷', '小气', '小伙', '将就', '对头', '对付', '寡妇', '家伙', '客气',
|
||||
'实在', '官司', '学问', '学生', '字号', '嫁妆', '媳妇', '媒人', '婆家', '娘家', '委屈',
|
||||
'姑娘', '姐夫', '妯娌', '妥当', '妖精', '奴才', '女婿', '头发', '太阳', '大爷', '大方',
|
||||
'大意', '大夫', '多少', '多么', '外甥', '壮实', '地道', '地方', '在乎', '困难', '嘴巴',
|
||||
'嘱咐', '嘟囔', '嘀咕', '喜欢', '喇嘛', '喇叭', '商量', '唾沫', '哑巴', '哈欠', '哆嗦',
|
||||
'咳嗽', '和尚', '告诉', '告示', '含糊', '吓唬', '后头', '名字', '名堂', '合同', '吆喝',
|
||||
'叫唤', '口袋', '厚道', '厉害', '千斤', '包袱', '包涵', '匀称', '勤快', '动静', '动弹',
|
||||
'功夫', '力气', '前头', '刺猬', '刺激', '别扭', '利落', '利索', '利害', '分析', '出息',
|
||||
'凑合', '凉快', '冷战', '冤枉', '冒失', '养活', '关系', '先生', '兄弟', '便宜', '使唤',
|
||||
'佩服', '作坊', '体面', '位置', '似的', '伙计', '休息', '什么', '人家', '亲戚', '亲家',
|
||||
'交情', '云彩', '事情', '买卖', '主意', '丫头', '丧气', '两口', '东西', '东家', '世故',
|
||||
'不由', '不在', '下水', '下巴', '上头', '上司', '丈夫', '丈人', '一辈', '那个', '菩萨',
|
||||
'父亲', '母亲', '咕噜', '邋遢', '费用', '冤家', '甜头', '介绍', '荒唐', '大人', '泥鳅',
|
||||
'幸福', '熟悉', '计划', '扑腾', '蜡烛', '姥爷', '照顾', '喉咙', '吉他', '弄堂', '蚂蚱',
|
||||
'凤凰', '拖沓', '寒碜', '糟蹋', '倒腾', '报复', '逻辑', '盘缠', '喽啰', '牢骚', '咖喱',
|
||||
'扫把', '惦记'
|
||||
"麻烦",
|
||||
"麻利",
|
||||
"鸳鸯",
|
||||
"高粱",
|
||||
"骨头",
|
||||
"骆驼",
|
||||
"马虎",
|
||||
"首饰",
|
||||
"馒头",
|
||||
"馄饨",
|
||||
"风筝",
|
||||
"难为",
|
||||
"队伍",
|
||||
"阔气",
|
||||
"闺女",
|
||||
"门道",
|
||||
"锄头",
|
||||
"铺盖",
|
||||
"铃铛",
|
||||
"铁匠",
|
||||
"钥匙",
|
||||
"里脊",
|
||||
"里头",
|
||||
"部分",
|
||||
"那么",
|
||||
"道士",
|
||||
"造化",
|
||||
"迷糊",
|
||||
"连累",
|
||||
"这么",
|
||||
"这个",
|
||||
"运气",
|
||||
"过去",
|
||||
"软和",
|
||||
"转悠",
|
||||
"踏实",
|
||||
"跳蚤",
|
||||
"跟头",
|
||||
"趔趄",
|
||||
"财主",
|
||||
"豆腐",
|
||||
"讲究",
|
||||
"记性",
|
||||
"记号",
|
||||
"认识",
|
||||
"规矩",
|
||||
"见识",
|
||||
"裁缝",
|
||||
"补丁",
|
||||
"衣裳",
|
||||
"衣服",
|
||||
"衙门",
|
||||
"街坊",
|
||||
"行李",
|
||||
"行当",
|
||||
"蛤蟆",
|
||||
"蘑菇",
|
||||
"薄荷",
|
||||
"葫芦",
|
||||
"葡萄",
|
||||
"萝卜",
|
||||
"荸荠",
|
||||
"苗条",
|
||||
"苗头",
|
||||
"苍蝇",
|
||||
"芝麻",
|
||||
"舒服",
|
||||
"舒坦",
|
||||
"舌头",
|
||||
"自在",
|
||||
"膏药",
|
||||
"脾气",
|
||||
"脑袋",
|
||||
"脊梁",
|
||||
"能耐",
|
||||
"胳膊",
|
||||
"胭脂",
|
||||
"胡萝",
|
||||
"胡琴",
|
||||
"胡同",
|
||||
"聪明",
|
||||
"耽误",
|
||||
"耽搁",
|
||||
"耷拉",
|
||||
"耳朵",
|
||||
"老爷",
|
||||
"老实",
|
||||
"老婆",
|
||||
"老头",
|
||||
"老太",
|
||||
"翻腾",
|
||||
"罗嗦",
