diff --git a/.gitignore b/.gitignore
index 7662674..bca5a87 100644
--- a/.gitignore
+++ b/.gitignore
@@ -18,4 +18,3 @@ TEMP
weight.json
ffmpeg*
ffprobe*
-zoengjyutgaai*
\ No newline at end of file
diff --git a/GPT_SoVITS/prepare_datasets/1-get-text.py b/GPT_SoVITS/prepare_datasets/1-get-text.py
index 6ca5ded..0d0019a 100644
--- a/GPT_SoVITS/prepare_datasets/1-get-text.py
+++ b/GPT_SoVITS/prepare_datasets/1-get-text.py
@@ -8,8 +8,8 @@ from time import time as ttime
import torch
from text.cleaner import clean_text
-from transformers import AutoModelForMaskedLM, AutoTokenizer
from tqdm import tqdm
+from transformers import AutoModelForMaskedLM, AutoTokenizer
from tools.my_utils import clean_path
diff --git a/webui.py b/webui.py
index b73ed89..1bc02e9 100644
--- a/webui.py
+++ b/webui.py
@@ -1,38 +1,68 @@
-import os,sys
-if len(sys.argv)==1:sys.argv.append('v2')
-version="v1"if sys.argv[1]=="v1" else"v2"
-os.environ["version"]=version
+import json
+import os
+import platform
+import re
+import shutil
+import signal
+import site
+import subprocess
+import sys
+import traceback
+import warnings
+from multiprocessing import cpu_count
+from subprocess import Popen
+
+import gradio as gr
+import psutil
+import torch
+import yaml
+
+from config import (
+ exp_root,
+ infer_device,
+ is_half,
+ is_share,
+ python_exec,
+ webui_port_infer_tts,
+ webui_port_main,
+ webui_port_subfix,
+ webui_port_uvr5,
+)
+from tools import my_utils
+from tools.asr.config import asr_dict
+from tools.i18n.i18n import I18nAuto, scan_language_list
+from tools.my_utils import check_details, check_for_existance
+
+if len(sys.argv) == 1:
+ sys.argv.append('v2')
+version = "v1"if sys.argv[1] == "v1" else "v2"
+os.environ["version"] = version
now_dir = os.getcwd()
sys.path.insert(0, now_dir)
-import warnings
warnings.filterwarnings("ignore")
-import json,yaml,torch,pdb,re,shutil
-import platform
-import psutil
-import signal
os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
torch.manual_seed(233333)
tmp = os.path.join(now_dir, "TEMP")
os.makedirs(tmp, exist_ok=True)
os.environ["TEMP"] = tmp
-if(os.path.exists(tmp)):
+if (os.path.exists(tmp)):
for name in os.listdir(tmp):
- if(name=="jieba.cache"):continue
- path="%s/%s"%(tmp,name)
- delete=os.remove if os.path.isfile(path) else shutil.rmtree
+ if (name == "jieba.cache"):
+ continue
+ path = "%s/%s" % (tmp, name)
+ delete = os.remove if os.path.isfile(path) else shutil.rmtree
try:
delete(path)
except Exception as e:
print(str(e))
pass
-import site
-import traceback
site_packages_roots = []
for path in site.getsitepackages():
if "packages" in path:
site_packages_roots.append(path)
-if(site_packages_roots==[]):site_packages_roots=["%s/runtime/Lib/site-packages" % now_dir]
-#os.environ["OPENBLAS_NUM_THREADS"] = "4"
+if (site_packages_roots == []):
+ site_packages_roots = ["%s/runtime/Lib/site-packages" % now_dir]
+# os.environ["OPENBLAS_NUM_THREADS"] = "4"
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
os.environ["all_proxy"] = ""
for site_packages_root in site_packages_roots:
@@ -45,29 +75,18 @@ for site_packages_root in site_packages_roots:
% (now_dir, now_dir, now_dir, now_dir, now_dir, now_dir)
)
break
- except PermissionError as e:
+ except PermissionError:
traceback.print_exc()
-from tools import my_utils
-import shutil
-import pdb
-import subprocess
-from subprocess import Popen
-import signal
-from config import python_exec,infer_device,is_half,exp_root,webui_port_main,webui_port_infer_tts,webui_port_uvr5,webui_port_subfix,is_share
-from tools.i18n.i18n import I18nAuto, scan_language_list
-language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else "Auto"
-os.environ["language"]=language
+language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else "Auto"
+os.environ["language"] = language
i18n = I18nAuto(language=language)
-from scipy.io import wavfile
-from tools.my_utils import load_audio, check_for_existance, check_details
-from multiprocessing import cpu_count
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu
try:
import gradio.analytics as analytics
- analytics.version_check = lambda:None
-except:...
-import gradio as gr
-n_cpu=cpu_count()
+ analytics.version_check = lambda: None
+except:
+ ...
+n_cpu = cpu_count()
ngpu = torch.cuda.device_count()
gpu_infos = []
@@ -75,8 +94,8 @@ mem = []
if_gpu_ok = False
# 判断是否有能用来训练和加速推理的N卡
-ok_gpu_keywords={"10","16","20","30","40","A2","A3","A4","P4","A50","500","A60","70","80","90","M4","T4","TITAN","L4","4060","H","600","506","507","508","509"}
-set_gpu_numbers=set()
+ok_gpu_keywords = {"10", "16", "20", "30", "40", "A2", "A3", "A4", "P4", "A50", "500", "A60", "70", "80", "90", "M4", "T4", "TITAN", "L4", "4060", "H", "600", "506", "507", "508", "509"}
+set_gpu_numbers = set()
if torch.cuda.is_available() or ngpu != 0:
for i in range(ngpu):
gpu_name = torch.cuda.get_device_name(i)
@@ -85,15 +104,16 @@ if torch.cuda.is_available() or ngpu != 0:
if_gpu_ok = True # 至少有一张能用的N卡
gpu_infos.append("%s\t%s" % (i, gpu_name))
set_gpu_numbers.add(i)
- mem.append(int(torch.cuda.get_device_properties(i).total_memory/ 1024/ 1024/ 1024+ 0.4))
+ mem.append(int(torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024 + 0.4))
# # 判断是否支持mps加速
# if torch.backends.mps.is_available():
# if_gpu_ok = True
# gpu_infos.append("%s\t%s" % ("0", "Apple GPU"))
# mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) # 实测使用系统内存作为显存不会爆显存
+
def set_default():
- global default_batch_size,default_max_batch_size,gpu_info,default_sovits_epoch,default_sovits_save_every_epoch,max_sovits_epoch,max_sovits_save_every_epoch,default_batch_size_s1,if_force_ckpt
+ global default_batch_size, default_max_batch_size, gpu_info, default_sovits_epoch, default_sovits_save_every_epoch, max_sovits_epoch, max_sovits_save_every_epoch, default_batch_size_s1, if_force_ckpt
if_force_ckpt = False
if if_gpu_ok and len(gpu_infos) > 0:
gpu_info = "\n".join(gpu_infos)
@@ -117,49 +137,58 @@ def set_default():
# minmem = 14
# except RuntimeError as _:
# print("显存不足以开启V3训练")
- default_batch_size = minmem // 2 if version!="v3"else minmem//8
- default_batch_size_s1=minmem // 2
+ default_batch_size = minmem // 2 if version != "v3"else minmem // 8
+ default_batch_size_s1 = minmem // 2
else:
gpu_info = ("%s\t%s" % ("0", "CPU"))
gpu_infos.append("%s\t%s" % ("0", "CPU"))
set_gpu_numbers.add(0)
- default_batch_size = default_batch_size_s1 = int(psutil.virtual_memory().total/ 1024 / 1024 / 1024 / 4)
- if version!="v3":
- default_sovits_epoch=8
- default_sovits_save_every_epoch=4
- max_sovits_epoch=25#40
- max_sovits_save_every_epoch=25#10
+ default_batch_size = default_batch_size_s1 = int(psutil.virtual_memory().total / 1024 / 1024 / 1024 / 4)
+ if version != "v3":
+ default_sovits_epoch = 8
+ default_sovits_save_every_epoch = 4
+ max_sovits_epoch = 25 # 40
+ max_sovits_save_every_epoch = 25 # 10
else:
- default_sovits_epoch=2
- default_sovits_save_every_epoch=1
- max_sovits_epoch=3#40
- max_sovits_save_every_epoch=3#10
+ default_sovits_epoch = 2
+ default_sovits_save_every_epoch = 1
+ max_sovits_epoch = 3 # 40
+ max_sovits_save_every_epoch = 3 # 10
default_batch_size = max(1, default_batch_size)
default_batch_size_s1 = max(1, default_batch_size_s1)
default_max_batch_size = default_batch_size * 3
+
set_default()
gpus = "-".join([i[0] for i in gpu_infos])
-default_gpu_numbers=str(sorted(list(set_gpu_numbers))[0])
-def fix_gpu_number(input):#将越界的number强制改到界内
+default_gpu_numbers = str(sorted(list(set_gpu_numbers))[0])
+
+
+def fix_gpu_number(input): # 将越界的number强制改到界内
try:
- if(int(input)not in set_gpu_numbers):return default_gpu_numbers
- except:return input
+ if (int(input)not in set_gpu_numbers):
+ return default_gpu_numbers
+ except:
+ return input
return input
+
+
def fix_gpu_numbers(inputs):
- output=[]
+ output = []
try:
- for input in inputs.split(","):output.append(str(fix_gpu_number(input)))
+ for input in inputs.split(","):
+ output.append(str(fix_gpu_number(input)))
return ",".join(output)
except:
return inputs
-pretrained_sovits_name=["GPT_SoVITS/pretrained_models/s2G488k.pth", "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth","GPT_SoVITS/pretrained_models/s2Gv3.pth"]
-pretrained_gpt_name=["GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt","GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "GPT_SoVITS/pretrained_models/s1v3.ckpt"]
-pretrained_model_list = (pretrained_sovits_name[int(version[-1])-1],pretrained_sovits_name[int(version[-1])-1].replace("s2G","s2D"),pretrained_gpt_name[int(version[-1])-1],"GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large","GPT_SoVITS/pretrained_models/chinese-hubert-base")
+pretrained_sovits_name = ["GPT_SoVITS/pretrained_models/s2G488k.pth", "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", "GPT_SoVITS/pretrained_models/s2Gv3.pth"]
+pretrained_gpt_name = ["GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "GPT_SoVITS/pretrained_models/s1v3.ckpt"]
+
