mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
Add files via upload
This commit is contained in:
parent
f2f3d17867
commit
d2d43437a8
@ -1,23 +1,20 @@
|
|||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
import sys, os
|
import sys,os
|
||||||
|
inp_text= os.environ.get("inp_text")
|
||||||
inp_text = os.environ.get("inp_text")
|
inp_wav_dir= os.environ.get("inp_wav_dir")
|
||||||
inp_wav_dir = os.environ.get("inp_wav_dir")
|
exp_name= os.environ.get("exp_name")
|
||||||
exp_name = os.environ.get("exp_name")
|
i_part= os.environ.get("i_part")
|
||||||
i_part = os.environ.get("i_part")
|
all_parts= os.environ.get("all_parts")
|
||||||
all_parts = os.environ.get("all_parts")
|
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES")
|
|
||||||
from feature_extractor import cnhubert
|
from feature_extractor import cnhubert
|
||||||
|
opt_dir= os.environ.get("opt_dir")
|
||||||
|
cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir")
|
||||||
|
is_half=eval(os.environ.get("is_half","True"))
|
||||||
|
|
||||||
opt_dir = os.environ.get("opt_dir")
|
import pdb,traceback,numpy as np,logging
|
||||||
cnhubert.cnhubert_base_path = os.environ.get("cnhubert_base_dir")
|
|
||||||
is_half = eval(os.environ.get("is_half", "True"))
|
|
||||||
|
|
||||||
import pdb, traceback, numpy as np, logging
|
|
||||||
from scipy.io import wavfile
|
from scipy.io import wavfile
|
||||||
import librosa, torch
|
import librosa,torch
|
||||||
|
|
||||||
now_dir = os.getcwd()
|
now_dir = os.getcwd()
|
||||||
sys.path.append(now_dir)
|
sys.path.append(now_dir)
|
||||||
from my_utils import load_audio
|
from my_utils import load_audio
|
||||||
@ -35,75 +32,64 @@ from my_utils import load_audio
|
|||||||
|
|
||||||
from time import time as ttime
|
from time import time as ttime
|
||||||
import shutil
|
import shutil
|
||||||
|
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
|
||||||
|
dir=os.path.dirname(path)
|
||||||
|
name=os.path.basename(path)
|
||||||
|
tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
|
||||||
|
torch.save(fea,tmp_path)
|
||||||
|
shutil.move(tmp_path,"%s/%s"%(dir,name))
|
||||||
|
|
||||||
|
hubert_dir="%s/4-cnhubert"%(opt_dir)
|
||||||
|
wav32dir="%s/5-wav32k"%(opt_dir)
|
||||||
|
os.makedirs(opt_dir,exist_ok=True)
|
||||||
|
os.makedirs(hubert_dir,exist_ok=True)
|
||||||
|
os.makedirs(wav32dir,exist_ok=True)
|
||||||
|
|
||||||
def my_save(fea, path): #####fix issue: torch.save doesn't support chinese path
|
maxx=0.95
|
||||||
dir = os.path.dirname(path)
|
alpha=0.5
|
||||||
name = os.path.basename(path)
|
device="cuda:0"
|
||||||
tmp_path = "%s/%s%s.pth" % (dir, ttime(), i_part)
|
model=cnhubert.get_model()
|
||||||
torch.save(fea, tmp_path)
|
if(is_half==True):
|
||||||
shutil.move(tmp_path, "%s/%s" % (dir, name))
|
model=model.half().to(device)
|
||||||
|
|
||||||
|
|
||||||
hubert_dir = "%s/4-cnhubert" % (opt_dir)
|
|
||||||
wav32dir = "%s/5-wav32k" % (opt_dir)
|
|
||||||
os.makedirs(opt_dir, exist_ok=True)
|
|
||||||
os.makedirs(hubert_dir, exist_ok=True)
|
|
||||||
os.makedirs(wav32dir, exist_ok=True)
|
|
||||||
|
|
||||||
maxx = 0.95
|
|
||||||
alpha = 0.5
|
|
||||||
device = "cuda:0"
|
|
||||||
model = cnhubert.get_model()
|
|
||||||