|
||||
"罐头",
|
||||
"编辑",
|
||||
"结实",
|
||||
"红火",
|
||||
"累赘",
|
||||
"糨糊",
|
||||
"糊涂",
|
||||
"精神",
|
||||
"粮食",
|
||||
"簸箕",
|
||||
"篱笆",
|
||||
"算计",
|
||||
"算盘",
|
||||
"答应",
|
||||
"笤帚",
|
||||
"笑语",
|
||||
"笑话",
|
||||
"窟窿",
|
||||
"窝囊",
|
||||
"窗户",
|
||||
"稳当",
|
||||
"稀罕",
|
||||
"称呼",
|
||||
"秧歌",
|
||||
"秀气",
|
||||
"秀才",
|
||||
"福气",
|
||||
"祖宗",
|
||||
"砚台",
|
||||
"码头",
|
||||
"石榴",
|
||||
"石头",
|
||||
"石匠",
|
||||
"知识",
|
||||
"眼睛",
|
||||
"眯缝",
|
||||
"眨巴",
|
||||
"眉毛",
|
||||
"相声",
|
||||
"盘算",
|
||||
"白净",
|
||||
"痢疾",
|
||||
"痛快",
|
||||
"疟疾",
|
||||
"疙瘩",
|
||||
"疏忽",
|
||||
"畜生",
|
||||
"生意",
|
||||
"甘蔗",
|
||||
"琵琶",
|
||||
"琢磨",
|
||||
"琉璃",
|
||||
"玻璃",
|
||||
"玫瑰",
|
||||
"玄乎",
|
||||
"狐狸",
|
||||
"状元",
|
||||
"特务",
|
||||
"牲口",
|
||||
"牙碜",
|
||||
"牌楼",
|
||||
"爽快",
|
||||
"爱人",
|
||||
"热闹",
|
||||
"烧饼",
|
||||
"烟筒",
|
||||
"烂糊",
|
||||
"点心",
|
||||
"炊帚",
|
||||
"灯笼",
|
||||
"火候",
|
||||
"漂亮",
|
||||
"滑溜",
|
||||
"溜达",
|
||||
"温和",
|
||||
"清楚",
|
||||
"消息",
|
||||
"浪头",
|
||||
"活泼",
|
||||
"比方",
|
||||
"正经",
|
||||
"欺负",
|
||||
"模糊",
|
||||
"槟榔",
|
||||
"棺材",
|
||||
"棒槌",
|
||||
"棉花",
|
||||
"核桃",
|
||||
"栅栏",
|
||||
"柴火",
|
||||
"架势",
|
||||
"枕头",
|
||||
"枇杷",
|
||||
"机灵",
|
||||
"本事",
|
||||
"木头",
|
||||
"木匠",
|
||||
"朋友",
|
||||
"月饼",
|
||||
"月亮",
|
||||
"暖和",
|
||||
"明白",
|
||||
"时候",
|
||||
"新鲜",
|
||||
"故事",
|
||||
"收拾",
|
||||
"收成",
|
||||
"提防",
|
||||
"挖苦",
|
||||
"挑剔",
|
||||
"指甲",
|
||||
"指头",
|
||||
"拾掇",
|
||||
"拳头",
|
||||
"拨弄",
|
||||
"招牌",
|
||||
"招呼",
|
||||
"抬举",
|
||||
"护士",
|
||||
"折腾",
|
||||
"扫帚",
|
||||
"打量",
|
||||
"打算",
|
||||
"打点",
|
||||
"打扮",
|
||||
"打听",
|
||||
"打发",
|
||||
"扎实",
|
||||
"扁担",
|
||||
"戒指",
|
||||
"懒得",
|
||||
"意识",
|
||||
"意思",
|
||||
"情形",
|
||||
"悟性",
|
||||
"怪物",
|
||||
"思量",
|
||||
"怎么",
|
||||
"念头",
|
||||
"念叨",
|
||||
"快活",
|
||||
"忙活",
|
||||
"志气",
|
||||
"心思",
|
||||
"得罪",
|
||||
"张罗",
|
||||
"弟兄",
|
||||
"开通",
|
||||
"应酬",
|
||||
"庄稼",
|
||||
"干事",
|
||||
"帮手",
|
||||
"帐篷",
|
||||
"希罕",
|
||||
"师父",
|
||||
"师傅",
|
||||
"巴结",
|
||||
"巴掌",
|
||||
"差事",
|
||||
"工夫",
|
||||
"岁数",
|
||||
"屁股",
|
||||
"尾巴",
|
||||
"少爷",
|
||||
"小气",
|
||||
"小伙",
|
||||
"将就",
|
||||
"对头",
|
||||
"对付",
|
||||
"寡妇",
|
||||
"家伙",
|
||||
"客气",
|
||||
"实在",
|
||||
"官司",
|
||||
"学问",
|
||||
"学生",
|