+pretrained_model_list = (pretrained_sovits_name[int(version[-1]) - 1], pretrained_sovits_name[int(version[-1]) - 1].replace("s2G", "s2D"), pretrained_gpt_name[int(version[-1]) - 1], "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", "GPT_SoVITS/pretrained_models/chinese-hubert-base")
_ = ''
for i in pretrained_model_list:
@@ -168,32 +197,42 @@ for i in pretrained_model_list:
if _:
print("warning: ", i18n('以下模型不存在:') + _)
-_ = [[],[]]
+_ = [[], []]
for i in range(3):
- if os.path.exists(pretrained_gpt_name[i]):_[0].append(pretrained_gpt_name[i])
- else:_[0].append("")##没有下pretrained模型的,说不定他们是想自己从零训底模呢
- if os.path.exists(pretrained_sovits_name[i]):_[-1].append(pretrained_sovits_name[i])
- else:_[-1].append("")
-pretrained_gpt_name,pretrained_sovits_name = _
+ if os.path.exists(pretrained_gpt_name[i]):
+ _[0].append(pretrained_gpt_name[i])
+ else:
+ _[0].append("") # 没有下pretrained模型的,说不定他们是想自己从零训底模呢
+ if os.path.exists(pretrained_sovits_name[i]):
+ _[-1].append(pretrained_sovits_name[i])
+ else:
+ _[-1].append("")
+pretrained_gpt_name, pretrained_sovits_name = _
+
+SoVITS_weight_root = ["SoVITS_weights", "SoVITS_weights_v2", "SoVITS_weights_v3"]
+GPT_weight_root = ["GPT_weights", "GPT_weights_v2", "GPT_weights_v3"]
+for root in SoVITS_weight_root + GPT_weight_root:
+ os.makedirs(root, exist_ok=True)
+
-SoVITS_weight_root=["SoVITS_weights","SoVITS_weights_v2","SoVITS_weights_v3"]
-GPT_weight_root=["GPT_weights","GPT_weights_v2","GPT_weights_v3"]
-for root in SoVITS_weight_root+GPT_weight_root:
- os.makedirs(root,exist_ok=True)
def get_weights_names():
- SoVITS_names = [name for name in pretrained_sovits_name if name!=""]
+ SoVITS_names = [name for name in pretrained_sovits_name if name != ""]
for path in SoVITS_weight_root:
for name in os.listdir(path):
- if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (path, name))
- GPT_names = [name for name in pretrained_gpt_name if name!=""]
+ if name.endswith(".pth"):
+ SoVITS_names.append("%s/%s" % (path, name))
+ GPT_names = [name for name in pretrained_gpt_name if name != ""]
for path in GPT_weight_root:
for name in os.listdir(path):
- if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (path, name))
+ if name.endswith(".ckpt"):
+ GPT_names.append("%s/%s" % (path, name))
return SoVITS_names, GPT_names
-SoVITS_names,GPT_names = get_weights_names()
-for path in SoVITS_weight_root+GPT_weight_root:
- os.makedirs(path,exist_ok=True)
+
+SoVITS_names, GPT_names = get_weights_names()
+for path in SoVITS_weight_root + GPT_weight_root:
+ os.makedirs(path, exist_ok=True)
+
def custom_sort_key(s):
# 使用正则表达式提取字符串中的数字部分和非数字部分
@@ -202,15 +241,18 @@ def custom_sort_key(s):
parts = [int(part) if part.isdigit() else part for part in parts]
return parts
+
def change_choices():
SoVITS_names, GPT_names = get_weights_names()
- return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"}
+ return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
+
+
+p_label = None
+p_uvr5 = None
+p_asr = None
+p_denoise = None
+p_tts_inference = None
-p_label=None
-p_uvr5=None
-p_asr=None
-p_denoise=None
-p_tts_inference=None
def kill_proc_tree(pid, including_parent=True):
try:
@@ -231,16 +273,20 @@ def kill_proc_tree(pid, including_parent=True):
except OSError:
pass
-system=platform.system()
+
+system = platform.system()
+
+
def kill_process(pid, process_name=""):
- if(system=="Windows"):
+ if (system == "Windows"):
cmd = "taskkill /t /f /pid %s" % pid
# os.system(cmd)
- subprocess.run(cmd,shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
+ subprocess.run(cmd, shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
else:
kill_proc_tree(pid)
print(process_name + i18n("进程已终止"))
+
def process_info(process_name="", indicator=""):
if indicator == "opened":
return process_name + i18n("已开启")
@@ -263,69 +309,79 @@ def process_info(process_name="", indicator=""):
else:
return process_name
+
process_name_subfix = i18n("音频标注WebUI")
+
+
def change_label(path_list):
global p_label
if p_label is None:
check_for_existance([path_list])
path_list = my_utils.clean_path(path_list)
- cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s --is_share %s'%(python_exec,path_list,webui_port_subfix,is_share)
- yield process_info(process_name_subfix, "opened"), {'__type__':'update','visible':False}, {'__type__':'update','visible':True}
+ cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s --is_share %s' % (python_exec, path_list, webui_port_subfix, is_share)
+ yield process_info(process_name_subfix, "opened"), {'__type__': 'update', 'visible': False}, {'__type__': 'update', 'visible': True}
print(cmd)
p_label = Popen(cmd, shell=True)
else:
kill_process(p_label.pid, process_name_subfix)
p_label = None
- yield process_info(process_name_subfix, "closed"), {'__type__':'update','visible':True}, {'__type__':'update','visible':False}
+ yield process_info(process_name_subfix, "closed"), {'__type__': 'update', 'visible': True}, {'__type__': 'update', 'visible': False}
+
process_name_uvr5 = i18n("人声分离WebUI")
+
+
def change_uvr5():
global p_uvr5
if p_uvr5 is None:
- cmd = '"%s" tools/uvr5/webui.py "%s" %s %s %s'%(python_exec,infer_device,is_half,webui_port_uvr5,is_share)
- yield process_info(process_name_uvr5, "opened"), {'__type__':'update','visible':False}, {'__type__':'update','visible':True}
+ cmd = '"%s" tools/uvr5/webui.py "%s" %s %s %s' % (python_exec, infer_device, is_half, webui_port_uvr5, is_share)
+ yield process_info(process_name_uvr5, "opened"), {'__type__': 'update', 'visible': False}, {'__type__': 'update', 'visible': True}
print(cmd)
p_uvr5 = Popen(cmd, shell=True)
else:
kill_process(p_uvr5.pid, process_name_uvr5)
p_uvr5 = None
- yield process_info(process_name_uvr5, "closed"), {'__type__':'update','visible':True}, {'__type__':'update','visible':False}
+ yield process_info(process_name_uvr5, "closed"), {'__type__': 'update', 'visible': True}, {'__type__': 'update', 'visible': False}
+
process_name_tts = i18n("TTS推理WebUI")
-def change_tts_inference(bert_path,cnhubert_base_path,gpu_number,gpt_path,sovits_path, batched_infer_enabled):
+
+
+def change_tts_inference(bert_path, cnhubert_base_path, gpu_number, gpt_path, sovits_path, batched_infer_enabled):
global p_tts_inference
if batched_infer_enabled:
- cmd = '"%s" GPT_SoVITS/inference_webui_fast.py "%s"'%(python_exec, language)
+ cmd = '"%s" GPT_SoVITS/inference_webui_fast.py "%s"' % (python_exec, language)
else:
- cmd = '"%s" GPT_SoVITS/inference_webui.py "%s"'%(python_exec, language)
- #####v3暂不支持加速推理
- if version=="v3":
- cmd = '"%s" GPT_SoVITS/inference_webui.py "%s"'%(python_exec, language)
+ cmd = '"%s" GPT_SoVITS/inference_webui.py "%s"' % (python_exec, language)
+ # v3暂不支持加速推理
+ if version == "v3":
+ cmd = '"%s" GPT_SoVITS/inference_webui.py "%s"' % (python_exec, language)
if p_tts_inference is None:
- os.environ["gpt_path"]=gpt_path if "/" in gpt_path else "%s/%s"%(GPT_weight_root,gpt_path)
- os.environ["sovits_path"]=sovits_path if "/"in sovits_path else "%s/%s"%(SoVITS_weight_root,sovits_path)
- os.environ["cnhubert_base_path"]=cnhubert_base_path
- os.environ["bert_path"]=bert_path
- os.environ["_CUDA_VISIBLE_DEVICES"]=fix_gpu_number(gpu_number)
- os.environ["is_half"]=str(is_half)
- os.environ["infer_ttswebui"]=str(webui_port_infer_tts)
- os.environ["is_share"]=str(is_share)
- yield process_info(process_name_tts, "opened"), {'__type__':'update','visible':False}, {'__type__':'update','visible':True}
+ os.environ["gpt_path"] = gpt_path if "/" in gpt_path else "%s/%s" % (GPT_weight_root, gpt_path)
+ os.environ["sovits_path"] = sovits_path if "/" in sovits_path else "%s/%s" % (SoVITS_weight_root, sovits_path)
+ os.environ["cnhubert_base_path"] = cnhubert_base_path
+ os.environ["bert_path"] = bert_path
+ os.environ["_CUDA_VISIBLE_DEVICES"] = fix_gpu_number(gpu_number)
+ os.environ["is_half"] = str(is_half)
+ os.environ["infer_ttswebui"] = str(webui_port_infer_tts)
+ os.environ["is_share"] = str(is_share)
+ yield process_info(process_name_tts, "opened"), {'__type__': 'update', 'visible': False}, {'__type__': 'update', 'visible': True}
print(cmd)
p_tts_inference = Popen(cmd, shell=True)
else:
kill_process(p_tts_inference.pid, process_name_tts)
p_tts_inference = None
- yield process_info(process_name_tts, "closed"), {'__type__':'update','visible':True}, {'__type__':'update','visible':False}
+ yield process_info(process_name_tts, "closed"), {'__type__': 'update', 'visible': True}, {'__type__': 'update', 'visible': False}
-from tools.asr.config import asr_dict
process_name_asr = i18n("语音识别")
+
+
def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang, asr_precision):
global p_asr
if p_asr is None:
- asr_inp_dir=my_utils.clean_path(asr_inp_dir)
- asr_opt_dir=my_utils.clean_path(asr_opt_dir)
+ asr_inp_dir = my_utils.clean_path(asr_inp_dir)
+ asr_opt_dir = my_utils.clean_path(asr_opt_dir)
check_for_existance([asr_inp_dir])
cmd = f'"{python_exec}" tools/asr/{asr_dict[asr_model]["path"]}'
cmd += f' -i "{asr_inp_dir}"'
