mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-07 23:48:48 +08:00
Delete GPT_SoVITS/module/transformer_onnx.py
This commit is contained in:
parent
dd8bd6000c
commit
d89ff2d2c9
@ -1,292 +0,0 @@
|
|||||||
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
|
|
||||||
import copy
|
|
||||||
import numbers
|
|
||||||
from functools import partial
|
|
||||||
from typing import Any
|
|
||||||
from typing import Callable
|
|
||||||
from typing import List
|
|
||||||
from typing import Optional
|
|
||||||
from typing import Tuple
|
|
||||||
from typing import Union
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from AR.modules.activation_onnx import MultiheadAttention
|
|
||||||
from AR.modules.scaling import BalancedDoubleSwish
|
|
||||||
from torch import nn
|
|
||||||
from torch import Tensor
|
|
||||||
from torch.nn import functional as F
|
|
||||||
|
|
||||||
_shape_t = Union[int, List[int], torch.Size]
|
|
||||||
|
|
||||||
|
|
||||||
class LayerNorm(nn.Module):
|
|
||||||
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
|
|
||||||
normalized_shape: Tuple[int, ...]
|
|
||||||
eps: float
|
|
||||||
elementwise_affine: bool
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
normalized_shape: _shape_t,
|
|
||||||
eps: float = 1e-5,
|
|
||||||
elementwise_affine: bool = True,
|
|
||||||
device=None,
|
|
||||||
dtype=None,
|
|
||||||
) -> None:
|
|
||||||
factory_kwargs = {"device": device, "dtype": dtype}
|
|
||||||
super(LayerNorm, self).__init__()
|
|
||||||
if isinstance(normalized_shape, numbers.Integral):
|
|
||||||
# mypy error: incompatible types in assignment
|
|
||||||
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
|
||||||
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
|
||||||
self.eps = eps
|
|
||||||
self.elementwise_affine = elementwise_affine
|
|
||||||
if self.elementwise_affine:
|
|
||||||
self.weight = nn.Parameter(
|
|
||||||
torch.empty(self.normalized_shape, **factory_kwargs)
|
|
||||||
)
|
|
||||||
self.bias = nn.Parameter(
|
|
||||||
torch.empty(self.normalized_shape, **factory_kwargs)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
self.register_parameter("weight", None)
|
|
||||||
self.register_parameter("bias", None)
|
|
||||||
|
|
||||||
self.reset_parameters()
|
|
||||||
|
|
||||||
def reset_parameters(self) -> None:
|
|
||||||
if self.elementwise_affine:
|
|
||||||
nn.init.ones_(self.weight)
|
|
||||||
nn.init.zeros_(self.bias)
|
|
||||||
|
|
||||||
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
|
||||||
if isinstance(input, tuple):
|
|
||||||
input, embedding = input
|
|
||||||
return (
|
|
||||||
F.layer_norm(
|
|
||||||
input,
|
|
||||||
self.normalized_shape,
|
|
||||||
self.weight,
|
|
||||||
self.bias,
|
|
||||||
self.eps,
|
|
||||||
),
|
|
||||||
embedding,
|
|
||||||
)
|
|
||||||
|
|
||||||
assert embedding is None
|
|
||||||
return F.layer_norm(
|
|
||||||
input, self.normalized_shape, self.weight, self.bias, self.eps
|
|
||||||
)
|
|
||||||
|
|
||||||
def extra_repr(self) -> str:
|
|
||||||
return (
|
|
||||||
"{normalized_shape}, eps={eps}, "
|
|
||||||
"elementwise_affine={elementwise_affine}".format(**self.__dict__)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class IdentityNorm(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
d_model: int,
|
|
||||||
eps: float = 1e-5,
|
|
||||||
device=None,
|
|
||||||
dtype=None,
|
|
||||||
) -> None:
|
|
||||||
super(IdentityNorm, self).__init__()
|
|
||||||
|
|
||||||
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
|
||||||
if isinstance(input, tuple):
|
|
||||||
return input
|
|
||||||
|
|
||||||
assert embedding is None
|
|
||||||
return input
|
|
||||||
|
|
||||||
|
|
||||||
class TransformerEncoder(nn.Module):
|
|
||||||
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
|
|
||||||
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
|
||||||
num_layers: the number of sub-encoder-layers in the encoder (required).
