Add files via upload

This commit is contained in:
RVC-Boss 2024-01-18 00:31:02 +08:00 committed by GitHub
parent f2f3d17867
commit d2d43437a8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,23 +1,20 @@
# -*- coding: utf-8 -*-
import sys, os
inp_text = os.environ.get("inp_text")
inp_wav_dir = os.environ.get("inp_wav_dir")
exp_name = os.environ.get("exp_name")
i_part = os.environ.get("i_part")
all_parts = os.environ.get("all_parts")
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES")
import sys,os
inp_text= os.environ.get("inp_text")
inp_wav_dir= os.environ.get("inp_wav_dir")
exp_name= os.environ.get("exp_name")
i_part= os.environ.get("i_part")
all_parts= os.environ.get("all_parts")
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
from feature_extractor import cnhubert
opt_dir= os.environ.get("opt_dir")
cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir")
is_half=eval(os.environ.get("is_half","True"))
opt_dir = os.environ.get("opt_dir")
cnhubert.cnhubert_base_path = os.environ.get("cnhubert_base_dir")
is_half = eval(os.environ.get("is_half", "True"))
import pdb, traceback, numpy as np, logging
import pdb,traceback,numpy as np,logging
from scipy.io import wavfile
import librosa, torch
import librosa,torch
now_dir = os.getcwd()
sys.path.append(now_dir)
from my_utils import load_audio
@ -35,75 +32,64 @@ from my_utils import load_audio
from time import time as ttime
import shutil
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
dir=os.path.dirname(path)
name=os.path.basename(path)
tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
torch.save(fea,tmp_path)
shutil.move(tmp_path,"%s/%s"%(dir,name))
hubert_dir="%s/4-cnhubert"%(opt_dir)
wav32dir="%s/5-wav32k"%(opt_dir)
os.makedirs(opt_dir,exist_ok=True)
os.makedirs(hubert_dir,exist_ok=True)
os.makedirs(wav32dir,exist_ok=True)
def my_save(fea, path): #####fix issue: torch.save doesn't support chinese path
dir = os.path.dirname(path)
name = os.path.basename(path)
tmp_path = "%s/%s%s.pth" % (dir, ttime(), i_part)
torch.save(fea, tmp_path)
shutil.move(tmp_path, "%s/%s" % (dir, name))
hubert_dir = "%s/4-cnhubert" % (opt_dir)
wav32dir = "%s/5-wav32k" % (opt_dir)
os.makedirs(opt_dir, exist_ok=True)
os.makedirs(hubert_dir, exist_ok=True)
os.makedirs(wav32dir, exist_ok=True)
maxx = 0.95
alpha = 0.5
device = "cuda:0"
model = cnhubert.get_model()
if is_half == True:
model = model.half().to(device)
maxx=0.95
alpha=0.5
device="cuda:0"
model=cnhubert.get_model()
if(is_half==True):
model=model.half().to(device)
else:
model = model.to(device)
def name2go(wav_name):
hubert_path = "%s/%s.pt" % (hubert_dir, wav_name)
if os.path.exists(hubert_path):
return
wav_path = "%s/%s" % (inp_wav_dir, wav_name)
hubert_path="%s/%s.pt"%(hubert_dir,wav_name)
if(os.path.exists(hubert_path)):return
if(inp_wav_dir!=""):
wav_path="%s/%s"%(inp_wav_dir,wav_name)
tmp_audio = load_audio(wav_path, 32000)
tmp_max = np.abs(tmp_audio).max()
if tmp_max > 2.2:
print("%s-%s-%s-filtered" % (idx0, idx1, tmp_max))
return
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha * 32768)) + (
(1 - alpha) * 32768
) * tmp_audio
tmp_audio = librosa.resample(tmp_audio32, orig_sr=32000, target_sr=16000)
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * tmp_audio
tmp_audio = librosa.resample(
tmp_audio32, orig_sr=32000, target_sr=16000
)
tensor_wav16 = torch.from_numpy(tmp_audio)
if is_half == True:
tensor_wav16 = tensor_wav16.half().to(device)
if (is_half == True):
tensor_wav16=tensor_wav16.half().to(device)
else:
tensor_wav16 = tensor_wav16.to(device)
ssl = (
model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"]
.transpose(1, 2)
.cpu()
) # torch.Size([1, 768, 215])
if np.isnan(ssl.detach().numpy()).sum() != 0:
return
ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215])
if np.isnan(ssl.detach().numpy()).sum()!= 0:return
wavfile.write(
"%s/%s" % (wav32dir, wav_name),
"%s/%s"%(wav32dir,wav_name),
32000,
tmp_audio32.astype("int16"),
)
# torch.save(ssl,hubert_path )
my_save(ssl, hubert_path)
my_save(ssl,hubert_path )
with open(inp_text,"r",encoding="utf8")as f:
lines=f.read().strip("\n").split("\n")
with open(inp_text, "r", encoding="utf8") as f:
lines = f.read().strip("\n").split("\n")
for line in lines[int(i_part) :: int(all_parts)]:
for line in lines[int(i_part)::int(all_parts)]:
try:
# wav_name,text=line.split("\t")
wav_name, spk_name, language, text = line.split("|")
wav_name = os.path.basename(wav_name)
wav_name=os.path.basename(wav_name)
name2go(wav_name)
except:
print(line, traceback.format_exc())
print(line,traceback.format_exc())