@@ -345,6 +401,7 @@ def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang, asr_
else:
yield process_info(process_name_asr, "occupy"), {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
+
def close_asr():
global p_asr
if p_asr is not None:
@@ -352,24 +409,28 @@ def close_asr():
p_asr = None
return process_info(process_name_asr, "closed"), {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
+
process_name_denoise = i18n("语音降噪")
+
+
def open_denoise(denoise_inp_dir, denoise_opt_dir):
global p_denoise
- if(p_denoise==None):
- denoise_inp_dir=my_utils.clean_path(denoise_inp_dir)
- denoise_opt_dir=my_utils.clean_path(denoise_opt_dir)
+ if (p_denoise == None):
+ denoise_inp_dir = my_utils.clean_path(denoise_inp_dir)
+ denoise_opt_dir = my_utils.clean_path(denoise_opt_dir)
check_for_existance([denoise_inp_dir])
- cmd = '"%s" tools/cmd-denoise.py -i "%s" -o "%s" -p %s'%(python_exec,denoise_inp_dir,denoise_opt_dir,"float16"if is_half==True else "float32")
+ cmd = '"%s" tools/cmd-denoise.py -i "%s" -o "%s" -p %s' % (python_exec, denoise_inp_dir, denoise_opt_dir, "float16"if is_half == True else "float32")
yield process_info(process_name_denoise, "opened"), {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}, {"__type__": "update"}, {"__type__": "update"}
print(cmd)
p_denoise = Popen(cmd, shell=True)
p_denoise.wait()
- p_denoise=None
+ p_denoise = None
yield process_info(process_name_denoise, "finish"), {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}, {"__type__": "update", "value": denoise_opt_dir}, {"__type__": "update", "value": denoise_opt_dir}
else:
yield process_info(process_name_denoise, "occupy"), {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}, {"__type__": "update"}, {"__type__": "update"}
+
def close_denoise():
global p_denoise
if p_denoise is not None:
@@ -377,43 +438,47 @@ def close_denoise():
p_denoise = None
return process_info(process_name_denoise, "closed"), {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
-p_train_SoVITS=None
+
+p_train_SoVITS = None
process_name_sovits = i18n("SoVITS训练")
-def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D,if_grad_ckpt,lora_rank):
+
+
+def open1Ba(batch_size, total_epoch, exp_name, text_low_lr_rate, if_save_latest, if_save_every_weights, save_every_epoch, gpu_numbers1Ba, pretrained_s2G, pretrained_s2D, if_grad_ckpt, lora_rank):
global p_train_SoVITS
- if(p_train_SoVITS==None):
+ if (p_train_SoVITS == None):
with open("GPT_SoVITS/configs/s2.json")as f:
- data=f.read()
- data=json.loads(data)
- s2_dir="%s/%s"%(exp_root,exp_name)
- os.makedirs("%s/logs_s2_%s"%(s2_dir,version),exist_ok=True)
- if check_for_existance([s2_dir],is_train=True):
- check_details([s2_dir],is_train=True)
- if(is_half==False):
- data["train"]["fp16_run"]=False
- batch_size=max(1,batch_size//2)
- data["train"]["batch_size"]=batch_size
- data["train"]["epochs"]=total_epoch
- data["train"]["text_low_lr_rate"]=text_low_lr_rate
- data["train"]["pretrained_s2G"]=pretrained_s2G
- data["train"]["pretrained_s2D"]=pretrained_s2D
- data["train"]["if_save_latest"]=if_save_latest
- data["train"]["if_save_every_weights"]=if_save_every_weights
- data["train"]["save_every_epoch"]=save_every_epoch
- data["train"]["gpu_numbers"]=gpu_numbers1Ba
- data["train"]["grad_ckpt"]=if_grad_ckpt
- data["train"]["lora_rank"]=lora_rank
- data["model"]["version"]=version
- data["data"]["exp_dir"]=data["s2_ckpt_dir"]=s2_dir
- data["save_weight_dir"]=SoVITS_weight_root[int(version[-1])-1]
- data["name"]=exp_name
- data["version"]=version
- tmp_config_path="%s/tmp_s2.json"%tmp
- with open(tmp_config_path,"w")as f:f.write(json.dumps(data))
- if version in ["v1","v2"]:
- cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"'%(python_exec,tmp_config_path)
+ data = f.read()
+ data = json.loads(data)
+ s2_dir = "%s/%s" % (exp_root, exp_name)
+ os.makedirs("%s/logs_s2_%s" % (s2_dir, version), exist_ok=True)
+ if check_for_existance([s2_dir], is_train=True):
+ check_details([s2_dir], is_train=True)
+ if (is_half == False):
+ data["train"]["fp16_run"] = False
+ batch_size = max(1, batch_size // 2)
+ data["train"]["batch_size"] = batch_size
+ data["train"]["epochs"] = total_epoch
+ data["train"]["text_low_lr_rate"] = text_low_lr_rate
+ data["train"]["pretrained_s2G"] = pretrained_s2G
+ data["train"]["pretrained_s2D"] = pretrained_s2D
+ data["train"]["if_save_latest"] = if_save_latest
+ data["train"]["if_save_every_weights"] = if_save_every_weights
+ data["train"]["save_every_epoch"] = save_every_epoch
+ data["train"]["gpu_numbers"] = gpu_numbers1Ba
+ data["train"]["grad_ckpt"] = if_grad_ckpt
+ data["train"]["lora_rank"] = lora_rank
+ data["model"]["version"] = version
+ data["data"]["exp_dir"] = data["s2_ckpt_dir"] = s2_dir
+ data["save_weight_dir"] = SoVITS_weight_root[int(version[-1]) - 1]
+ data["name"] = exp_name
+ data["version"] = version
+ tmp_config_path = "%s/tmp_s2.json" % tmp
+ with open(tmp_config_path, "w")as f:
+ f.write(json.dumps(data))
+ if version in ["v1", "v2"]:
+ cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"' % (python_exec, tmp_config_path)
else:
- cmd = '"%s" GPT_SoVITS/s2_train_v3_lora.py --config "%s"'%(python_exec,tmp_config_path)
+ cmd = '"%s" GPT_SoVITS/s2_train_v3_lora.py --config "%s"' % (python_exec, tmp_config_path)
yield process_info(process_name_sovits, "opened"), {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
print(cmd)
p_train_SoVITS = Popen(cmd, shell=True)
@@ -423,6 +488,7 @@ def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_s
else:
yield process_info(process_name_sovits, "occupy"), {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+
def close1Ba():
global p_train_SoVITS
if p_train_SoVITS is not None:
@@ -430,41 +496,45 @@ def close1Ba():
p_train_SoVITS = None
return process_info(process_name_sovits, "closed"), {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
-p_train_GPT=None
+
+p_train_GPT = None
process_name_gpt = i18n("GPT训练")
-def open1Bb(batch_size,total_epoch,exp_name,if_dpo,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers,pretrained_s1):
+
+
+def open1Bb(batch_size, total_epoch, exp_name, if_dpo, if_save_latest, if_save_every_weights, save_every_epoch, gpu_numbers, pretrained_s1):
global p_train_GPT
- if(p_train_GPT==None):
- with open("GPT_SoVITS/configs/s1longer.yaml"if version=="v1"else "GPT_SoVITS/configs/s1longer-v2.yaml")as f:
- data=f.read()
- data=yaml.load(data, Loader=yaml.FullLoader)
- s1_dir="%s/%s"%(exp_root,exp_name)
- os.makedirs("%s/logs_s1"%(s1_dir),exist_ok=True)
- if check_for_existance([s1_dir],is_train=True):
- check_details([s1_dir],is_train=True)
- if(is_half==False):
- data["train"]["precision"]="32"
+ if (p_train_GPT == None):
+ with open("GPT_SoVITS/configs/s1longer.yaml"if version == "v1"else "GPT_SoVITS/configs/s1longer-v2.yaml")as f:
+ data = f.read()
+ data = yaml.load(data, Loader=yaml.FullLoader)
+ s1_dir = "%s/%s" % (exp_root, exp_name)
+ os.makedirs("%s/logs_s1" % (s1_dir), exist_ok=True)
+ if check_for_existance([s1_dir], is_train=True):
+ check_details([s1_dir], is_train=True)
+ if (is_half == False):
+ data["train"]["precision"] = "32"
batch_size = max(1, batch_size // 2)
- data["train"]["batch_size"]=batch_size
- data["train"]["epochs"]=total_epoch
- data["pretrained_s1"]=pretrained_s1
- data["train"]["save_every_n_epoch"]=save_every_epoch
- data["train"]["if_save_every_weights"]=if_save_every_weights
- data["train"]["if_save_latest"]=if_save_latest
- data["train"]["if_dpo"]=if_dpo
- data["train"]["half_weights_save_dir"]=GPT_weight_root[int(version[-1])-1]
- data["train"]["exp_name"]=exp_name
- data["train_semantic_path"]="%s/6-name2semantic.tsv"%s1_dir
- data["train_phoneme_path"]="%s/2-name2text.txt"%s1_dir
- data["output_dir"]="%s/logs_s1_%s"%(s1_dir,version)
+ data["train"]["batch_size"] = batch_size
+ data["train"]["epochs"] = total_epoch
+ data["pretrained_s1"] = pretrained_s1
+ data["train"]["save_every_n_epoch"] = save_every_epoch
+ data["train"]["if_save_every_weights"] = if_save_every_weights
+ data["train"]["if_save_latest"] = if_save_latest
+ data["train"]["if_dpo"] = if_dpo
+ data["train"]["half_weights_save_dir"] = GPT_weight_root[int(version[-1]) - 1]
+ data["train"]["exp_name"] = exp_name
+ data["train_semantic_path"] = "%s/6-name2semantic.tsv" % s1_dir
+ data["train_phoneme_path"] = "%s/2-name2text.txt" % s1_dir
+ data["output_dir"] = "%s/logs_s1_%s" % (s1_dir, version)
# data["version"]=version
- os.environ["_CUDA_VISIBLE_DEVICES"]=fix_gpu_numbers(gpu_numbers.replace("-",","))
- os.environ["hz"]="25hz"
- tmp_config_path="%s/tmp_s1.yaml"%tmp
- with open(tmp_config_path, "w") as f:f.write(yaml.dump(data, default_flow_style=False))
+ os.environ["_CUDA_VISIBLE_DEVICES"] = fix_gpu_numbers(gpu_numbers.replace("-", ","))
+ os.environ["hz"] = "25hz"
+ tmp_config_path = "%s/tmp_s1.yaml" % tmp
+ with open(tmp_config_path, "w") as f:
+ f.write(yaml.dump(data, default_flow_style=False))
# cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" --train_semantic_path "%s/6-name2semantic.tsv" --train_phoneme_path "%s/2-name2text.txt" --output_dir "%s/logs_s1"'%(python_exec,tmp_config_path,s1_dir,s1_dir,s1_dir)
- cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" '%(python_exec,tmp_config_path)
+ cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" ' % (python_exec, tmp_config_path)
yield process_info(process_name_gpt, "opened"), {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
print(cmd)
p_train_GPT = Popen(cmd, shell=True)
@@ -474,6 +544,7 @@ def open1Bb(batch_size,total_epoch,exp_name,if_dpo,if_save_latest,if_save_every_
else:
yield process_info(process_name_gpt, "occupy"), {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+
def close1Bb():
global p_train_GPT
if p_train_GPT is not None:
@@ -481,35 +552,41 @@ def close1Bb():
p_train_GPT = None
return process_info(process_name_gpt, "closed"), {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
-ps_slice=[]
+
+ps_slice = []
process_name_slice = i18n("语音切分")
-def open_slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_parts):
+
+
+def open_slice(inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, n_parts):
global ps_slice
inp = my_utils.clean_path(inp)
opt_root = my_utils.clean_path(opt_root)
check_for_existance([inp])
- if(os.path.exists(inp)==False):
+ if (os.path.exists(inp) == False):
yield i18n("输入路径不存在"), {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
return
- if os.path.isfile(inp):n_parts=1
- elif os.path.isdir(inp):pass
+ if os.path.isfile(inp):
+ n_parts = 1
+ elif os.path.isdir(inp):
+ pass
else:
yield i18n("输入路径存在但不可用"), {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
return
if (ps_slice == []):
for i_part in range(n_parts):
- cmd = '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s''' % (python_exec,inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, i_part, n_parts)
+ cmd = '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s''' % (python_exec, inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, i_part, n_parts)
print(cmd)
p = Popen(cmd, shell=True)
ps_slice.append(p)
yield process_info(process_name_slice, "opened"), {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
for p in ps_slice:
p.wait()
- ps_slice=[]
+ ps_slice = []
yield process_info(process_name_slice, "finish"), {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}, {"__type__": "update", "value": opt_root}, {"__type__": "update", "value": opt_root}, {"__type__": "update", "value": opt_root}
else:
yield process_info(process_name_slice, "occupy"), {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
+
def close_slice():
global ps_slice
if (ps_slice != []):
@@ -518,28 +595,31 @@ def close_slice():
kill_process(p_slice.pid, process_name_slice)
except:
traceback.print_exc()
- ps_slice=[]
+ ps_slice = []
return process_info(process_name_slice, "closed"), {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
-ps1a=[]
+
+ps1a = []
process_name_1a = i18n("文本分词与特征提取")
-def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir):
+
+
+def open1a(inp_text, inp_wav_dir, exp_name, gpu_numbers, bert_pretrained_dir):
global ps1a
inp_text = my_utils.clean_path(inp_text)
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
- if check_for_existance([inp_text,inp_wav_dir], is_dataset_processing=True):
- check_details([inp_text,inp_wav_dir], is_dataset_processing=True)
+ if check_for_existance([inp_text, inp_wav_dir], is_dataset_processing=True):
+ check_details([inp_text, inp_wav_dir], is_dataset_processing=True)
if (ps1a == []):
- opt_dir="%s/%s"%(exp_root,exp_name)
- config={
- "inp_text":inp_text,
- "inp_wav_dir":inp_wav_dir,
- "exp_name":exp_name,
- "opt_dir":opt_dir,
- "bert_pretrained_dir":bert_pretrained_dir,
+ opt_dir = "%s/%s" % (exp_root, exp_name)
+ config = {
+ "inp_text": inp_text,
+ "inp_wav_dir": inp_wav_dir,
+ "exp_name": exp_name,
+ "opt_dir": opt_dir,
+ "bert_pretrained_dir": bert_pretrained_dir,
}
- gpu_names=gpu_numbers.split("-")
- all_parts=len(gpu_names)
+ gpu_names = gpu_numbers.split("-")
+ all_parts = len(gpu_names)
for i_part in range(all_parts):
config.update(
{
@@ -550,7 +630,7 @@ def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir):
}
)
os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
+ cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py' % python_exec
print(cmd)
p = Popen(cmd, shell=True)
ps1a.append(p)
@@ -566,7 +646,7 @@ def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir):
path_text = "%s/2-name2text.txt" % opt_dir
with open(path_text, "w", encoding="utf8") as f:
f.write("\n".join(opt) + "\n")
- ps1a=[]
+ ps1a = []
if len("".join(opt)) > 0:
yield process_info(process_name_1a, "finish"), {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
else:
@@ -574,6 +654,7 @@ def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir):
else:
yield process_info(process_name_1a, "occupy"), {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+
def close1a():
global ps1a
if ps1a != []:
@@ -585,25 +666,28 @@ def close1a():
ps1a = []
return process_info(process_name_1a, "closed"), {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
-ps1b=[]
+
+ps1b = []
process_name_1b = i18n("语音自监督特征提取")
-def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir):
+
+
+def open1b(inp_text, inp_wav_dir, exp_name, gpu_numbers, ssl_pretrained_dir):
global ps1b
inp_text = my_utils.clean_path(inp_text)
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
- if check_for_existance([inp_text,inp_wav_dir], is_dataset_processing=True):
- check_details([inp_text,inp_wav_dir], is_dataset_processing=True)
+ if check_for_existance([inp_text, inp_wav_dir], is_dataset_processing=True):
+ check_details([inp_text, inp_wav_dir], is_dataset_processing=True)
if (ps1b == []):
- config={
- "inp_text":inp_text,
- "inp_wav_dir":inp_wav_dir,
- "exp_name":exp_name,
- "opt_dir": "%s/%s"%(exp_root,exp_name),
- "cnhubert_base_dir":ssl_pretrained_dir,
+ config = {
+ "inp_text": inp_text,
+ "inp_wav_dir": inp_wav_dir,
+ "exp_name": exp_name,
+ "opt_dir": "%s/%s" % (exp_root, exp_name),
+ "cnhubert_base_dir": ssl_pretrained_dir,
"is_half": str(is_half)
}
- gpu_names=gpu_numbers.split("-")
- all_parts=len(gpu_names)
+ gpu_names = gpu_numbers.split("-")
+ all_parts = len(gpu_names)
for i_part in range(all_parts):
config.update(
{
@@ -613,18 +697,19 @@ def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir):
}
)
os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
+ cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py' % python_exec
print(cmd)
p = Popen(cmd, shell=True)
ps1b.append(p)
yield process_info(process_name_1b, "running"), {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
for p in ps1b:
p.wait()
- ps1b=[]
+ ps1b = []
yield process_info(process_name_1b, "finish"), {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
else:
yield process_info(process_name_1b, "occupy"), {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+
def close1b():
global ps1b
if (ps1b != []):
@@ -633,28 +718,31 @@ def close1b():
kill_process(p1b.pid, process_name_1b)
except:
traceback.print_exc()
- ps1b=[]
+ ps1b = []
return process_info(process_name_1b, "closed"), {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
-ps1c=[]
+
+ps1c = []
process_name_1c = i18n("语义Token提取")
-def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path):
+
+
+def open1c(inp_text, exp_name, gpu_numbers, pretrained_s2G_path):
global ps1c
inp_text = my_utils.clean_path(inp_text)
- if check_for_existance([inp_text,''], is_dataset_processing=True):
- check_details([inp_text,''], is_dataset_processing=True)
+ if check_for_existance([inp_text, ''], is_dataset_processing=True):
+ check_details([inp_text, ''], is_dataset_processing=True)
if (ps1c == []):
- opt_dir="%s/%s"%(exp_root,exp_name)
- config={
- "inp_text":inp_text,
- "exp_name":exp_name,
- "opt_dir":opt_dir,
- "pretrained_s2G":pretrained_s2G_path,
- "s2config_path":"GPT_SoVITS/configs/s2.json",
+ opt_dir = "%s/%s" % (exp_root, exp_name)
+ config = {
+ "inp_text": inp_text,
+ "exp_name": exp_name,
+ "opt_dir": opt_dir,
+ "pretrained_s2G": pretrained_s2G_path,
+ "s2config_path": "GPT_SoVITS/configs/s2.json",
"is_half": str(is_half)
}
- gpu_names=gpu_numbers.split("-")
- all_parts=len(gpu_names)
+ gpu_names = gpu_numbers.split("-")
+ all_parts = len(gpu_names)
for i_part in range(all_parts):
config.update(
{
@@ -664,7 +752,7 @@ def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path):
}
)
os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
+ cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py' % python_exec
print(cmd)
p = Popen(cmd, shell=True)
ps1c.append(p)
@@ -680,11 +768,12 @@ def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path):
os.remove(semantic_path)
with open(path_semantic, "w", encoding="utf8") as f:
f.write("\n".join(opt) + "\n")
- ps1c=[]
+ ps1c = []
yield process_info(process_name_1c, "finish"), {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
else:
