Add export_torch_script.py

This commit is contained in:
csh 2024-09-23 21:36:11 +08:00
parent 4d984e3aa8
commit dbaeb42e7f

View File

@ -0,0 +1,522 @@
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
# reference: https://github.com/lifeiteng/vall-e
from typing import Optional
from my_utils import load_audio
from onnx_export import VitsModel
from text import cleaned_text_to_sequence
import torch
import torchaudio
from torch import IntTensor, LongTensor, nn
from torch.nn import functional as F
from transformers import AutoModelForMaskedLM, AutoTokenizer
from feature_extractor import cnhubert
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
import os
import soundfile
default_config = {
"embedding_dim": 512,
"hidden_dim": 512,
"num_head": 8,
"num_layers": 12,
"num_codebook": 8,
"p_dropout": 0.0,
"vocab_size": 1024 + 1,
"phoneme_vocab_size": 512,
"EOS": 1024,
}
def logits_to_probs(
logits,
previous_tokens: Optional[torch.Tensor] = None,
temperature: float = 1.0,
top_k: Optional[int] = None,
top_p: Optional[int] = None,
repetition_penalty: float = 1.0,
):
# if previous_tokens is not None:
# previous_tokens = previous_tokens.squeeze()
# print(logits.shape,previous_tokens.shape)
# pdb.set_trace()
if previous_tokens is not None and repetition_penalty != 1.0:
previous_tokens = previous_tokens.long()
score = torch.gather(logits, dim=1, index=previous_tokens)
score = torch.where(
score < 0, score * repetition_penalty, score / repetition_penalty
)
logits.scatter_(dim=1, index=previous_tokens, src=score)
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.cumsum(
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
)
sorted_indices_to_remove = cum_probs > top_p
sorted_indices_to_remove[:, 0] = False # keep at least one option
indices_to_remove = sorted_indices_to_remove.scatter(
dim=1, index=sorted_indices, src=sorted_indices_to_remove
)
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
logits = logits / max(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v[: , -1].unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def get_raw_t2s_model(dict_s1) -> Text2SemanticLightningModule:
config = dict_s1["config"]
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
t2s_model = t2s_model.eval()
return t2s_model
def multinomial_sample_one_no_sync(
probs_sort
): # Does multinomial sampling without a cuda synchronization
q = torch.randn_like(probs_sort)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def sample(
logits,
previous_tokens,
temperature: float = 1.0,
top_k: Optional[int] = None,
top_p: Optional[int] = None,
repetition_penalty: float = 1.0,
):
probs = logits_to_probs(
logits=logits, previous_tokens=previous_tokens, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty
)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
class T2SModel(nn.Module):
def __init__(self, config,raw_t2s:Text2SemanticLightningModule, norm_first=False, top_k=3):
super(T2SModel, self).__init__()
self.model_dim = config["model"]["hidden_dim"]
self.embedding_dim = config["model"]["embedding_dim"]
self.num_head = config["model"]["head"]
self.num_layers = config["model"]["n_layer"]
self.vocab_size = config["model"]["vocab_size"]
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
self.p_dropout = float(config["model"]["dropout"])
self.EOS:int = config["model"]["EOS"]
self.norm_first = norm_first
assert self.EOS == self.vocab_size - 1
self.hz = 50
self.config = config