if is_half == True:
|
|
||||||
model = model.half().to(device)
|
|
||||||
else:
|
else:
|
||||||
model = model.to(device)
|
model = model.to(device)
|
||||||
|
|
||||||
|
|
||||||
def name2go(wav_name):
|
def name2go(wav_name):
|
||||||
hubert_path = "%s/%s.pt" % (hubert_dir, wav_name)
|
hubert_path="%s/%s.pt"%(hubert_dir,wav_name)
|
||||||
if os.path.exists(hubert_path):
|
if(os.path.exists(hubert_path)):return
|
||||||
return
|
if(inp_wav_dir!=""):
|
||||||
wav_path = "%s/%s" % (inp_wav_dir, wav_name)
|
wav_path="%s/%s"%(inp_wav_dir,wav_name)
|
||||||
tmp_audio = load_audio(wav_path, 32000)
|
tmp_audio = load_audio(wav_path, 32000)
|
||||||
tmp_max = np.abs(tmp_audio).max()
|
tmp_max = np.abs(tmp_audio).max()
|
||||||
if tmp_max > 2.2:
|
if tmp_max > 2.2:
|
||||||
print("%s-%s-%s-filtered" % (idx0, idx1, tmp_max))
|
print("%s-%s-%s-filtered" % (idx0, idx1, tmp_max))
|
||||||
return
|
return
|
||||||
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha * 32768)) + (
|
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * tmp_audio
|
||||||
(1 - alpha) * 32768
|
tmp_audio = librosa.resample(
|
||||||
) * tmp_audio
|
tmp_audio32, orig_sr=32000, target_sr=16000
|
||||||
tmp_audio = librosa.resample(tmp_audio32, orig_sr=32000, target_sr=16000)
|
)
|
||||||
tensor_wav16 = torch.from_numpy(tmp_audio)
|
tensor_wav16 = torch.from_numpy(tmp_audio)
|
||||||
if is_half == True:
|
if (is_half == True):
|
||||||
tensor_wav16 = tensor_wav16.half().to(device)
|
tensor_wav16=tensor_wav16.half().to(device)
|
||||||
else:
|
else:
|
||||||
tensor_wav16 = tensor_wav16.to(device)
|
tensor_wav16 = tensor_wav16.to(device)
|
||||||
ssl = (
|
ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215])
|
||||||
model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"]
|
if np.isnan(ssl.detach().numpy()).sum()!= 0:return
|
||||||
.transpose(1, 2)
|
|
||||||
.cpu()
|
|
||||||
) # torch.Size([1, 768, 215])
|
|
||||||
if np.isnan(ssl.detach().numpy()).sum() != 0:
|
|
||||||
return
|
|
||||||
wavfile.write(
|
wavfile.write(
|
||||||
"%s/%s" % (wav32dir, wav_name),
|
"%s/%s"%(wav32dir,wav_name),
|
||||||
32000,
|
32000,
|
||||||
tmp_audio32.astype("int16"),
|
tmp_audio32.astype("int16"),
|
||||||
)
|
)
|
||||||
# torch.save(ssl,hubert_path )
|
# torch.save(ssl,hubert_path )
|
||||||
my_save(ssl, hubert_path)
|
my_save(ssl,hubert_path )
|
||||||
|
|
||||||
|
with open(inp_text,"r",encoding="utf8")as f:
|
||||||
|
lines=f.read().strip("\n").split("\n")
|
||||||
|
|
||||||
with open(inp_text, "r", encoding="utf8") as f:
|
for line in lines[int(i_part)::int(all_parts)]:
|
||||||
lines = f.read().strip("\n").split("\n")
|
|
||||||
|
|
||||||
for line in lines[int(i_part) :: int(all_parts)]:
|
|
||||||
try:
|
try:
|
||||||
# wav_name,text=line.split("\t")
|
# wav_name,text=line.split("\t")
|
||||||
wav_name, spk_name, language, text = line.split("|")
|
wav_name, spk_name, language, text = line.split("|")
|
||||||
wav_name = os.path.basename(wav_name)
|
wav_name=os.path.basename(wav_name)
|
||||||
name2go(wav_name)
|
name2go(wav_name)
|
||||||
except:
|
except:
|
||||||
print(line, traceback.format_exc())
|
print(line,traceback.format_exc())
|
||||||
|
Loading…
x
Reference in New Issue
Block a user