yield process_info(process_name_1c, "occupy"), {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+
def close1c():
global ps1c
if (ps1c != []):
@@ -693,33 +782,36 @@ def close1c():
kill_process(p1c.pid, process_name_1c)
except:
traceback.print_exc()
- ps1c=[]
+ ps1c = []
return process_info(process_name_1c, "closed"), {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
-ps1abc=[]
+
+ps1abc = []
process_name_1abc = i18n("训练集格式化一键三连")
-def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,ssl_pretrained_dir,pretrained_s2G_path):
+
+
+def open1abc(inp_text, inp_wav_dir, exp_name, gpu_numbers1a, gpu_numbers1Ba, gpu_numbers1c, bert_pretrained_dir, ssl_pretrained_dir, pretrained_s2G_path):
global ps1abc
inp_text = my_utils.clean_path(inp_text)
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
- if check_for_existance([inp_text,inp_wav_dir], is_dataset_processing=True):
- check_details([inp_text,inp_wav_dir], is_dataset_processing=True)
+ if check_for_existance([inp_text, inp_wav_dir], is_dataset_processing=True):
+ check_details([inp_text, inp_wav_dir], is_dataset_processing=True)
if (ps1abc == []):
- opt_dir="%s/%s"%(exp_root,exp_name)
+ opt_dir = "%s/%s" % (exp_root, exp_name)
try:
- #############################1a
- path_text="%s/2-name2text.txt" % opt_dir
- if(os.path.exists(path_text)==False or (os.path.exists(path_text)==True and len(open(path_text,"r",encoding="utf8").read().strip("\n").split("\n"))<2)):
- config={
- "inp_text":inp_text,
- "inp_wav_dir":inp_wav_dir,
- "exp_name":exp_name,
- "opt_dir":opt_dir,
- "bert_pretrained_dir":bert_pretrained_dir,
+ # 1a
+ path_text = "%s/2-name2text.txt" % opt_dir
+ if (os.path.exists(path_text) == False or (os.path.exists(path_text) == True and len(open(path_text, "r", encoding="utf8").read().strip("\n").split("\n")) < 2)):
+ config = {
+ "inp_text": inp_text,
+ "inp_wav_dir": inp_wav_dir,
+ "exp_name": exp_name,
+ "opt_dir": opt_dir,
+ "bert_pretrained_dir": bert_pretrained_dir,
"is_half": str(is_half)
}
- gpu_names=gpu_numbers1a.split("-")
- all_parts=len(gpu_names)
+ gpu_names = gpu_numbers1a.split("-")
+ all_parts = len(gpu_names)
for i_part in range(all_parts):
config.update(
{
@@ -729,34 +821,35 @@ def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numb
}
)
os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
+ cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py' % python_exec
print(cmd)
p = Popen(cmd, shell=True)
ps1abc.append(p)
yield i18n("进度") + ": 1A-Doing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- for p in ps1abc:p.wait()
+ for p in ps1abc:
+ p.wait()
opt = []
- for i_part in range(all_parts):#txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part)
+ for i_part in range(all_parts): # txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part)
txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
- with open(txt_path, "r",encoding="utf8") as f:
+ with open(txt_path, "r", encoding="utf8") as f:
opt += f.read().strip("\n").split("\n")
os.remove(txt_path)
- with open(path_text, "w",encoding="utf8") as f:
+ with open(path_text, "w", encoding="utf8") as f:
f.write("\n".join(opt) + "\n")
assert len("".join(opt)) > 0, process_info(process_name_1a, "failed")
yield i18n("进度") + ": 1A-Done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- ps1abc=[]
- #############################1b
- config={
- "inp_text":inp_text,
- "inp_wav_dir":inp_wav_dir,
- "exp_name":exp_name,
- "opt_dir":opt_dir,
- "cnhubert_base_dir":ssl_pretrained_dir,
+ ps1abc = []
+ # 1b
+ config = {
+ "inp_text": inp_text,
+ "inp_wav_dir": inp_wav_dir,
+ "exp_name": exp_name,
+ "opt_dir": opt_dir,
+ "cnhubert_base_dir": ssl_pretrained_dir,
}
- gpu_names=gpu_numbers1Ba.split("-")
- all_parts=len(gpu_names)
+ gpu_names = gpu_numbers1Ba.split("-")
+ all_parts = len(gpu_names)
for i_part in range(all_parts):
config.update(
{
@@ -766,26 +859,27 @@ def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numb
}
)
os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
+ cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py' % python_exec
print(cmd)
p = Popen(cmd, shell=True)
ps1abc.append(p)
yield i18n("进度") + ": 1A-Done, 1B-Doing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- for p in ps1abc:p.wait()
+ for p in ps1abc:
+ p.wait()
yield i18n("进度") + ": 1A-Done, 1B-Done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- ps1abc=[]
- #############################1c
+ ps1abc = []
+ # 1c
path_semantic = "%s/6-name2semantic.tsv" % opt_dir
- if(os.path.exists(path_semantic)==False or (os.path.exists(path_semantic)==True and os.path.getsize(path_semantic)<31)):
- config={
- "inp_text":inp_text,
- "exp_name":exp_name,
- "opt_dir":opt_dir,
- "pretrained_s2G":pretrained_s2G_path,
- "s2config_path":"GPT_SoVITS/configs/s2.json",
+ if (os.path.exists(path_semantic) == False or (os.path.exists(path_semantic) == True and os.path.getsize(path_semantic) < 31)):
+ config = {
+ "inp_text": inp_text,
+ "exp_name": exp_name,
+ "opt_dir": opt_dir,
+ "pretrained_s2G": pretrained_s2G_path,
+ "s2config_path": "GPT_SoVITS/configs/s2.json",
}
- gpu_names=gpu_numbers1c.split("-")
- all_parts=len(gpu_names)
+ gpu_names = gpu_numbers1c.split("-")
+ all_parts = len(gpu_names)
for i_part in range(all_parts):
config.update(
{
@@ -795,20 +889,21 @@ def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numb
}
)
os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
+ cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py' % python_exec
print(cmd)
p = Popen(cmd, shell=True)
ps1abc.append(p)
yield i18n("进度") + ": 1A-Done, 1B-Done, 1C-Doing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- for p in ps1abc:p.wait()
+ for p in ps1abc:
+ p.wait()
opt = ["item_name\tsemantic_audio"]
for i_part in range(all_parts):
semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
- with open(semantic_path, "r",encoding="utf8") as f:
+ with open(semantic_path, "r", encoding="utf8") as f:
opt += f.read().strip("\n").split("\n")
os.remove(semantic_path)
- with open(path_semantic, "w",encoding="utf8") as f:
+ with open(path_semantic, "w", encoding="utf8") as f:
f.write("\n".join(opt) + "\n")
yield i18n("进度") + ": 1A-Done, 1B-Done, 1C-Done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
ps1abc = []
@@ -820,6 +915,7 @@ def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numb
else:
yield process_info(process_name_1abc, "occupy"), {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+
def close1abc():
global ps1abc
if (ps1abc != []):
@@ -828,92 +924,96 @@ def close1abc():
kill_process(p1abc.pid, process_name_1abc)
except:
traceback.print_exc()
- ps1abc=[]
+ ps1abc = []
return process_info(process_name_1abc, "closed"), {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
+
def switch_version(version_):
- os.environ["version"]=version_
+ os.environ["version"] = version_
global version
version = version_
- if pretrained_sovits_name[int(version[-1])-1] !='' and pretrained_gpt_name[int(version[-1])-1] !='':...
+ if pretrained_sovits_name[int(version[-1]) - 1] != '' and pretrained_gpt_name[int(version[-1]) - 1] != '':
+ ...
else:
gr.Warning(i18n('未下载模型') + ": " + version.upper())
set_default()
- return {'__type__': 'update', 'value': pretrained_sovits_name[int(version[-1])-1]}, \
- {'__type__': 'update', 'value': pretrained_sovits_name[int(version[-1])-1].replace("s2G","s2D")}, \
- {'__type__': 'update', 'value': pretrained_gpt_name[int(version[-1])-1]}, \
- {'__type__': 'update', 'value': pretrained_gpt_name[int(version[-1])-1]}, \
- {'__type__': 'update', 'value': pretrained_sovits_name[int(version[-1])-1]}, \
+ return {'__type__': 'update', 'value': pretrained_sovits_name[int(version[-1]) - 1]}, \
+ {'__type__': 'update', 'value': pretrained_sovits_name[int(version[-1]) - 1].replace("s2G", "s2D")}, \
+ {'__type__': 'update', 'value': pretrained_gpt_name[int(version[-1]) - 1]}, \
+ {'__type__': 'update', 'value': pretrained_gpt_name[int(version[-1]) - 1]}, \
+ {'__type__': 'update', 'value': pretrained_sovits_name[int(version[-1]) - 1]}, \
{'__type__': 'update', "value": default_batch_size, "maximum": default_max_batch_size}, \
{'__type__': 'update', "value": default_sovits_epoch, "maximum": max_sovits_epoch}, \
- {'__type__': 'update', "value": default_sovits_save_every_epoch,"maximum": max_sovits_save_every_epoch}, \
- {'__type__': 'update', "visible": True if version!="v3"else False}, \
+ {'__type__': 'update', "value": default_sovits_save_every_epoch, "maximum": max_sovits_save_every_epoch}, \
+ {'__type__': 'update', "visible": True if version != "v3"else False}, \
{'__type__': 'update', "value": False if not if_force_ckpt else True, "interactive": True if not if_force_ckpt else False}, \
{'__type__': 'update', "interactive": False if version == "v3" else True, "value": False}, \
- {'__type__': 'update', "visible": True if version== "v3" else False}
+ {'__type__': 'update', "visible": True if version == "v3" else False}
-if os.path.exists('GPT_SoVITS/text/G2PWModel'):...
