Merge remote-tracking branch 'beta/fast_inference_' 修正了多语言问题

This commit is contained in:
XTer 2024-03-11 17:35:07 +08:00
commit df213e6aee
5 changed files with 92 additions and 156 deletions

View File

@ -234,10 +234,15 @@ class Text2SemanticDecoder(nn.Module):
ignore_index=self.EOS,
)
if not flash_attn_enabled:
self.enable_flash_attn(flash_attn_enabled)
def enable_flash_attn(self, enable:bool=True):
if not enable:
print("Not Using Flash Attention")
self.infer_panel = self.infer_panel_batch_only
else:
self.infer_panel = self.infer_panel_batch_infer_with_flash_attn
print("Using Flash Attention")
blocks = []
@ -502,91 +507,7 @@ class Text2SemanticDecoder(nn.Module):
# 错位
return targets[:, :-1], targets[:, 1:]
def infer_one_step(self, x, xy_attn_mask, k_cache, v_cache, cache_seqlens):
hidden_dim = x.shape[-1]
for layer_id in range(self.num_layers):
layer = self.h.layers[layer_id]
q, k, v = F.linear(
x,
layer.self_attn.in_proj_weight,
layer.self_attn.in_proj_bias
).chunk(3, dim=-1)
batch_size = q.shape[0]
q_len = q.shape[1]
if flash_attn_with_kvcache is None:
past_k = k_cache[layer_id]
past_v = v_cache[layer_id]
if past_k is not None:
k = torch.cat([past_k, k], 1)
v = torch.cat([past_v, v], 1)
k_cache[layer_id] = k
v_cache[layer_id] = v
kv_len = k.shape[1]
q = q.view(batch_size, q_len, layer.self_attn.num_heads, -1).transpose(1, 2)
k = k.view(batch_size, kv_len, layer.self_attn.num_heads, -1).transpose(1, 2)
v = v.view(batch_size, kv_len, layer.self_attn.num_heads, -1).transpose(1, 2)
if xy_attn_mask is None:
attn = F.scaled_dot_product_attention(q, k, v)
else:
attn = F.scaled_dot_product_attention(q, k, v, ~xy_attn_mask)
attn = attn.permute(2, 0, 1, 3).reshape(-1, hidden_dim)
else:
q = q.view(batch_size, q_len, layer.self_attn.num_heads, -1)
k = k.view(batch_size, q_len, layer.self_attn.num_heads, -1)
v = v.view(batch_size, q_len, layer.self_attn.num_heads, -1)
if xy_attn_mask is None:
attn = flash_attn_with_kvcache(q, k_cache[layer_id], v_cache[layer_id], k, v, cache_seqlens=cache_seqlens, causal=True)
else:
# NOTE: there's a slight difference with the result produced by SDPA.
x_len = (~xy_attn_mask).sum(1)[0].item()
attn_x = flash_attn_with_kvcache(
q[:, :x_len],
k_cache[layer_id],
v_cache[layer_id],
k[:, :x_len],
v[:, :x_len],
cache_seqlens=cache_seqlens,
causal=False
)
attn_y = flash_attn_with_kvcache(
q[:, x_len:],
k_cache[layer_id],
v_cache[layer_id],
k[:, x_len:],
v[:, x_len:],
cache_seqlens=cache_seqlens + x_len,
causal=True
)
attn = torch.cat([attn_x, attn_y], dim=1)
attn = attn.view(-1, hidden_dim)
attn_out = F.linear(attn, layer.self_attn.out_proj.weight, layer.self_attn.out_proj.bias)
x = layer.norm1(x + attn_out, None)
x = layer.norm2(x + layer.linear2(F.relu(layer.linear1(x))), None)
xy_dec = x
logits = self.ar_predict_layer(
xy_dec[:, -1]
)
return logits
def infer_panel(
def infer_panel_batch_infer_with_flash_attn(
self,
x, #####全部文本token
x_lens,
@ -597,8 +518,10 @@ class Text2SemanticDecoder(nn.Module):
early_stop_num: int = -1,
temperature: float = 1.0,
):
bert_feature = self.bert_proj(bert_feature.transpose(1, 2))
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1, 2))
x = x + bert_feature
x = self.ar_text_position(x)
# AR Decoder
@ -636,29 +559,27 @@ class Text2SemanticDecoder(nn.Module):
y_mask = make_pad_mask(y_lens)
x_mask = make_pad_mask(x_lens)
# (bsz, x_len + y_len)
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
_xy_padding_mask = (
xy_padding_mask.view(bsz, 1, 1, src_len).expand(-1, self.num_head, -1, -1)
)
x_attn_mask_pad = F.pad(
x_mask = F.pad(
x_attn_mask,
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1(x,x+y)
value=True,
)
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
y_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0),
value=False,
)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
x.device
)
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
xy_mask = torch.concat([x_mask, y_mask], dim=0).view(1 , src_len, src_len).expand(bsz, -1, -1).to(x.device)
# xy_mask = torch.triu(torch.ones(src_len, src_len, dtype=torch.bool, device=x.device), diagonal=1)
xy_padding_mask = xy_padding_mask.view(bsz, 1, src_len).expand(-1, src_len, src_len)
xy_attn_mask = xy_mask.logical_or(xy_padding_mask)
xy_attn_mask = xy_attn_mask.unsqueeze(1).expand(-1, self.num_head, -1, -1)
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
xy_attn_mask = new_attn_mask
xy_attn_mask = new_attn_mask.masked_fill(xy_attn_mask, float("-inf"))
###### decode #####
y_list = [None]*y.shape[0]