# self.bert_proj = nn.Linear(1024, self.embedding_dim)
# self.ar_text_embedding = TokenEmbedding(
# self.embedding_dim, self.phoneme_vocab_size, self.p_dropout
# )
# self.ar_text_position = SinePositionalEmbedding(
# self.embedding_dim, dropout=0.1, scale=False, alpha=True
# )
# self.ar_audio_embedding = TokenEmbedding(
# self.embedding_dim, self.vocab_size, self.p_dropout
# )
# self.ar_audio_position = SinePositionalEmbedding(
# self.embedding_dim, dropout=0.1, scale=False, alpha=True
# )
self.bert_proj = raw_t2s.model.bert_proj
self.ar_text_embedding = raw_t2s.model.ar_text_embedding
self.ar_text_position = raw_t2s.model.ar_text_position
self.ar_audio_embedding = raw_t2s.model.ar_audio_embedding
self.ar_audio_position = raw_t2s.model.ar_audio_position
# self.t2s_transformer = T2STransformer(self.num_layers, blocks)
self.t2s_transformer = raw_t2s.model.t2s_transformer
# self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
self.ar_predict_layer = raw_t2s.model.ar_predict_layer
# self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
self.max_sec = self.config["data"]["max_sec"]
self.top_k = int(self.config["inference"]["top_k"])
self.early_stop_num = torch.LongTensor([self.hz * self.max_sec])
# def forward(self, x:LongTensor, prompts:LongTensor):
def forward(self,prompts:LongTensor, ref_seq:LongTensor, text_seq:LongTensor, ref_bert:torch.Tensor, text_bert:torch.Tensor):
bert = torch.cat([ref_bert.T, text_bert.T], 1)
all_phoneme_ids = torch.cat([ref_seq, text_seq], 1)
bert = bert.unsqueeze(0)
x = self.ar_text_embedding(all_phoneme_ids)
x = x + self.bert_proj(bert.transpose(1, 2))
x:torch.Tensor = self.ar_text_position(x)
early_stop_num = self.early_stop_num
#[1,N,512] [1,N]
# y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
y = prompts
# x_example = x[:,:,0] * 0.0
x_len = x.shape[1]
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
y_emb = self.ar_audio_embedding(y)
y_len = y_emb.shape[1]
prefix_len = y.shape[1]
y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x, y_pos], dim=1)
bsz = x.shape[0]
src_len = x_len + y_len
x_attn_mask_pad = F.pad(
x_attn_mask,
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1(x,x+y)
value=True,
)
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0),
value=False,
)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)\
.unsqueeze(0)\
.expand(bsz*self.num_head, -1, -1)\
.view(bsz, self.num_head, src_len, src_len)\
.to(device=x.device, dtype=torch.bool)
idx = 0
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None)
logits = self.ar_predict_layer(xy_dec[:, -1])
logits = logits[:, :-1]
samples = sample(logits, y, top_k=self.top_k, top_p=1, repetition_penalty=1.35, temperature=1.0)[0]
y = torch.concat([y, samples], dim=1)
y_emb = self.ar_audio_embedding(y[:, -1:])
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device)
stop = False
# for idx in range(1, 50):
for idx in range(1, 1500):
#[1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N]
# y, k, v, y_emb, logits, samples = self.stage_decoder(y, k, v, y_emb, x_example)
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
logits = self.ar_predict_layer(xy_dec[:, -1])
samples = sample(logits, y, top_k=self.top_k, top_p=1, repetition_penalty=1.35, temperature=1.0)[0]
y = torch.concat([y, samples], dim=1)
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
stop = True
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
stop = True
if stop:
break
y_emb = self.ar_audio_embedding(y[:, -1:])
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device)
y[0, -1] = 0
return y[:, -idx:].unsqueeze(0)