||||
"字号",
|
||||
"嫁妆",
|
||||
"媳妇",
|
||||
"媒人",
|
||||
"婆家",
|
||||
"娘家",
|
||||
"委屈",
|
||||
"姑娘",
|
||||
"姐夫",
|
||||
"妯娌",
|
||||
"妥当",
|
||||
"妖精",
|
||||
"奴才",
|
||||
"女婿",
|
||||
"头发",
|
||||
"太阳",
|
||||
"大爷",
|
||||
"大方",
|
||||
"大意",
|
||||
"大夫",
|
||||
"多少",
|
||||
"多么",
|
||||
"外甥",
|
||||
"壮实",
|
||||
"地道",
|
||||
"地方",
|
||||
"在乎",
|
||||
"困难",
|
||||
"嘴巴",
|
||||
"嘱咐",
|
||||
"嘟囔",
|
||||
"嘀咕",
|
||||
"喜欢",
|
||||
"喇嘛",
|
||||
"喇叭",
|
||||
"商量",
|
||||
"唾沫",
|
||||
"哑巴",
|
||||
"哈欠",
|
||||
"哆嗦",
|
||||
"咳嗽",
|
||||
"和尚",
|
||||
"告诉",
|
||||
"告示",
|
||||
"含糊",
|
||||
"吓唬",
|
||||
"后头",
|
||||
"名字",
|
||||
"名堂",
|
||||
"合同",
|
||||
"吆喝",
|
||||
"叫唤",
|
||||
"口袋",
|
||||
"厚道",
|
||||
"厉害",
|
||||
"千斤",
|
||||
"包袱",
|
||||
"包涵",
|
||||
"匀称",
|
||||
"勤快",
|
||||
"动静",
|
||||
"动弹",
|
||||
"功夫",
|
||||
"力气",
|
||||
"前头",
|
||||
"刺猬",
|
||||
"刺激",
|
||||
"别扭",
|
||||
"利落",
|
||||
"利索",
|
||||
"利害",
|
||||
"分析",
|
||||
"出息",
|
||||
"凑合",
|
||||
"凉快",
|
||||
"冷战",
|
||||
"冤枉",
|
||||
"冒失",
|
||||
"养活",
|
||||
"关系",
|
||||
"先生",
|
||||
"兄弟",
|
||||
"便宜",
|
||||
"使唤",
|
||||
"佩服",
|
||||
"作坊",
|
||||
"体面",
|
||||
"位置",
|
||||
"似的",
|
||||
"伙计",
|
||||
"休息",
|
||||
"什么",
|
||||
"人家",
|
||||
"亲戚",
|
||||
"亲家",
|
||||
"交情",
|
||||
"云彩",
|
||||
"事情",
|
||||
"买卖",
|
||||
"主意",
|
||||
"丫头",
|
||||
"丧气",
|
||||
"两口",
|
||||
"东西",
|
||||
"东家",
|
||||
"世故",
|
||||
"不由",
|
||||
"不在",
|
||||
"下水",
|
||||
"下巴",
|
||||
"上头",
|
||||
"上司",
|
||||
"丈夫",
|
||||
"丈人",
|
||||
"一辈",
|
||||
"那个",
|
||||
"菩萨",
|
||||
"父亲",
|
||||
"母亲",
|
||||
"咕噜",
|
||||
"邋遢",
|
||||
"费用",
|
||||
"冤家",
|
||||
"甜头",
|
||||
"介绍",
|
||||
"荒唐",
|
||||
"大人",
|
||||
"泥鳅",
|
||||
"幸福",
|
||||
"熟悉",
|
||||
"计划",
|
||||
"扑腾",
|
||||
"蜡烛",
|
||||
"姥爷",
|
||||
"照顾",
|
||||
"喉咙",
|
||||
"吉他",
|
||||
"弄堂",
|
||||
"蚂蚱",
|
||||
"凤凰",
|
||||
"拖沓",
|
||||
"寒碜",
|
||||
"糟蹋",
|
||||
"倒腾",
|
||||
"报复",
|
||||
"逻辑",
|
||||
"盘缠",
|
||||
"喽啰",
|
||||
"牢骚",
|
||||
"咖喱",
|
||||
"扫把",
|
||||
"惦记",
|
||||
}
|
||||
self.must_not_neural_tone_words = {
|
||||
"男子", "女子", "分子", "原子", "量子", "莲子", "石子", "瓜子", "电子", "人人", "虎虎"
|
||||
"男子",
|
||||
"女子",
|
||||
"分子",
|
||||
"原子",
|
||||
"量子",
|
||||
"莲子",
|
||||
"石子",
|
||||
"瓜子",
|
||||
"电子",
|
||||
"人人",
|
||||
"虎虎",
|
||||
}
|
||||
self.punc = ":,;。?!“”‘’':,;.?!"