|
|
||||||
norm: the layer normalization component (optional).
|
|
||||||
enable_nested_tensor: if True, input will automatically convert to nested tensor
|
|
||||||
(and convert back on output). This will improve the overall performance of
|
|
||||||
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
|
|
||||||
|
|
||||||
Examples::
|
|
||||||
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
|
||||||
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
|
|
||||||
>>> src = torch.rand(10, 32, 512)
|
|
||||||
>>> out = transformer_encoder(src)
|
|
||||||
"""
|
|
||||||
__constants__ = ["norm"]
|
|
||||||
|
|
||||||
def __init__(self, encoder_layer, num_layers, norm=None):
|
|
||||||
super(TransformerEncoder, self).__init__()
|
|
||||||
self.layers = _get_clones(encoder_layer, num_layers)
|
|
||||||
self.num_layers = num_layers
|
|
||||||
self.norm = norm
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
src: Tensor,
|
|
||||||
mask: Optional[Tensor] = None,
|
|
||||||
src_key_padding_mask: Optional[Tensor] = None,
|
|
||||||
return_layer_states: bool = False,
|
|
||||||
cache=None,
|
|
||||||
) -> Tensor:
|
|
||||||
output = src
|
|
||||||
for mod in self.layers:
|
|
||||||
output = mod(
|
|
||||||
output,
|
|
||||||
src_mask=mask,
|
|
||||||
src_key_padding_mask=src_key_padding_mask,
|
|
||||||
cache=cache,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.norm is not None:
|
|
||||||
output = self.norm(output)
|
|
||||||
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
class TransformerEncoderLayer(nn.Module):
|
|
||||||
__constants__ = ["batch_first", "norm_first"]
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
d_model: int,
|
|
||||||
nhead: int,
|
|
||||||
dim_feedforward: int = 2048,
|
|
||||||
dropout: float = 0.1,
|
|
||||||
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
|
||||||
batch_first: bool = False,
|
|
||||||
norm_first: bool = False,
|
|
||||||
device=None,
|
|
||||||
dtype=None,
|
|
||||||
linear1_self_attention_cls: nn.Module = nn.Linear,
|
|
||||||
linear2_self_attention_cls: nn.Module = nn.Linear,
|
|
||||||
linear1_feedforward_cls: nn.Module = nn.Linear,
|
|
||||||
linear2_feedforward_cls: nn.Module = nn.Linear,
|
|
||||||
layer_norm_cls: nn.Module = LayerNorm,
|
|
||||||
layer_norm_eps: float = 1e-5,
|
|
||||||
adaptive_layer_norm=False,
|
|
||||||
) -> None:
|
|
||||||
factory_kwargs = {"device": device, "dtype": dtype}
|
|
||||||
super(TransformerEncoderLayer, self).__init__()
|
|
||||||
self.self_attn = MultiheadAttention(
|
|
||||||
d_model, # 512 16
|
|
||||||
nhead,
|
|
||||||
dropout=dropout,
|
|
||||||
batch_first=batch_first,
|
|
||||||
linear1_cls=linear1_self_attention_cls,
|
|
||||||
linear2_cls=linear2_self_attention_cls,
|
|
||||||
**factory_kwargs,
|
|
||||||
)
|
|
||||||
self.linear1 = linear1_feedforward_cls(
|
|
||||||
d_model, dim_feedforward, **factory_kwargs
|
|
||||||
)
|
|
||||||
self.dropout = nn.Dropout(dropout)
|
|
||||||
self.linear2 = linear2_feedforward_cls(
|
|
||||||
dim_feedforward, d_model, **factory_kwargs
|
|
||||||
)
|
|
||||||
self.norm_first = norm_first
|
|
||||||
self.dropout1 = nn.Dropout(dropout)
|
|
||||||
self.dropout2 = nn.Dropout(dropout)
|
|
||||||
if isinstance(activation, str):
|
|
||||||
activation = _get_activation_fn(activation)