# def first_stage_decoder(self, x, prompt):
# y = prompt
# x_example = x[:,:,0] * 0.0
# #N, 1, 512
# cache = {
# "all_stage": self.num_layers,
# "k": None,
# "v": None,
# "y_emb": None,
# "first_infer": 1,
# "stage": 0,
# }
# y_emb = self.ar_audio_embedding(y)
# cache["y_emb"] = y_emb
# y_pos = self.ar_audio_position(y_emb)
# xy_pos = torch.concat([x, y_pos], dim=1)
# y_example = y_pos[:,:,0] * 0.0
# x_attn_mask = torch.matmul(x_example.transpose(0, 1) , x_example).bool()
# y_attn_mask = torch.ones_like(torch.matmul(y_example.transpose(0, 1), y_example), dtype=torch.int64)
# y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum(
# torch.ones_like(y_example.transpose(0, 1), dtype=torch.int64), dim=0
# )
# y_attn_mask = y_attn_mask > 0
# x_y_pad = torch.matmul(x_example.transpose(0, 1), y_example).bool()
# y_x_pad = torch.matmul(y_example.transpose(0, 1), x_example).bool()
# x_attn_mask_pad = torch.cat([x_attn_mask, torch.ones_like(x_y_pad)], dim=1)
# y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1)
# xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
# cache["k"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
# .unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
# cache["v"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
# .unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
# xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
# logits = self.ar_predict_layer(xy_dec[:, -1])
# samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
# y = torch.concat([y, samples], dim=1)
# return y, cache["k"], cache["v"], cache["y_emb"], x_example
# def stage_decoder(self, y, k, v, y_emb, x_example):
# cache = {
# "all_stage": self.num_layers,
# "k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)),
# "v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)),
# "y_emb": y_emb,
# "first_infer": 0,
# "stage": 0,
# }
# y_emb = torch.cat(
# [cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
# )
# cache["y_emb"] = y_emb
# y_pos = self.ar_audio_position(y_emb)
# xy_pos = y_pos[:, -1:]
# y_example = y_pos[:,:,0] * 0.0
# xy_attn_mask = torch.cat([x_example, y_example], dim=1)
# xy_attn_mask = torch.zeros_like(xy_attn_mask, dtype=torch.bool)
# xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
# logits = self.ar_predict_layer(xy_dec[:, -1])
# samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
# y = torch.concat([y, samples], dim=1)
# return y, cache["k"], cache["v"], cache["y_emb"], logits, samples
bert_path = os.environ.get(
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
)
cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
cnhubert.cnhubert_base_path = cnhubert_base_path
class BertModel(torch.nn.Module):
def __init__(self, bert_model):
super(BertModel, self).__init__()
self.bert = bert_model
def forward(self, input_ids, attention_mask, token_type_ids, word2ph:IntTensor):
res = self.bert(input_ids, attention_mask, token_type_ids)
phone_level_feature = []
for i in range(word2ph.shape[0]):
repeat_feature = res[i].repeat(word2ph[i].item(), 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
# [sum(word2ph), 1024]
return phone_level_feature
class MyBertModel(torch.nn.Module):
def __init__(self, bert_model):
super(MyBertModel, self).__init__()
self.bert = bert_model
def forward(self, input_ids:torch.Tensor, attention_mask:torch.Tensor, token_type_ids:torch.Tensor):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
res = torch.cat(outputs["hidden_states"][-3:-2], -1)[0][1:-1]
return res
class SSLModel(torch.nn.Module):
def __init__(self,vits:VitsModel):
super().__init__()
self.ssl = cnhubert.get_model().model
self.ssl_proj = vits.vq_model.ssl_proj
self.quantizer = vits.vq_model.quantizer
def forward(self, ref_audio)->LongTensor:
ref_audio_16k,ref_audio_sr = parse_audio(ref_audio)
ssl_content = self.ssl(ref_audio_16k)["last_hidden_state"].transpose(1, 2)