|
||||
|
||||
@ -72,14 +463,15 @@ class ToneSandhi():
|
||||
# word: "家里"
|
||||
# pos: "s"
|
||||
# finals: ['ia1', 'i3']
|
||||
def _neural_sandhi(self, word: str, pos: str,
|
||||
finals: List[str]) -> List[str]:
|
||||
|
||||
def _neural_sandhi(self, word: str, pos: str, finals: List[str]) -> List[str]:
|
||||
# reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺
|
||||
for j, item in enumerate(word):
|
||||
if j - 1 >= 0 and item == word[j - 1] and pos[0] in {
|
||||
"n", "v", "a"
|
||||
} and word not in self.must_not_neural_tone_words:
|
||||
if (
|
||||
j - 1 >= 0
|
||||
and item == word[j - 1]
|
||||
and pos[0] in {"n", "v", "a"}
|
||||
and word not in self.must_not_neural_tone_words
|
||||
):
|
||||
finals[j] = finals[j][:-1] + "5"
|
||||
ge_idx = word.find("个")
|
||||
if len(word) >= 1 and word[-1] in "吧呢哈啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶":
|
||||
@ -89,9 +481,12 @@ class ToneSandhi():
|
||||
# e.g. 走了, 看着, 去过
|
||||
elif len(word) == 1 and word in "了着过" and pos in {"ul", "uz", "ug"}:
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
elif len(word) > 1 and word[-1] in "们子" and pos in {
|
||||
"r", "n"
|
||||
} and word not in self.must_not_neural_tone_words:
|
||||
elif (
|
||||
len(word) > 1
|
||||
and word[-1] in "们子"
|
||||
and pos in {"r", "n"}
|
||||
and word not in self.must_not_neural_tone_words
|
||||
):
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
# e.g. 桌上, 地下, 家里
|
||||
elif len(word) > 1 and word[-1] in "上下里" and pos in {"s", "l", "f"}:
|
||||
@ -100,21 +495,26 @@ class ToneSandhi():
|
||||
elif len(word) > 1 and word[-1] in "来去" and word[-2] in "上下进出回过起开":
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
# 个做量词
|
||||
elif (ge_idx >= 1 and
|
||||
(word[ge_idx - 1].isnumeric() or
|
||||
word[ge_idx - 1] in "几有两半多各整每做是")) or word == '个':
|
||||
elif (
|
||||
ge_idx >= 1
|
||||
and (word[ge_idx - 1].isnumeric() or word[ge_idx - 1] in "几有两半多各整每做是")
|
||||
) or word == "个":
|
||||
finals[ge_idx] = finals[ge_idx][:-1] + "5"
|
||||
else:
|
||||
if word in self.must_neural_tone_words or word[
|
||||
-2:] in self.must_neural_tone_words:
|
||||
if (
|
||||
word in self.must_neural_tone_words
|
||||
or word[-2:] in self.must_neural_tone_words
|
||||
):
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
|
||||
word_list = self._split_word(word)
|
||||
finals_list = [finals[:len(word_list[0])], finals[len(word_list[0]):]]
|
||||
finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
|
||||
for i, word in enumerate(word_list):
|
||||
# conventional neural in Chinese
|
||||
if word in self.must_neural_tone_words or word[
|
||||
-2:] in self.must_neural_tone_words:
|
||||
if (
|
||||
word in self.must_neural_tone_words
|
||||
or word[-2:] in self.must_neural_tone_words
|
||||
):
|
||||
finals_list[i][-1] = finals_list[i][-1][:-1] + "5"
|
||||
finals = sum(finals_list, [])
|
||||
return finals
|
||||
@ -126,15 +526,15 @@ class ToneSandhi():
|
||||
else:
|
||||
for i, char in enumerate(word):
|
||||
# "不" before tone4 should be bu2, e.g. 不怕
|
||||
if char == "不" and i + 1 < len(word) and finals[i +
|
||||
1][-1] == "4":
|
||||
if char == "不" and i + 1 < len(word) and finals[i + 1][-1] == "4":
|
||||
finals[i] = finals[i][:-1] + "2"
|
||||
return finals
|
||||
|
||||
def _yi_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
||||
# "一" in number sequences, e.g. 一零零, 二一零
|
||||
if word.find("一") != -1 and all(
|
||||
[item.isnumeric() for item in word if item != "一"]):
|
||||
[item.isnumeric() for item in word if item != "一"]
|
||||
):
|
||||
return finals
|
||||
# "一" between reduplication words shold be yi5, e.g. 看一看
|
||||
elif len(word) == 3 and word[1] == "一" and word[0] == word[-1]:
|
||||
@ -161,10 +561,10 @@ class ToneSandhi():
|
||||
first_subword = word_list[0]
|
||||
first_begin_idx = word.find(first_subword)
|
||||
if first_begin_idx == 0:
|
||||
second_subword = word[len(first_subword):]
|
||||
second_subword = word[len(first_subword) :]
|
||||
new_word_list = [first_subword, second_subword]
|
||||
else:
|
||||
second_subword = word[:-len(first_subword)]
|
||||
second_subword = word[: -len(first_subword)]
|
||||
new_word_list = [second_subword, first_subword]
|
||||
return new_word_list
|
||||
|
||||
@ -182,18 +582,19 @@ class ToneSandhi():
|
||||
elif len(word_list[0]) == 1:
|
||||
finals[1] = finals[1][:-1] + "2"
|
||||
else:
|
||||
finals_list = [
|