View File

@ -143,7 +143,7 @@ def logits_to_probs(
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
pivot = v[: , -1].unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)

View File

@ -1,5 +1,6 @@
import math
import os, sys
import random
now_dir = os.getcwd()
sys.path.append(now_dir)
import ffmpeg
@ -7,6 +8,7 @@ import os
from typing import Generator, List, Union
import numpy as np
import torch
import torch.nn.functional as F
import yaml
from transformers import AutoModelForMaskedLM, AutoTokenizer
@ -98,7 +100,6 @@ class TTS_Config:
return configs
def save_configs(self, configs_path:str=None)->None:
configs={
"default": {
@ -110,32 +111,31 @@ class TTS_Config:
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
"flash_attn_enabled": True
},
"custom": {
"device": str(self.device),
"is_half": self.is_half,
"t2s_weights_path": self.t2s_weights_path,
"vits_weights_path": self.vits_weights_path,
"bert_base_path": self.bert_base_path,
"cnhuhbert_base_path": self.cnhuhbert_base_path,
"flash_attn_enabled": self.flash_attn_enabled
}
"custom": self.update_configs()
}
if configs_path is None:
configs_path = self.configs_path
with open(configs_path, 'w') as f:
yaml.dump(configs, f)
def update_configs(self):
config = {
"device" : str(self.device),
"is_half" : self.is_half,
"t2s_weights_path" : self.t2s_weights_path,
"vits_weights_path" : self.vits_weights_path,
"bert_base_path" : self.bert_base_path,
"cnhuhbert_base_path": self.cnhuhbert_base_path,
"flash_attn_enabled" : self.flash_attn_enabled
}
return config
def __str__(self):
string = "----------------TTS Config--------------\n"
string += "device: {}\n".format(self.device)
string += "is_half: {}\n".format(self.is_half)
string += "bert_base_path: {}\n".format(self.bert_base_path)
string += "t2s_weights_path: {}\n".format(self.t2s_weights_path)
string += "vits_weights_path: {}\n".format(self.vits_weights_path)
string += "cnhuhbert_base_path: {}\n".format(self.cnhuhbert_base_path)
string += "flash_attn_enabled: {}\n".format(self.flash_attn_enabled)
string += "----------------------------------------\n"
self.configs = self.update_configs()
string = "TTS Config".center(100, '-') + '\n'
for k, v in self.configs.items():
string += f"{str(k).ljust(20)}: {str(v)}\n"
string += "-" * 100 + '\n'
return string
@ -184,7 +184,7 @@ class TTS:
def init_cnhuhbert_weights(self, base_path: str):
self.cnhuhbert_model = CNHubert(base_path)
self.cnhuhbert_model.eval()
self.cnhuhbert_model=self.cnhuhbert_model.eval()
if self.configs.is_half == True:
self.cnhuhbert_model = self.cnhuhbert_model.half()
self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device)
@ -194,6 +194,7 @@ class TTS:
def init_bert_weights(self, base_path: str):
self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path)
self.bert_model = AutoModelForMaskedLM.from_pretrained(base_path)
self.bert_model=self.bert_model.eval()
if self.configs.is_half:
self.bert_model = self.bert_model.half()
self.bert_model = self.bert_model.to(self.configs.device)
@ -226,7 +227,7 @@ class TTS:
if self.configs.is_half:
vits_model = vits_model.half()
vits_model = vits_model.to(self.configs.device)
vits_model.eval()
vits_model = vits_model.eval()
vits_model.load_state_dict(dict_s2["weight"], strict=False)
self.vits_model = vits_model
@ -244,7 +245,7 @@ class TTS:
if self.configs.is_half:
t2s_model = t2s_model.half()
t2s_model = t2s_model.to(self.configs.device)
t2s_model.eval()
t2s_model = t2s_model.eval()
self.t2s_model = t2s_model