codes = self.extract_latent(ssl_content.float())
prompt_semantic = codes[0, 0]
prompts = prompt_semantic.unsqueeze(0)
return prompts,ref_audio_sr
def extract_latent(self, x):
ssl = self.ssl_proj(x)
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
return codes.transpose(0, 1)
def export_bert(tokenizer):
ref_bert_inputs = tokenizer("在参加挼死特春晚的时候有人问了这样一个问题", return_tensors="pt")
ref_bert_inputs = {
'input_ids': torch.jit.annotate(torch.Tensor,ref_bert_inputs['input_ids']),
'attention_mask': torch.jit.annotate(torch.Tensor,ref_bert_inputs['attention_mask']),
'token_type_ids': torch.jit.annotate(torch.Tensor,ref_bert_inputs['token_type_ids']),
}
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path,output_hidden_states=True)
my_bert_model = MyBertModel(bert_model)
my_bert_model = torch.jit.trace(my_bert_model,example_kwarg_inputs=ref_bert_inputs)
print('trace my_bert_model')
bert = BertModel(my_bert_model)
torch.jit.script(bert).save("onnx/bert_model.pt")
print('exported bert')
def export(gpt_path, vits_path):
# gpt_path = "GPT_weights_v2/xw-e15.ckpt"
dict_s1 = torch.load(gpt_path, map_location="cpu")
raw_t2s = get_raw_t2s_model(dict_s1)
t2s_m = T2SModel(dict_s1['config'],raw_t2s,top_k=3)
t2s_m.eval()
torch.jit.script(t2s_m).save("onnx/xw/t2s_model.pt")
print('exported t2s_m')
tokenizer = AutoTokenizer.from_pretrained(bert_path)
ref_bert_inputs = tokenizer("声音,是有温度的.夜晚的声音,会发光", return_tensors="pt")
ref_bert_inputs['word2ph'] = torch.Tensor([2,2,1,2,2,2,2,2,1,2,2,2,2,2,1,2,2,2]).int()
text_berf_inputs = tokenizer("大家好,我有一个春晚问题.", return_tensors="pt")
text_berf_inputs['word2ph'] = torch.Tensor([2,2,2,1,2,2,2,2,2,2,2,2,1]).int()
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path,output_hidden_states=True)
my_bert_model = MyBertModel(bert_model)
bert = BertModel(my_bert_model)
# export_bert(tokenizer)
# vits_path = "SoVITS_weights_v2/xw_e8_s216.pth"
vits = VitsModel(vits_path)
vits.eval()
ref_audio = torch.tensor([load_audio("output/denoise_opt/xw.mp3_0000000000_0000156480.wav", 48000)]).float()
ssl = SSLModel(vits)
torch.jit.trace(ssl,example_inputs=(torch.jit.annotate(torch.Tensor,ref_audio))).save("onnx/xw/ssl_model.pt")
print('exported ssl')
# ref_seq = torch.LongTensor([cleaned_text_to_sequence(["zh", "ai4", "ch", "an1","j" ,"ia1","r","ua4","s","i3","t","e3","ch","un1","w","an3","d","e1", "sh", "i2", "h", "ou4", "y", "ou3", "r", "en2","w","en4","l","e1","zh","e4","y","ang4","y","i2","g","e4","w","en4","t","i2"],version='v2')])
ref_seq = torch.LongTensor([cleaned_text_to_sequence(['sh','eng1','y','in1',',','sh','i4','y','ou3','w','en1','d','u4','d','e','.','y','e4','w','an3','d','e','sh','eng1','y','in1',',','h','ui4','f','a1','g','uang1'],version='v2')])
text_seq = torch.LongTensor([cleaned_text_to_sequence(["d", "a4", "j", "ia1", "h", "ao3",",","w","o3","y", "ou3","y","i2","g","e4","q","i2","g","uai4","w","en4","t","i2","."],version='v2')])
ref_bert = bert(**ref_bert_inputs)
text_bert = bert(**text_berf_inputs)
prompts,ref_audio_sr = ssl(ref_audio)
pred_semantic = t2s_m(prompts, ref_seq, text_seq, ref_bert, text_bert)
torch.jit.trace(vits,example_inputs=(
torch.jit.annotate(torch.Tensor,text_seq),
torch.jit.annotate(torch.Tensor,pred_semantic),
torch.jit.annotate(torch.Tensor,ref_audio_sr))).save("onnx/xw/vits_model.pt")
print('exported vits')
@torch.jit.script
def parse_audio(ref_audio):
ref_audio_16k = torchaudio.functional.resample(ref_audio,48000,16000).float()#.to(ref_audio.device)
ref_audio_sr = torchaudio.functional.resample(ref_audio,48000,32000).float()#.to(ref_audio.device)
return ref_audio_16k,ref_audio_sr
def test():
tokenizer = AutoTokenizer.from_pretrained(bert_path)