||||
finals[:len(word_list[0])], finals[len(word_list[0]):]
|
||||
]
|
||||
finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
|
||||
if len(finals_list) == 2:
|
||||
for i, sub in enumerate(finals_list):
|
||||
# e.g. 所有/人
|
||||
if self._all_tone_three(sub) and len(sub) == 2:
|
||||
finals_list[i][0] = finals_list[i][0][:-1] + "2"
|
||||
# e.g. 好/喜欢
|
||||
elif i == 1 and not self._all_tone_three(sub) and finals_list[i][0][-1] == "3" and \
|
||||
finals_list[0][-1][-1] == "3":
|
||||
|
||||
elif (
|
||||
i == 1
|
||||
and not self._all_tone_three(sub)
|
||||
and finals_list[i][0][-1] == "3"
|
||||
and finals_list[0][-1][-1] == "3"
|
||||
):
|
||||
finals_list[0][-1] = finals_list[0][-1][:-1] + "2"
|
||||
finals = sum(finals_list, [])
|
||||
# split idiom into two words who's length is 2
|
||||
@ -222,7 +623,7 @@ class ToneSandhi():
|
||||
new_seg.append((word, pos))
|
||||
last_word = word[:]
|
||||
if last_word == "不":
|
||||
new_seg.append((last_word, 'd'))
|
||||
new_seg.append((last_word, "d"))
|
||||
last_word = ""
|
||||
return new_seg
|
||||
|
||||
@ -236,12 +637,21 @@ class ToneSandhi():
|
||||
new_seg = []
|
||||
# function 1
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if i - 1 >= 0 and word == "一" and i + 1 < len(seg) and seg[i - 1][
|
||||
0] == seg[i + 1][0] and seg[i - 1][1] == "v":
|
||||
if (
|
||||
i - 1 >= 0
|
||||
and word == "一"
|
||||
and i + 1 < len(seg)
|
||||
and seg[i - 1][0] == seg[i + 1][0]
|
||||
and seg[i - 1][1] == "v"
|
||||
):
|
||||
new_seg[i - 1][0] = new_seg[i - 1][0] + "一" + new_seg[i - 1][0]
|
||||
else:
|
||||
if i - 2 >= 0 and seg[i - 1][0] == "一" and seg[i - 2][
|
||||
0] == word and pos == "v":
|
||||
if (
|
||||
i - 2 >= 0
|
||||
and seg[i - 1][0] == "一"
|
||||
and seg[i - 2][0] == word
|
||||
and pos == "v"
|
||||
):
|
||||
continue
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
@ -257,22 +667,27 @@ class ToneSandhi():
|
||||
|
||||
# the first and the second words are all_tone_three
|
||||
def _merge_continuous_three_tones(
|
||||
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
self, seg: List[Tuple[str, str]]
|
||||
) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
sub_finals_list = [
|
||||
lazy_pinyin(
|
||||
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
||||
lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
||||
for (word, pos) in seg
|
||||
]
|
||||
assert len(sub_finals_list) == len(seg)
|
||||
merge_last = [False] * len(seg)
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if i - 1 >= 0 and self._all_tone_three(
|
||||
sub_finals_list[i - 1]) and self._all_tone_three(
|
||||
sub_finals_list[i]) and not merge_last[i - 1]:
|
||||
if (
|
||||
i - 1 >= 0
|
||||
and self._all_tone_three(sub_finals_list[i - 1])
|
||||
and self._all_tone_three(sub_finals_list[i])
|
||||
and not merge_last[i - 1]
|
||||
):
|
||||
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
|
||||
if not self._is_reduplication(seg[i - 1][0]) and len(
|
||||
seg[i - 1][0]) + len(seg[i][0]) <= 3:
|
||||
if (
|
||||
not self._is_reduplication(seg[i - 1][0])
|
||||
and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
|
||||
):
|
||||
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
||||
merge_last[i] = True
|
||||
else:
|
||||
@ -287,21 +702,27 @@ class ToneSandhi():
|
||||
|
||||
# the last char of first word and the first char of second word is tone_three
|
||||
def _merge_continuous_three_tones_2(
|
||||
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
self, seg: List[Tuple[str, str]]
|
||||
) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
sub_finals_list = [
|
||||
lazy_pinyin(
|
||||
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
||||
lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
||||
for (word, pos) in seg
|
||||
]
|
||||
assert len(sub_finals_list) == len(seg)
|
||||
merge_last = [False] * len(seg)
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if i - 1 >= 0 and sub_finals_list[i - 1][-1][-1] == "3" and sub_finals_list[i][0][-1] == "3" and not \
|
||||
merge_last[i - 1]:
|
||||
if (
|
||||
i - 1 >= 0
|
||||
and sub_finals_list[i - 1][-1][-1] == "3"
|
||||
and sub_finals_list[i][0][-1] == "3"
|
||||
and not merge_last[i - 1]
|
||||
):
|
||||
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
|
||||
if not self._is_reduplication(seg[i - 1][0]) and len(
|
||||
seg[i - 1][0]) + len(seg[i][0]) <= 3:
|
||||
if (