+
+if os.path.exists('GPT_SoVITS/text/G2PWModel'):
+ ...
else:
- cmd = '"%s" GPT_SoVITS/download.py'%python_exec
+ cmd = '"%s" GPT_SoVITS/download.py' % python_exec
p = Popen(cmd, shell=True)
p.wait()
+
def sync(text):
return {'__type__': 'update', 'value': text}
+
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
gr.Markdown(
- value=
- i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.") + "
" + i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
+ value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.") + "
" + i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
)
gr.Markdown(
- value=
- i18n("中文教程文档") + ": " + "https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e"
+ value=i18n("中文教程文档") + ": " + "https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e"
)
with gr.Tabs():
- with gr.TabItem("0-"+i18n("前置数据集获取工具")):#提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标
- gr.Markdown(value="0a-"+i18n("UVR5人声伴奏分离&去混响去延迟工具"))
+ with gr.TabItem("0-" + i18n("前置数据集获取工具")): # 提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标
+ gr.Markdown(value="0a-" + i18n("UVR5人声伴奏分离&去混响去延迟工具"))
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
uvr5_info = gr.Textbox(label=process_info(process_name_uvr5, "info"))
- open_uvr5 = gr.Button(value=process_info(process_name_uvr5, "open"),variant="primary",visible=True)
- close_uvr5 = gr.Button(value=process_info(process_name_uvr5, "close"),variant="primary",visible=False)
+ open_uvr5 = gr.Button(value=process_info(process_name_uvr5, "open"), variant="primary", visible=True)
+ close_uvr5 = gr.Button(value=process_info(process_name_uvr5, "close"), variant="primary", visible=False)
- gr.Markdown(value="0b-"+i18n("语音切分工具"))
+ gr.Markdown(value="0b-" + i18n("语音切分工具"))
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
- slice_inp_path=gr.Textbox(label=i18n("音频自动切分输入路径,可文件可文件夹"),value="")
- slice_opt_root=gr.Textbox(label=i18n("切分后的子音频的输出根目录"),value="output/slicer_opt")
+ slice_inp_path = gr.Textbox(label=i18n("音频自动切分输入路径,可文件可文件夹"), value="")
+ slice_opt_root = gr.Textbox(label=i18n("切分后的子音频的输出根目录"), value="output/slicer_opt")
with gr.Row():
- threshold=gr.Textbox(label=i18n("threshold:音量小于这个值视作静音的备选切割点"),value="-34")
- min_length=gr.Textbox(label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"),value="4000")
- min_interval=gr.Textbox(label=i18n("min_interval:最短切割间隔"),value="300")
- hop_size=gr.Textbox(label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"),value="10")
- max_sil_kept=gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"),value="500")
+ threshold = gr.Textbox(label=i18n("threshold:音量小于这个值视作静音的备选切割点"), value="-34")
+ min_length = gr.Textbox(label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"), value="4000")
+ min_interval = gr.Textbox(label=i18n("min_interval:最短切割间隔"), value="300")
+ hop_size = gr.Textbox(label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"), value="10")
+ max_sil_kept = gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"), value="500")
with gr.Row():
- _max=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("max:归一化后最大值多少"),value=0.9,interactive=True)
- alpha=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("alpha_mix:混多少比例归一化后音频进来"),value=0.25,interactive=True)
+ _max = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("max:归一化后最大值多少"), value=0.9, interactive=True)
+ alpha = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("alpha_mix:混多少比例归一化后音频进来"), value=0.25, interactive=True)
with gr.Row():
- n_process=gr.Slider(minimum=1,maximum=n_cpu,step=1,label=i18n("切割使用的进程数"),value=4,interactive=True)
+ n_process = gr.Slider(minimum=1, maximum=n_cpu, step=1, label=i18n("切割使用的进程数"), value=4, interactive=True)
slicer_info = gr.Textbox(label=process_info(process_name_slice, "info"))
- open_slicer_button = gr.Button(value=process_info(process_name_slice, "open"),variant="primary",visible=True)
- close_slicer_button = gr.Button(value=process_info(process_name_slice, "close"),variant="primary",visible=False)
+ open_slicer_button = gr.Button(value=process_info(process_name_slice, "open"), variant="primary", visible=True)
+ close_slicer_button = gr.Button(value=process_info(process_name_slice, "close"), variant="primary", visible=False)
- gr.Markdown(value="0bb-"+i18n("语音降噪工具"))
+ gr.Markdown(value="0bb-" + i18n("语音降噪工具"))
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
- denoise_input_dir=gr.Textbox(label=i18n("输入文件夹路径"),value="")
- denoise_output_dir=gr.Textbox(label=i18n("输出文件夹路径"),value="output/denoise_opt")
+ denoise_input_dir = gr.Textbox(label=i18n("输入文件夹路径"), value="")
+ denoise_output_dir = gr.Textbox(label=i18n("输出文件夹路径"), value="output/denoise_opt")
with gr.Row():
denoise_info = gr.Textbox(label=process_info(process_name_denoise, "info"))
- open_denoise_button = gr.Button(value=process_info(process_name_denoise, "open"),variant="primary",visible=True)
- close_denoise_button = gr.Button(value=process_info(process_name_denoise, "close"),variant="primary",visible=False)
+ open_denoise_button = gr.Button(value=process_info(process_name_denoise, "open"), variant="primary", visible=True)
+ close_denoise_button = gr.Button(value=process_info(process_name_denoise, "close"), variant="primary", visible=False)
- gr.Markdown(value="0c-"+i18n("语音识别工具"))
+ gr.Markdown(value="0c-" + i18n("语音识别工具"))
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
@@ -922,19 +1022,21 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
with gr.Row():
asr_model = gr.Dropdown(label=i18n("ASR 模型"), choices=list(asr_dict.keys()), interactive=True, value="达摩 ASR (中文)")
asr_size = gr.Dropdown(label=i18n("ASR 模型尺寸"), choices=["large"], interactive=True, value="large")
- asr_lang = gr.Dropdown(label=i18n("ASR 语言设置"), choices=["zh","yue"], interactive=True, value="zh")
+ asr_lang = gr.Dropdown(label=i18n("ASR 语言设置"), choices=["zh", "yue"], interactive=True, value="zh")
asr_precision = gr.Dropdown(label=i18n("数据类型精度"), choices=["float32"], interactive=True, value="float32")
with gr.Row():
asr_info = gr.Textbox(label=process_info(process_name_asr, "info"))
- open_asr_button = gr.Button(value=process_info(process_name_asr, "open"),variant="primary",visible=True)
- close_asr_button = gr.Button(value=process_info(process_name_asr, "close"),variant="primary",visible=False)
+ open_asr_button = gr.Button(value=process_info(process_name_asr, "open"), variant="primary", visible=True)
+ close_asr_button = gr.Button(value=process_info(process_name_asr, "close"), variant="primary", visible=False)
- def change_lang_choices(key): #根据选择的模型修改可选的语言
+ def change_lang_choices(key): # 根据选择的模型修改可选的语言
return {"__type__": "update", "choices": asr_dict[key]['lang'], "value": asr_dict[key]['lang'][0]}
- def change_size_choices(key): # 根据选择的模型修改可选的模型尺寸
+
+ def change_size_choices(key): # 根据选择的模型修改可选的模型尺寸
return {"__type__": "update", "choices": asr_dict[key]['size'], "value": asr_dict[key]['size'][-1]}
- def change_precision_choices(key): #根据选择的模型修改可选的语言
- if key =="Faster Whisper (多语种)":
+
+ def change_precision_choices(key): # 根据选择的模型修改可选的语言
+ if key == "Faster Whisper (多语种)":
if default_batch_size <= 4:
precision = 'int8'
elif is_half:
@@ -948,36 +1050,36 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
asr_model.change(change_size_choices, [asr_model], [asr_size])
asr_model.change(change_precision_choices, [asr_model], [asr_precision])
- gr.Markdown(value="0d-"+i18n("语音文本校对标注工具"))
+ gr.Markdown(value="0d-" + i18n("语音文本校对标注工具"))
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
path_list = gr.Textbox(label=i18n("标注文件路径 (含文件后缀 *.list)"), value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx.list", interactive=True)
label_info = gr.Textbox(label=process_info(process_name_subfix, "info"))
- open_label = gr.Button(value=process_info(process_name_subfix, "open"),variant="primary",visible=True)
- close_label = gr.Button(value=process_info(process_name_subfix, "close"),variant="primary",visible=False)
+ open_label = gr.Button(value=process_info(process_name_subfix, "open"), variant="primary", visible=True)
+ close_label = gr.Button(value=process_info(process_name_subfix, "close"), variant="primary", visible=False)
- open_label.click(change_label, [path_list], [label_info,open_label,close_label])
- close_label.click(change_label, [path_list], [label_info,open_label,close_label])
- open_uvr5.click(change_uvr5, [], [uvr5_info,open_uvr5,close_uvr5])
- close_uvr5.click(change_uvr5, [], [uvr5_info,open_uvr5,close_uvr5])
+ open_label.click(change_label, [path_list], [label_info, open_label, close_label])
+ close_label.click(change_label, [path_list], [label_info, open_label, close_label])
+ open_uvr5.click(change_uvr5, [], [uvr5_info, open_uvr5, close_uvr5])
+ close_uvr5.click(change_uvr5, [], [uvr5_info, open_uvr5, close_uvr5])
with gr.TabItem(i18n("1-GPT-SoVITS-TTS")):
with gr.Row():
with gr.Row():
exp_name = gr.Textbox(label=i18n("*实验/模型名"), value="xxx", interactive=True)
gpu_info = gr.Textbox(label=i18n("显卡信息"), value=gpu_info, visible=True, interactive=False)
- version_checkbox = gr.Radio(label=i18n("版本"),value=version,choices=['v1','v2','v3'])
+ version_checkbox = gr.Radio(label=i18n("版本"), value=version, choices=['v1', 'v2', 'v3'])
with gr.Row():
- pretrained_s2G = gr.Textbox(label=i18n("预训练SoVITS-G模型路径"), value=pretrained_sovits_name[int(version[-1])-1], interactive=True, lines=2, max_lines=3,scale=9)
- pretrained_s2D = gr.Textbox(label=i18n("预训练SoVITS-D模型路径"), value=pretrained_sovits_name[int(version[-1])-1].replace("s2G","s2D"), interactive=True, lines=2, max_lines=3,scale=9)