|
|
||||||
elif isinstance(activation, partial):
|
|
||||||
activation = activation(d_model)
|
|
||||||
elif activation == BalancedDoubleSwish:
|
|
||||||
activation = BalancedDoubleSwish(d_model)
|
|
||||||
self.activation = activation
|
|
||||||
|
|
||||||
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
|
||||||
if layer_norm_cls == IdentityNorm:
|
|
||||||
norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
|
||||||
else:
|
|
||||||
norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
|
||||||
|
|
||||||
if adaptive_layer_norm:
|
|
||||||
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
|
|
||||||
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
|
|
||||||
else:
|
|
||||||
self.norm1 = norm1
|
|
||||||
self.norm2 = norm2
|
|
||||||
|
|
||||||
def __setstate__(self, state):
|
|
||||||
super(TransformerEncoderLayer, self).__setstate__(state)
|
|
||||||
if not hasattr(self, "activation"):
|
|
||||||
self.activation = F.relu
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
src: Tensor,
|
|
||||||
src_mask: Optional[Tensor] = None,
|
|
||||||
src_key_padding_mask: Optional[Tensor] = None,
|
|
||||||
cache=None,
|
|
||||||
) -> Tensor:
|
|
||||||
x = src
|
|
||||||
stage_embedding = None
|
|
||||||
x = self.norm1(
|
|
||||||
x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
|
|
||||||
stage_embedding,
|
|
||||||
)
|
|
||||||
x = self.norm2(x + self._ff_block(x), stage_embedding)
|
|
||||||
|
|
||||||
return x
|
|
||||||
|
|
||||||
def _sa_block(
|
|
||||||
self,
|
|
||||||
x: Tensor,
|
|
||||||
attn_mask: Optional[Tensor],
|
|
||||||
key_padding_mask: Optional[Tensor],
|
|
||||||
cache=None,
|
|
||||||
) -> Tensor:
|
|
||||||
x = self.self_attn(
|
|
||||||
x,
|
|
||||||
x,
|
|
||||||
x,
|
|
||||||
attn_mask=attn_mask,
|
|
||||||
key_padding_mask=key_padding_mask,
|
|
||||||
need_weights=False,
|
|
||||||
cache=cache,
|
|
||||||
)
|
|
||||||
return self.dropout1(x)
|
|
||||||
|
|
||||||
def _ff_block(self, x: Tensor) -> Tensor:
|
|
||||||
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
|
||||||
return self.dropout2(x)
|
|
||||||
|
|
||||||
|
|
||||||
class AdaptiveLayerNorm(nn.Module):
|
|
||||||
r"""Adaptive Layer Normalization"""
|
|
||||||
|
|
||||||
def __init__(self, d_model, norm) -> None:
|
|
||||||
super(AdaptiveLayerNorm, self).__init__()
|
|
||||||
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
|
||||||
self.norm = norm
|
|
||||||
self.d_model = d_model
|
|
||||||
self.eps = self.norm.eps
|
|
||||||
|
|
||||||
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
|
||||||
if isinstance(input, tuple):
|
|
||||||
input, embedding = input
|
|
||||||
weight, bias = torch.split(
|
|
||||||
self.project_layer(embedding),
|
|
||||||
split_size_or_sections=self.d_model,
|
|
||||||
dim=-1,
|
|
||||||
)
|
|
||||||
return (weight * self.norm(input) + bias, embedding)
|
|
||||||
|
|
||||||
weight, bias = torch.split(
|
|
||||||
self.project_layer(embedding),
|
|
||||||
split_size_or_sections=self.d_model,
|
|
||||||
dim=-1,
|
|
||||||
)
|
|
||||||
return weight * self.norm(input) + bias
|
|
||||||
|
|
||||||
|
|
||||||
def _get_clones(module, N):
|
|
||||||
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
|
Loading…
x
Reference in New Issue
Block a user