|
||||
not self._is_reduplication(seg[i - 1][0])
|
||||
and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
|
||||
):
|
||||
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
||||
merge_last[i] = True
|
||||
else:
|
||||
@ -313,14 +734,13 @@ class ToneSandhi():
|
||||
def _merge_er(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if i - 1 >= 0 and word == "儿" and seg[i-1][0] != "#":
|
||||
if i - 1 >= 0 and word == "儿" and seg[i - 1][0] != "#":
|
||||
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
return new_seg
|
||||
|
||||
def _merge_reduplication(
|
||||
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
def _merge_reduplication(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if new_seg and word == new_seg[-1][0]:
|
||||
@ -329,8 +749,7 @@ class ToneSandhi():
|
||||
new_seg.append([word, pos])
|
||||
return new_seg
|
||||
|
||||
def pre_merge_for_modify(
|
||||
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
def pre_merge_for_modify(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
seg = self._merge_bu(seg)
|
||||
try:
|
||||
seg = self._merge_yi(seg)
|
||||
@ -349,8 +768,7 @@ class ToneSandhi():
|
||||
seg = self._merge_er(seg)
|
||||
return seg
|
||||
|
||||
def modified_tone(self, word: str, pos: str,
|
||||
finals: List[str]) -> List[str]:
|
||||
def modified_tone(self, word: str, pos: str, finals: List[str]) -> List[str]:
|
||||
finals = self._bu_sandhi(word, finals)
|
||||
finals = self._yi_sandhi(word, finals)
|
||||
finals = self._neural_sandhi(word, pos, finals)
|
||||
|
@ -12,8 +12,9 @@ import numpy as np
|
||||
from scipy.io.wavfile import read
|
||||
import torch
|
||||
import logging
|
||||
logging.getLogger('numba').setLevel(logging.ERROR)
|
||||
logging.getLogger('matplotlib').setLevel(logging.ERROR)
|
||||
|
||||
logging.getLogger("numba").setLevel(logging.ERROR)
|
||||
logging.getLogger("matplotlib").setLevel(logging.ERROR)
|
||||
|
||||
MATPLOTLIB_FLAG = False
|
||||
|
||||
@ -23,13 +24,17 @@ logger = logging
|
||||
|
||||
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
||||
assert os.path.isfile(checkpoint_path)
|
||||
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
||||
iteration = checkpoint_dict['iteration']
|
||||
learning_rate = checkpoint_dict['learning_rate']
|
||||
if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
|
||||
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
||||
saved_state_dict = checkpoint_dict['model']
|
||||
if hasattr(model, 'module'):
|
||||
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
||||
iteration = checkpoint_dict["iteration"]
|
||||
learning_rate = checkpoint_dict["learning_rate"]
|
||||
if (
|
||||
optimizer is not None
|
||||
and not skip_optimizer
|
||||
and checkpoint_dict["optimizer"] is not None
|
||||
):
|
||||
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
||||
saved_state_dict = checkpoint_dict["model"]
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
@ -39,41 +44,63 @@ def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False
|
||||
# assert "quantizer" not in k
|
||||
# print("load", k)
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
|
||||
assert saved_state_dict[k].shape == v.shape, (
|
||||
saved_state_dict[k].shape,
|
||||
v.shape,
|
||||
)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
print("error, %s is not in the checkpoint" % k)#shape不对也会,比如text_embedding当cleaner修改时
|
||||
print(
|
||||
"error, %s is not in the checkpoint" % k
|
||||
) # shape不对也会,比如text_embedding当cleaner修改时
|
||||
new_state_dict[k] = v
|
||||
if hasattr(model, 'module'):
|
||||
if hasattr(model, "module"):
|
||||
model.module.load_state_dict(new_state_dict)
|
||||
else:
|
||||
model.load_state_dict(new_state_dict)
|
||||
print("load ")
|
||||
logger.info("Loaded checkpoint '{}' (iteration {})".format(
|
||||
checkpoint_path, iteration))
|
||||
logger.info(
|
||||
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
|
||||
)
|
||||
return model, optimizer, learning_rate, iteration
|
||||
|
||||
|
||||
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
||||
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
||||
iteration, checkpoint_path))
|
||||
if hasattr(model, 'module'):
|
||||
logger.info(
|
||||
"Saving model and optimizer state at iteration {} to {}".format(
|
||||
iteration, checkpoint_path
|
||||
)
|
||||
)
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