- pretrained_s1 = gr.Textbox(label=i18n("预训练GPT模型路径"), value=pretrained_gpt_name[int(version[-1])-1], interactive=True, lines=2, max_lines=3,scale=10)
+ pretrained_s2G = gr.Textbox(label=i18n("预训练SoVITS-G模型路径"), value=pretrained_sovits_name[int(version[-1]) - 1], interactive=True, lines=2, max_lines=3, scale=9)
+ pretrained_s2D = gr.Textbox(label=i18n("预训练SoVITS-D模型路径"), value=pretrained_sovits_name[int(version[-1]) - 1].replace("s2G", "s2D"), interactive=True, lines=2, max_lines=3, scale=9)
+ pretrained_s1 = gr.Textbox(label=i18n("预训练GPT模型路径"), value=pretrained_gpt_name[int(version[-1]) - 1], interactive=True, lines=2, max_lines=3, scale=10)
- with gr.TabItem("1A-"+i18n("训练集格式化工具")):
+ with gr.TabItem("1A-" + i18n("训练集格式化工具")):
gr.Markdown(value=i18n("输出logs/实验名目录下应有23456开头的文件和文件夹"))
with gr.Row():
with gr.Row():
- inp_text = gr.Textbox(label=i18n("*文本标注文件"),value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list",interactive=True,scale=10)
+ inp_text = gr.Textbox(label=i18n("*文本标注文件"), value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list", interactive=True, scale=10)
with gr.Row():
inp_wav_dir = gr.Textbox(
label=i18n("*训练集音频文件目录"),
@@ -986,144 +1088,145 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
placeholder=i18n("填切割后音频所在目录!读取的音频文件完整路径=该目录-拼接-list文件里波形对应的文件名(不是全路径)。如果留空则使用.list文件里的绝对全路径。"), scale=10
)
- gr.Markdown(value="1Aa-"+process_name_1a)
+ gr.Markdown(value="1Aa-" + process_name_1a)
with gr.Row():
with gr.Row():
- gpu_numbers1a = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
+ gpu_numbers1a = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s-%s" % (gpus, gpus), interactive=True)
with gr.Row():
- bert_pretrained_dir = gr.Textbox(label=i18n("预训练中文BERT模型路径"),value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",interactive=False,lines=2)
+ bert_pretrained_dir = gr.Textbox(label=i18n("预训练中文BERT模型路径"), value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", interactive=False, lines=2)
with gr.Row():
- button1a_open = gr.Button(value=process_info(process_name_1a, "open"),variant="primary",visible=True)
- button1a_close = gr.Button(value=process_info(process_name_1a, "close"),variant="primary",visible=False)
+ button1a_open = gr.Button(value=process_info(process_name_1a, "open"), variant="primary", visible=True)
+ button1a_close = gr.Button(value=process_info(process_name_1a, "close"), variant="primary", visible=False)
with gr.Row():
- info1a=gr.Textbox(label=process_info(process_name_1a, "info"))
+ info1a = gr.Textbox(label=process_info(process_name_1a, "info"))
- gr.Markdown(value="1Ab-"+process_name_1b)
+ gr.Markdown(value="1Ab-" + process_name_1b)
with gr.Row():
with gr.Row():
- gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
+ gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s-%s" % (gpus, gpus), interactive=True)
with gr.Row():
- cnhubert_base_dir = gr.Textbox(label=i18n("预训练SSL模型路径"),value="GPT_SoVITS/pretrained_models/chinese-hubert-base",interactive=False,lines=2)
+ cnhubert_base_dir = gr.Textbox(label=i18n("预训练SSL模型路径"), value="GPT_SoVITS/pretrained_models/chinese-hubert-base", interactive=False, lines=2)
with gr.Row():
- button1b_open = gr.Button(value=process_info(process_name_1b, "open"),variant="primary",visible=True)
- button1b_close = gr.Button(value=process_info(process_name_1b, "close"),variant="primary",visible=False)
+ button1b_open = gr.Button(value=process_info(process_name_1b, "open"), variant="primary", visible=True)
+ button1b_close = gr.Button(value=process_info(process_name_1b, "close"), variant="primary", visible=False)
with gr.Row():
- info1b=gr.Textbox(label=process_info(process_name_1b, "info"))
+ info1b = gr.Textbox(label=process_info(process_name_1b, "info"))
- gr.Markdown(value="1Ac-"+process_name_1c)
+ gr.Markdown(value="1Ac-" + process_name_1c)
with gr.Row():
with gr.Row():
- gpu_numbers1c = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
+ gpu_numbers1c = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s-%s" % (gpus, gpus), interactive=True)
with gr.Row():
- pretrained_s2G_ = gr.Textbox(label=i18n("预训练SoVITS-G模型路径"), value=pretrained_sovits_name[int(version[-1])-1], interactive=False,lines=2)
+ pretrained_s2G_ = gr.Textbox(label=i18n("预训练SoVITS-G模型路径"), value=pretrained_sovits_name[int(version[-1]) - 1], interactive=False, lines=2)
with gr.Row():
- button1c_open = gr.Button(value=process_info(process_name_1c, "open"),variant="primary",visible=True)
- button1c_close = gr.Button(value=process_info(process_name_1c, "close"),variant="primary",visible=False)
+ button1c_open = gr.Button(value=process_info(process_name_1c, "open"), variant="primary", visible=True)
+ button1c_close = gr.Button(value=process_info(process_name_1c, "close"), variant="primary", visible=False)
with gr.Row():
- info1c=gr.Textbox(label=process_info(process_name_1c, "info"))
+ info1c = gr.Textbox(label=process_info(process_name_1c, "info"))
- gr.Markdown(value="1Aabc-"+process_name_1abc)
+ gr.Markdown(value="1Aabc-" + process_name_1abc)
with gr.Row():
with gr.Row():
- button1abc_open = gr.Button(value=process_info(process_name_1abc, "open"),variant="primary",visible=True)
- button1abc_close = gr.Button(value=process_info(process_name_1abc, "close"),variant="primary",visible=False)
+ button1abc_open = gr.Button(value=process_info(process_name_1abc, "open"), variant="primary", visible=True)
+ button1abc_close = gr.Button(value=process_info(process_name_1abc, "close"), variant="primary", visible=False)
with gr.Row():
- info1abc=gr.Textbox(label=process_info(process_name_1abc, "info"))
+ info1abc = gr.Textbox(label=process_info(process_name_1abc, "info"))
- pretrained_s2G.change(sync,[pretrained_s2G],[pretrained_s2G_])
- open_asr_button.click(open_asr, [asr_inp_dir, asr_opt_dir, asr_model, asr_size, asr_lang, asr_precision], [asr_info,open_asr_button,close_asr_button,path_list,inp_text,inp_wav_dir])
- close_asr_button.click(close_asr, [], [asr_info,open_asr_button,close_asr_button])
- open_slicer_button.click(open_slice, [slice_inp_path,slice_opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_process], [slicer_info,open_slicer_button,close_slicer_button,asr_inp_dir,denoise_input_dir,inp_wav_dir])
- close_slicer_button.click(close_slice, [], [slicer_info,open_slicer_button,close_slicer_button])
- open_denoise_button.click(open_denoise, [denoise_input_dir,denoise_output_dir], [denoise_info,open_denoise_button,close_denoise_button,asr_inp_dir,inp_wav_dir])
- close_denoise_button.click(close_denoise, [], [denoise_info,open_denoise_button,close_denoise_button])
+ pretrained_s2G.change(sync, [pretrained_s2G], [pretrained_s2G_])
+ open_asr_button.click(open_asr, [asr_inp_dir, asr_opt_dir, asr_model, asr_size, asr_lang, asr_precision], [asr_info, open_asr_button, close_asr_button, path_list, inp_text, inp_wav_dir])
+ close_asr_button.click(close_asr, [], [asr_info, open_asr_button, close_asr_button])
+ open_slicer_button.click(open_slice, [slice_inp_path, slice_opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, n_process], [slicer_info, open_slicer_button, close_slicer_button, asr_inp_dir, denoise_input_dir, inp_wav_dir])
+ close_slicer_button.click(close_slice, [], [slicer_info, open_slicer_button, close_slicer_button])
+ open_denoise_button.click(open_denoise, [denoise_input_dir, denoise_output_dir], [denoise_info, open_denoise_button, close_denoise_button, asr_inp_dir, inp_wav_dir])
+ close_denoise_button.click(close_denoise, [], [denoise_info, open_denoise_button, close_denoise_button])
- button1a_open.click(open1a, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,bert_pretrained_dir], [info1a,button1a_open,button1a_close])
- button1a_close.click(close1a, [], [info1a,button1a_open,button1a_close])
- button1b_open.click(open1b, [inp_text,inp_wav_dir,exp_name,gpu_numbers1Ba,cnhubert_base_dir], [info1b,button1b_open,button1b_close])
- button1b_close.click(close1b, [], [info1b,button1b_open,button1b_close])
- button1c_open.click(open1c, [inp_text,exp_name,gpu_numbers1c,pretrained_s2G], [info1c,button1c_open,button1c_close])
- button1c_close.click(close1c, [], [info1c,button1c_open,button1c_close])
- button1abc_open.click(open1abc, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G], [info1abc,button1abc_open,button1abc_close])
- button1abc_close.click(close1abc, [], [info1abc,button1abc_open,button1abc_close])
+ button1a_open.click(open1a, [inp_text, inp_wav_dir, exp_name, gpu_numbers1a, bert_pretrained_dir], [info1a, button1a_open, button1a_close])
+ button1a_close.click(close1a, [], [info1a, button1a_open, button1a_close])
+ button1b_open.click(open1b, [inp_text, inp_wav_dir, exp_name, gpu_numbers1Ba, cnhubert_base_dir], [info1b, button1b_open, button1b_close])
+ button1b_close.click(close1b, [], [info1b, button1b_open, button1b_close])
+ button1c_open.click(open1c, [inp_text, exp_name, gpu_numbers1c, pretrained_s2G], [info1c, button1c_open, button1c_close])
+ button1c_close.click(close1c, [], [info1c, button1c_open, button1c_close])
+ button1abc_open.click(open1abc, [inp_text, inp_wav_dir, exp_name, gpu_numbers1a, gpu_numbers1Ba, gpu_numbers1c, bert_pretrained_dir, cnhubert_base_dir, pretrained_s2G], [info1abc, button1abc_open, button1abc_close])
+ button1abc_close.click(close1abc, [], [info1abc, button1abc_open, button1abc_close])
- with gr.TabItem("1B-"+i18n("微调训练")):
- gr.Markdown(value="1Ba-"+i18n("SoVITS 训练: 模型权重文件在 SoVITS_weights/"))
+ with gr.TabItem("1B-" + i18n("微调训练")):