# bert_model = AutoModelForMaskedLM.from_pretrained(bert_path,output_hidden_states=True)
# bert_model.bert.embeddings = MyBertEmbeddings(bert_model.bert.config)
# bert_model.bert.encoder = MyBertEncoder(bert_model.bert.config)
# my_bert_model = MyBertModel(bert_model)
# bert = BertModel(my_bert_model)
bert = torch.jit.load("onnx/bert_model.pt",map_location='cuda')
# gpt_path = "GPT_weights_v2/xw-e15.ckpt"
# dict_s1 = torch.load(gpt_path, map_location="cpu")
# raw_t2s = get_raw_t2s_model(dict_s1)
# t2s = T2SModel(dict_s1['config'],raw_t2s,top_k=3)
# t2s.eval()
t2s = torch.jit.load("onnx/xw/t2s_model.pt",map_location='cuda')
# vits_path = "SoVITS_weights_v2/xw_e8_s216.pth"
# vits = VitsModel(vits_path).to('cuda')
# vits.eval()
# ssl = SSLModel(vits).to('cuda')
# ssl.eval()
vits = torch.jit.load("onnx/xw/vits_model.pt",map_location='cuda')
ssl = torch.jit.load("onnx/xw/ssl_model.pt",map_location='cuda')
ref_seq = torch.LongTensor([cleaned_text_to_sequence(["zh", "ai4", "ch", "an1","j" ,"ia1","r","ua4","s","i3","t","e3","ch","un1","w","an3","d","e1", "sh", "i2", "h", "ou4", "y", "ou3", "r", "en2","w","en4","l","e1","zh","e4","y","ang4","y","i2","g","e4","w","en4","t","i2"],version='v2')])
ref_seq=ref_seq.to('cuda')
text_seq = torch.LongTensor([cleaned_text_to_sequence(["d", "a4", "j", "ia1", "h", "ao3",",","w","o3","y", "ou3","y","i2","g","e4","q","i2","g","uai4","d","e1","w","en4","t","i2","."],version='v2')])
text_seq=text_seq.to('cuda')
ref_bert_inputs = tokenizer("在参加挼死特春晚的时候有人问了这样一个问题", return_tensors="pt")
ref_bert_inputs['word2ph'] = torch.Tensor([2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]).int().to('cuda')
ref_bert = bert(
ref_bert_inputs['input_ids'].to('cuda'),
ref_bert_inputs['attention_mask'].to('cuda'),
ref_bert_inputs['token_type_ids'].to('cuda'),
ref_bert_inputs['word2ph'].to('cuda'))
print('ref_bert:',ref_bert.device)
text_berf_inputs = tokenizer("大家好,我有一个奇怪的问题.", return_tensors="pt")
text_berf_inputs['word2ph'] = torch.Tensor([2,2,2,1,2,2,2,2,2,2,2,2,2,1]).int().to('cuda')
text_bert = bert(text_berf_inputs['input_ids'].to('cuda'),
text_berf_inputs['attention_mask'].to('cuda'),
text_berf_inputs['token_type_ids'].to('cuda'),
text_berf_inputs['word2ph'])
ref_audio = torch.tensor([load_audio("output/denoise_opt/xw.mp3_0000000000_0000156480.wav", 48000)]).float().to('cuda')
print('start ssl')
prompts,ref_audio_sr = ssl(ref_audio)
pred_semantic = t2s(prompts, ref_seq, text_seq, ref_bert, text_bert)
print('start vits:',pred_semantic.shape)
print('ref_audio_sr:',ref_audio_sr.device)
audio = vits(text_seq, pred_semantic, ref_audio_sr)
print('start write wav')
soundfile.write("out.wav", audio.detach().cpu().numpy(), 32000)
torch.load("onnx/symbols_v2.json")
# audio = vits(text_seq, pred_semantic1, ref_audio)
# soundfile.write("out.wav", audio, 32000)
import text
import json
def export_symbel(version='v2'):
if version=='v1':
symbols = text._symbol_to_id_v1
with open(f"onnx/symbols_v1.json", "w") as file:
json.dump(symbols, file, indent=4)
else:
symbols = text._symbol_to_id_v2
with open(f"onnx/symbols_v2.json", "w") as file:
json.dump(symbols, file, indent=4)
if __name__ == "__main__":
export(gpt_path="GPT_weights_v2/chen1-e15.ckpt", vits_path="SoVITS_weights_v2/chen1_e8_s208.pth")
# test()
# export_symbel()
# tokenizer = AutoTokenizer.from_pretrained(bert_path)
# text_berf_inputs = tokenizer("大家好,我有一个奇怪的问题.", return_tensors="pt")
# print(text_berf_inputs)
# ref_audio = load_audio("output/denoise_opt/chen1.mp4_0000033600_0000192000.wav", 48000)
# print(ref_audio.shape)
# soundfile.write("chen1_ref.wav", ref_audio, 48000)