torch.save({'model': state_dict,
|
||||
'iteration': iteration,
|
||||
'optimizer': optimizer.state_dict(),
|
||||
'learning_rate': learning_rate}, checkpoint_path)
|
||||
torch.save(
|
||||
{
|
||||
"model": state_dict,
|
||||
"iteration": iteration,
|
||||
"optimizer": optimizer.state_dict(),
|
||||
"learning_rate": learning_rate,
|
||||
},
|
||||
checkpoint_path,
|
||||
)
|
||||
|
||||
|
||||
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
||||
def summarize(
|
||||
writer,
|
||||
global_step,
|
||||
scalars={},
|
||||
histograms={},
|
||||
images={},
|
||||
audios={},
|
||||
audio_sampling_rate=22050,
|
||||
):
|
||||
for k, v in scalars.items():
|
||||
writer.add_scalar(k, v, global_step)
|
||||
for k, v in histograms.items():
|
||||
writer.add_histogram(k, v, global_step)
|
||||
for k, v in images.items():
|
||||
writer.add_image(k, v, global_step, dataformats='HWC')
|
||||
writer.add_image(k, v, global_step, dataformats="HWC")
|
||||
for k, v in audios.items():
|
||||
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
||||
|
||||
@ -90,23 +117,23 @@ def plot_spectrogram_to_numpy(spectrogram):
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger('matplotlib')
|
||||
mpl_logger = logging.getLogger("matplotlib")
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
||||
interpolation='none')
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
||||
plt.colorbar(im, ax=ax)
|
||||
plt.xlabel("Frames")
|
||||
plt.ylabel("Channels")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
@ -116,26 +143,28 @@ def plot_alignment_to_numpy(alignment, info=None):
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger('matplotlib')
|
||||
mpl_logger = logging.getLogger("matplotlib")
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig, ax = plt.subplots(figsize=(6, 4))
|
||||
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
||||
interpolation='none')
|
||||
im = ax.imshow(
|
||||
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
||||
)
|
||||
fig.colorbar(im, ax=ax)
|
||||
xlabel = 'Decoder timestep'
|
||||
xlabel = "Decoder timestep"
|
||||
if info is not None:
|
||||
xlabel += '\n\n' + info
|
||||
xlabel += "\n\n" + info
|
||||
plt.xlabel(xlabel)
|
||||
plt.ylabel('Encoder timestep')
|
||||
plt.ylabel("Encoder timestep")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
@ -147,16 +176,31 @@ def load_wav_to_torch(full_path):
|
||||
|
||||
|
||||
def load_filepaths_and_text(filename, split="|"):
|
||||
with open(filename, encoding='utf-8') as f:
|
||||
with open(filename, encoding="utf-8") as f:
|
||||
filepaths_and_text = [line.strip().split(split) for line in f]
|
||||
return filepaths_and_text
|
||||
|
||||
|
||||
def get_hparams(init=True, stage=1):
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-c', '--config', type=str, default="./configs/s2.json",help='JSON file for configuration')
|
||||
parser.add_argument('-p', '--pretrain', type=str, required=False,default=None,help='pretrain dir')
|
||||
parser.add_argument('-rs', '--resume_step', type=int, required=False,default=None,help='resume step')
|
||||
parser.add_argument(
|
||||
"-c",
|
||||
"--config",
|
||||
type=str,
|
||||
default="./configs/s2.json",
|
||||
help="JSON file for configuration",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-p", "--pretrain", type=str, required=False, default=None, help="pretrain dir"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-rs",
|
||||
"--resume_step",
|
||||
type=int,
|
||||
required=False,
|
||||
default=None,
|
||||
help="resume step",
|
||||
)
|
||||
# parser.add_argument('-e', '--exp_dir', type=str, required=False,default=None,help='experiment directory')
|
||||
# parser.add_argument('-g', '--pretrained_s2G', type=str, required=False,default=None,help='pretrained sovits gererator weights')
|
||||
# parser.add_argument('-d', '--pretrained_s2D', type=str, required=False,default=None,help='pretrained sovits discriminator weights')
|
||||
@ -172,7 +216,7 @@ def get_hparams(init=True, stage=1):
|
||||
hparams.pretrain = args.pretrain
|
||||
hparams.resume_step = args.resume_step
|
||||
# hparams.data.exp_dir = args.exp_dir
|
||||
if stage ==1:
|
||||
if stage == 1:
|
||||
model_dir = hparams.s1_ckpt_dir
|
||||
else:
|
||||
model_dir = hparams.s2_ckpt_dir
|
||||
@ -186,29 +230,38 @@ def get_hparams(init=True, stage=1):
|
||||
return hparams
|
||||
|
||||
|
||||
|
||||