+ gr.Markdown(value="1Ba-" + i18n("SoVITS 训练: 模型权重文件在 SoVITS_weights/"))
with gr.Row():
with gr.Column():
with gr.Row():
- batch_size = gr.Slider(minimum=1,maximum=default_max_batch_size,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True)
- total_epoch = gr.Slider(minimum=1,maximum=max_sovits_epoch,step=1,label=i18n("总训练轮数total_epoch,不建议太高"),value=default_sovits_epoch,interactive=True)
+ batch_size = gr.Slider(minimum=1, maximum=default_max_batch_size, step=1, label=i18n("每张显卡的batch_size"), value=default_batch_size, interactive=True)
+ total_epoch = gr.Slider(minimum=1, maximum=max_sovits_epoch, step=1, label=i18n("总训练轮数total_epoch,不建议太高"), value=default_sovits_epoch, interactive=True)
with gr.Row():
- text_low_lr_rate = gr.Slider(minimum=0.2,maximum=0.6,step=0.05,label=i18n("文本模块学习率权重"),value=0.4,visible=True if version!="v3"else False)#v3 not need
- lora_rank = gr.Radio(label=i18n("LoRA秩"), value="32", choices=['16', '32', '64', '128'],visible=True if version=="v3"else False)#v1v2 not need
- save_every_epoch = gr.Slider(minimum=1,maximum=max_sovits_save_every_epoch,step=1,label=i18n("保存频率save_every_epoch"),value=default_sovits_save_every_epoch,interactive=True)
+ text_low_lr_rate = gr.Slider(minimum=0.2, maximum=0.6, step=0.05, label=i18n("文本模块学习率权重"), value=0.4, visible=True if version != "v3"else False) # v3 not need
+ lora_rank = gr.Radio(label=i18n("LoRA秩"), value="32", choices=['16', '32', '64', '128'], visible=True if version == "v3"else False) # v1v2 not need
+ save_every_epoch = gr.Slider(minimum=1, maximum=max_sovits_save_every_epoch, step=1, label=i18n("保存频率save_every_epoch"), value=default_sovits_save_every_epoch, interactive=True)
with gr.Column():
with gr.Column():
if_save_latest = gr.Checkbox(label=i18n("是否仅保存最新的权重文件以节省硬盘空间"), value=True, interactive=True, show_label=True)
if_save_every_weights = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True)
- if_grad_ckpt = gr.Checkbox(label="v3是否开启梯度检查点节省显存占用", value=False, interactive=True if version == "v3" else False, show_label=True,visible=False) # 只有V3s2可以用
+ if_grad_ckpt = gr.Checkbox(label="v3是否开启梯度检查点节省显存占用", value=False, interactive=True if version == "v3" else False, show_label=True, visible=False) # 只有V3s2可以用
with gr.Row():
gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True)
with gr.Row():
with gr.Row():
- button1Ba_open = gr.Button(value=process_info(process_name_sovits, "open"),variant="primary",visible=True)
- button1Ba_close = gr.Button(value=process_info(process_name_sovits, "close"),variant="primary",visible=False)
+ button1Ba_open = gr.Button(value=process_info(process_name_sovits, "open"), variant="primary", visible=True)
+ button1Ba_close = gr.Button(value=process_info(process_name_sovits, "close"), variant="primary", visible=False)
with gr.Row():
- info1Ba=gr.Textbox(label=process_info(process_name_sovits, "info"))
- gr.Markdown(value="1Bb-"+i18n("GPT 训练: 模型权重文件在 GPT_weights/"))
+ info1Ba = gr.Textbox(label=process_info(process_name_sovits, "info"))
+ gr.Markdown(value="1Bb-" + i18n("GPT 训练: 模型权重文件在 GPT_weights/"))
with gr.Row():
with gr.Column():
with gr.Row():
- batch_size1Bb = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size_s1,interactive=True)
- total_epoch1Bb = gr.Slider(minimum=2,maximum=50,step=1,label=i18n("总训练轮数total_epoch"),value=15,interactive=True)
+ batch_size1Bb = gr.Slider(minimum=1, maximum=40, step=1, label=i18n("每张显卡的batch_size"), value=default_batch_size_s1, interactive=True)
+ total_epoch1Bb = gr.Slider(minimum=2, maximum=50, step=1, label=i18n("总训练轮数total_epoch"), value=15, interactive=True)
with gr.Row():
- save_every_epoch1Bb = gr.Slider(minimum=1,maximum=50,step=1,label=i18n("保存频率save_every_epoch"),value=5,interactive=True)
+ save_every_epoch1Bb = gr.Slider(minimum=1, maximum=50, step=1, label=i18n("保存频率save_every_epoch"), value=5, interactive=True)
if_dpo = gr.Checkbox(label=i18n("是否开启DPO训练选项(实验性)"), value=False, interactive=True, show_label=True)
with gr.Column():
with gr.Column():
- if_save_latest1Bb = gr.Checkbox(label=i18n("是否仅保存最新的权重文件以节省硬盘空间"), value=True, interactive=True, show_label=True)
- if_save_every_weights1Bb = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True)
+ if_save_latest1Bb = gr.Checkbox(label=i18n("是否仅保存最新的权重文件以节省硬盘空间"), value=True, interactive=True, show_label=True)
+ if_save_every_weights1Bb = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True)
with gr.Row():
gpu_numbers1Bb = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True)
with gr.Row():
with gr.Row():
- button1Bb_open = gr.Button(value=process_info(process_name_gpt, "open"),variant="primary",visible=True)
- button1Bb_close = gr.Button(value=process_info(process_name_gpt, "close"),variant="primary",visible=False)
+ button1Bb_open = gr.Button(value=process_info(process_name_gpt, "open"), variant="primary", visible=True)
+ button1Bb_close = gr.Button(value=process_info(process_name_gpt, "close"), variant="primary", visible=False)
with gr.Row():
- info1Bb=gr.Textbox(label=process_info(process_name_gpt, "info"))
+ info1Bb = gr.Textbox(label=process_info(process_name_gpt, "info"))
- button1Ba_open.click(open1Ba, [batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D,if_grad_ckpt,lora_rank], [info1Ba,button1Ba_open,button1Ba_close])
- button1Ba_close.click(close1Ba, [], [info1Ba,button1Ba_open,button1Ba_close])
- button1Bb_open.click(open1Bb, [batch_size1Bb,total_epoch1Bb,exp_name,if_dpo,if_save_latest1Bb,if_save_every_weights1Bb,save_every_epoch1Bb,gpu_numbers1Bb,pretrained_s1], [info1Bb,button1Bb_open,button1Bb_close])
- button1Bb_close.click(close1Bb, [], [info1Bb,button1Bb_open,button1Bb_close])
+ button1Ba_open.click(open1Ba, [batch_size, total_epoch, exp_name, text_low_lr_rate, if_save_latest, if_save_every_weights, save_every_epoch, gpu_numbers1Ba, pretrained_s2G, pretrained_s2D, if_grad_ckpt, lora_rank], [info1Ba, button1Ba_open, button1Ba_close])
+ button1Ba_close.click(close1Ba, [], [info1Ba, button1Ba_open, button1Ba_close])
+ button1Bb_open.click(open1Bb, [batch_size1Bb, total_epoch1Bb, exp_name, if_dpo, if_save_latest1Bb, if_save_every_weights1Bb, save_every_epoch1Bb, gpu_numbers1Bb, pretrained_s1], [info1Bb, button1Bb_open, button1Bb_close])
+ button1Bb_close.click(close1Bb, [], [info1Bb, button1Bb_open, button1Bb_close])
- with gr.TabItem("1C-"+i18n("推理")):
+ with gr.TabItem("1C-" + i18n("推理")):
gr.Markdown(value=i18n("选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模,体验5秒Zero Shot TTS用。"))
with gr.Row():
with gr.Row():
- GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names,key=custom_sort_key),value=pretrained_gpt_name[0],interactive=True)
- SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names,key=custom_sort_key),value=pretrained_sovits_name[0],interactive=True)
+ GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=pretrained_gpt_name[0], interactive=True)
+ SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=pretrained_sovits_name[0], interactive=True)
with gr.Row():
- gpu_number_1C=gr.Textbox(label=i18n("GPU卡号,只能填1个整数"), value=gpus, interactive=True)
+ gpu_number_1C = gr.Textbox(label=i18n("GPU卡号,只能填1个整数"), value=gpus, interactive=True)
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
- refresh_button.click(fn=change_choices,inputs=[],outputs=[SoVITS_dropdown,GPT_dropdown])
+ refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
with gr.Row():
with gr.Row():
batched_infer_enabled = gr.Checkbox(label=i18n("启用并行推理版本"), value=False, interactive=True, show_label=True)
with gr.Row():
- open_tts = gr.Button(value=process_info(process_name_tts, "open"),variant='primary',visible=True)
- close_tts = gr.Button(value=process_info(process_name_tts, "close"),variant='primary',visible=False)
+ open_tts = gr.Button(value=process_info(process_name_tts, "open"), variant='primary', visible=True)
+ close_tts = gr.Button(value=process_info(process_name_tts, "close"), variant='primary', visible=False)
with gr.Row():
tts_info = gr.Textbox(label=process_info(process_name_tts, "info"))
- open_tts.click(change_tts_inference, [bert_pretrained_dir,cnhubert_base_dir,gpu_number_1C,GPT_dropdown,SoVITS_dropdown, batched_infer_enabled], [tts_info,open_tts,close_tts])
- close_tts.click(change_tts_inference, [bert_pretrained_dir,cnhubert_base_dir,gpu_number_1C,GPT_dropdown,SoVITS_dropdown, batched_infer_enabled], [tts_info,open_tts,close_tts])
+ open_tts.click(change_tts_inference, [bert_pretrained_dir, cnhubert_base_dir, gpu_number_1C, GPT_dropdown, SoVITS_dropdown, batched_infer_enabled], [tts_info, open_tts, close_tts])
+ close_tts.click(change_tts_inference, [bert_pretrained_dir, cnhubert_base_dir, gpu_number_1C, GPT_dropdown, SoVITS_dropdown, batched_infer_enabled], [tts_info, open_tts, close_tts])
- version_checkbox.change(switch_version,[version_checkbox],[pretrained_s2G,pretrained_s2D,pretrained_s1,GPT_dropdown,SoVITS_dropdown,batch_size,total_epoch,save_every_epoch,text_low_lr_rate, if_grad_ckpt, batched_infer_enabled, lora_rank])
+ version_checkbox.change(switch_version, [version_checkbox], [pretrained_s2G, pretrained_s2D, pretrained_s1, GPT_dropdown, SoVITS_dropdown, batch_size, total_epoch, save_every_epoch, text_low_lr_rate, if_grad_ckpt, batched_infer_enabled, lora_rank])
- with gr.TabItem(i18n("2-GPT-SoVITS-变声")):gr.Markdown(value=i18n("施工中,请静候佳音"))
+ with gr.TabItem(i18n("2-GPT-SoVITS-变声")):
+ gr.Markdown(value=i18n("施工中,请静候佳音"))
- app.queue().launch(#concurrency_count=511, max_size=1022
+ app.queue().launch( # concurrency_count=511, max_size=1022
server_name="0.0.0.0",
inbrowser=True,
share=is_share,