def set_ref_audio(self, ref_audio_path:str):
@ -377,12 +378,14 @@ class TTS:
phones_max_len = 0
for item in item_list:
if prompt_data is not None:
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\
.to(dtype=torch.float32 if not self.configs.is_half else torch.float16)
all_phones = torch.LongTensor(prompt_data["phones"]+item["phones"])
phones = torch.LongTensor(item["phones"])
# norm_text = prompt_data["norm_text"]+item["norm_text"]
else:
all_bert_features = item["bert_features"]
all_bert_features = item["bert_features"]\
.to(dtype=torch.float32 if not self.configs.is_half else torch.float16)
phones = torch.LongTensor(item["phones"])
all_phones = phones
# norm_text = item["norm_text"]
@ -401,11 +404,9 @@ class TTS:
max_len = max(bert_max_len, phones_max_len)
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
all_bert_features_batch = torch.FloatTensor(len(item_list), 1024, max_len)
all_bert_features_batch.zero_()
# all_bert_features_batch = all_bert_features_list
all_bert_features_batch = torch.zeros(len(item_list), 1024, max_len, dtype=torch.float32)
for idx, item in enumerate(all_bert_features_list):
if item != None:
all_bert_features_batch[idx, :, : item.shape[-1]] = item
batch = {
@ -458,8 +459,8 @@ class TTS:
"prompt_text": "", # str. prompt text for the reference audio
"prompt_lang": "", # str. language of the prompt text for the reference audio
"top_k": 5, # int. top k sampling
"top_p": 0.9, # float. top p sampling
"temperature": 0.6, # float. temperature for sampling
"top_p": 1, # float. top p sampling
"temperature": 1, # float. temperature for sampling
"text_split_method": "", # str. text split method, see text_segmentaion_method.py for details.
"batch_size": 1, # int. batch size for inference
"batch_threshold": 0.75, # float. threshold for batch splitting.
@ -477,9 +478,9 @@ class TTS:
ref_audio_path:str = inputs.get("ref_audio_path", "")
prompt_text:str = inputs.get("prompt_text", "")
prompt_lang:str = inputs.get("prompt_lang", "")
top_k:int = inputs.get("top_k", 20)
top_p:float = inputs.get("top_p", 0.9)
temperature:float = inputs.get("temperature", 0.6)
top_k:int = inputs.get("top_k", 5)
top_p:float = inputs.get("top_p", 1)
temperature:float = inputs.get("temperature", 1)
text_split_method:str = inputs.get("text_split_method", "")
batch_size = inputs.get("batch_size", 1)
batch_threshold = inputs.get("batch_threshold", 0.75)
@ -497,10 +498,6 @@ class TTS:
if split_bucket:
print(i18n("分桶处理模式已开启"))
# if vits_batched_inference:
# print(i18n("VITS批量推理模式已开启"))
# else:
# print(i18n("VITS单句推理模式已开启"))
no_prompt_text = False
if prompt_text in [None, ""]:
@ -547,7 +544,7 @@ class TTS:
)
t2 = ttime()
print("############ 推理 ############")
###### inference ######
t_34 = 0.0
t_45 = 0.0
@ -601,6 +598,10 @@ class TTS:
# pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
# pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device)
# pred_semantic = self.batch_sequences(pred_semantic_list, axis=0, pad_value=0).unsqueeze(0)
# max_len = 0
# for i in range(0, len(batch_phones)):
# max_len = max(max_len, batch_phones[i].shape[-1])
# batch_phones = self.batch_sequences(batch_phones, axis=0, pad_value=0, max_length=max_len)
# batch_phones = batch_phones.to(self.configs.device)
# batch_audio_fragment = (self.vits_model.batched_decode(
# pred_semantic, pred_semantic_len, batch_phones, batch_phones_len,refer_audio_spepc
@ -656,6 +657,11 @@ class TTS:
speed_factor,
split_bucket)
try:
torch.cuda.empty_cache()
except:
pass
def audio_postprocess(self,