def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
|
||||
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
|
||||
"""Freeing up space by deleting saved ckpts
|
||||
|
||||
Arguments:
|
||||
path_to_models -- Path to the model directory
|
||||
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
||||
sort_by_time -- True -> chronologically delete ckpts
|
||||
False -> lexicographically delete ckpts
|
||||
"""
|
||||
Arguments:
|
||||
path_to_models -- Path to the model directory
|
||||
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
||||
sort_by_time -- True -> chronologically delete ckpts
|
||||
False -> lexicographically delete ckpts
|
||||
"""
|
||||
import re
|
||||
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
|
||||
name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
|
||||
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
|
||||
|
||||
ckpts_files = [
|
||||
f
|
||||
for f in os.listdir(path_to_models)
|
||||
if os.path.isfile(os.path.join(path_to_models, f))
|
||||
]
|
||||
name_key = lambda _f: int(re.compile("._(\d+)\.pth").match(_f).group(1))
|
||||
time_key = lambda _f: os.path.getmtime(os.path.join(path_to_models, _f))
|
||||
sort_key = time_key if sort_by_time else name_key
|
||||
x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')],
|
||||
key=sort_key)
|
||||
to_del = [os.path.join(path_to_models, fn) for fn in
|
||||
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
|
||||
x_sorted = lambda _x: sorted(
|
||||
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
|
||||
key=sort_key,
|
||||
)
|
||||
to_del = [
|
||||
os.path.join(path_to_models, fn)
|
||||
for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep])
|
||||
]
|
||||
del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
|
||||
del_routine = lambda x: [os.remove(x), del_info(x)]
|
||||
rs = [del_routine(fn) for fn in to_del]
|
||||
|
||||
|
||||
def get_hparams_from_dir(model_dir):
|
||||
config_save_path = os.path.join(model_dir, "config.json")
|
||||
with open(config_save_path, "r") as f:
|
||||
@ -228,12 +281,15 @@ def get_hparams_from_file(config_path):
|
||||
hparams = HParams(**config)
|
||||
return hparams
|
||||
|
||||
|
||||
def check_git_hash(model_dir):
|
||||
source_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
if not os.path.exists(os.path.join(source_dir, ".git")):
|
||||
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
||||
source_dir
|
||||
))
|
||||
logger.warn(
|
||||
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
||||
source_dir
|
||||
)
|
||||
)
|
||||
return
|
||||
|
||||
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
||||
@ -242,8 +298,11 @@ def check_git_hash(model_dir):
|
||||
if os.path.exists(path):
|
||||
saved_hash = open(path).read()
|
||||
if saved_hash != cur_hash:
|
||||
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
||||
saved_hash[:8], cur_hash[:8]))
|
||||
logger.warn(
|
||||
"git hash values are different. {}(saved) != {}(current)".format(
|
||||
saved_hash[:8], cur_hash[:8]
|
||||
)
|
||||
)
|
||||
else:
|
||||
open(path, "w").write(cur_hash)
|
||||
|
||||
@ -263,7 +322,7 @@ def get_logger(model_dir, filename="train.log"):
|
||||
return logger
|
||||
|
||||
|
||||
class HParams():
|
||||
class HParams:
|
||||
def __init__(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
if type(v) == dict:
|
||||
@ -294,5 +353,10 @@ class HParams():
|
||||
def __repr__(self):
|
||||
return self.__dict__.__repr__()
|
||||
|
||||
if __name__ == '__main__':
|
||||
print(load_wav_to_torch('/home/fish/wenetspeech/dataset_vq/Y0000022499_wHFSeHEx9CM/S00261.flac'))
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(
|
||||
load_wav_to_torch(
|
||||
"/home/fish/wenetspeech/dataset_vq/Y0000022499_wHFSeHEx9CM/S00261.flac"
|
||||
)
|
||||
)
|
||||
|
@ -71,6 +71,8 @@ conda install ffmpeg
|
||||
|
||||
```bash
|
||||
sudo apt install ffmpeg
|
||||
sudo apt install libsox-dev
|
||||
conda install -c conda-forge 'ffmpeg<7'
|
||||
```
|
||||
|
||||
##### MacOS Users
|
||||
|
@ -18,3 +18,4 @@ modelscope
|
||||
sentencepiece
|
||||
transformers
|
||||
chardet
|
||||
PyYAML
|
||||
|
@ -1,7 +1,7 @@
|
||||
import os
|
||||
import traceback,gradio as gr
|
||||
import logging
|
||||
from i18n.i18n import I18nAuto
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
i18n = I18nAuto()
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
Loading…
x
Reference in New Issue
Block a user