View File

@ -1,5 +1,7 @@
import os, sys
from tqdm import tqdm
now_dir = os.getcwd()
sys.path.append(now_dir)
@ -12,9 +14,9 @@ from text import cleaned_text_to_sequence
from transformers import AutoModelForMaskedLM, AutoTokenizer
from TTS_infer_pack.text_segmentation_method import split_big_text, splits, get_method as get_seg_method
# from tools.i18n.i18n import I18nAuto
from tools.i18n.i18n import I18nAuto
# i18n = I18nAuto()
i18n = I18nAuto()
def get_first(text:str) -> str:
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
@ -51,9 +53,11 @@ class TextPreprocessor:
self.device = device
def preprocess(self, text:str, lang:str, text_split_method:str)->List[Dict]:
print(i18n("############ 切分文本 ############"))
texts = self.pre_seg_text(text, lang, text_split_method)
result = []
for text in texts:
print(i18n("############ 提取文本Bert特征 ############"))
for text in tqdm(texts):
phones, bert_features, norm_text = self.segment_and_extract_feature_for_text(text, lang)
res={
"phones": phones,
@ -67,14 +71,16 @@ class TextPreprocessor:
text = text.strip("\n")
if (text[0] not in splits and len(get_first(text)) < 4):
text = "" + text if lang != "en" else "." + text
# print(i18n("实际输入的目标文本:"), text)
print(i18n("实际输入的目标文本:"))
print(text)
seg_method = get_seg_method(text_split_method)
text = seg_method(text)
while "\n\n" in text:
text = text.replace("\n\n", "\n")
# print(i18n("实际输入的目标文本(切句后):"), text)
print(i18n("实际输入的目标文本(切句后):"))
print(text)
_texts = text.split("\n")
_texts = merge_short_text_in_array(_texts, 5)
texts = []
@ -105,7 +111,7 @@ class TextPreprocessor:
textlist=[]
langlist=[]
if language in ["auto", "zh", "ja"]:
# LangSegment.setfilters(["zh","ja","en","ko"])
LangSegment.setfilters(["zh","ja","en","ko"])
for tmp in LangSegment.getTexts(text):
if tmp["lang"] == "ko":
langlist.append("zh")
@ -116,7 +122,7 @@ class TextPreprocessor:
langlist.append(language if language!="auto" else tmp["lang"])
textlist.append(tmp["text"])
elif language == "en":
# LangSegment.setfilters(["en"])
LangSegment.setfilters(["en"])
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
while " " in formattext:
formattext = formattext.replace(" ", " ")
@ -152,8 +158,7 @@ class TextPreprocessor:
bert_feature = torch.cat(bert_feature_list, dim=1)
# phones = sum(phones_list, [])
norm_text = ''.join(norm_text_list)
return phones, bert_feature, norm_text
return phones_list, bert_feature, norm_text
def get_bert_feature(self, text:str, word2ph:list)->torch.Tensor:

View File

@ -45,6 +45,8 @@ os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
@ -103,9 +105,11 @@ def inference(text, text_lang,
"batch_size":int(batch_size),
"speed_factor":float(speed_factor),
"split_bucket":split_bucket,
"return_fragment":False,
"return_fragment":False
}
yield next(tts_pipline.run(inputs))
for item in tts_pipline.run(inputs):
yield item
def custom_sort_key(s):
# 使用正则表达式提取字符串中的数字部分和非数字部分
@ -182,7 +186,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
with gr.Row():
with gr.Column():
batch_size = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("batch_size"),value=20,interactive=True)
batch_size = gr.Slider(minimum=1,maximum=200,step=1,label=i18n("batch_size"),value=1,interactive=True)
speed_factor = gr.Slider(minimum=0.25,maximum=4,step=0.05,label="speed_factor",value=1.0,interactive=True)
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=5,interactive=True)
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True)