From cb88b8b9eb28f5ae302cc5527b3b1c64df91e8c0 Mon Sep 17 00:00:00 2001 From: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com> Date: Wed, 7 Feb 2024 15:11:34 +0800 Subject: [PATCH] Update inference_webui.py --- GPT_SoVITS/inference_webui.py | 1262 ++++++++++++++++----------------- 1 file changed, 630 insertions(+), 632 deletions(-) diff --git a/GPT_SoVITS/inference_webui.py b/GPT_SoVITS/inference_webui.py index e6ab7f7..4f89950 100644 --- a/GPT_SoVITS/inference_webui.py +++ b/GPT_SoVITS/inference_webui.py @@ -1,632 +1,630 @@ -''' -按中英混合识别 -按日英混合识别 -多语种启动切分识别语种 -全部按中文识别 -全部按英文识别 -全部按日文识别 -''' -import os, re, logging -import LangSegment -logging.getLogger("markdown_it").setLevel(logging.ERROR) -logging.getLogger("urllib3").setLevel(logging.ERROR) -logging.getLogger("httpcore").setLevel(logging.ERROR) -logging.getLogger("httpx").setLevel(logging.ERROR) -logging.getLogger("asyncio").setLevel(logging.ERROR) -logging.getLogger("charset_normalizer").setLevel(logging.ERROR) -logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) -import pdb - -if os.path.exists("./gweight.txt"): - with open("./gweight.txt", 'r', encoding="utf-8") as file: - gweight_data = file.read() - gpt_path = os.environ.get( - "gpt_path", gweight_data) -else: - gpt_path = os.environ.get( - "gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt") - -if os.path.exists("./sweight.txt"): - with open("./sweight.txt", 'r', encoding="utf-8") as file: - sweight_data = file.read() - sovits_path = os.environ.get("sovits_path", sweight_data) -else: - sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth") -# gpt_path = os.environ.get( -# "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" -# ) -# sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth") -cnhubert_base_path = os.environ.get( - "cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base" -) -bert_path = os.environ.get( - "bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" -) -infer_ttswebui = os.environ.get("infer_ttswebui", 9872) -infer_ttswebui = int(infer_ttswebui) -is_share = os.environ.get("is_share", "False") -is_share = eval(is_share) -if "_CUDA_VISIBLE_DEVICES" in os.environ: - os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] -is_half = eval(os.environ.get("is_half", "True")) -import gradio as gr -from transformers import AutoModelForMaskedLM, AutoTokenizer -import numpy as np -import librosa, torch -from feature_extractor import cnhubert - -cnhubert.cnhubert_base_path = cnhubert_base_path - -from module.models import SynthesizerTrn -from AR.models.t2s_lightning_module import Text2SemanticLightningModule -from text import cleaned_text_to_sequence -from text.cleaner import clean_text -from time import time as ttime -from module.mel_processing import spectrogram_torch -from my_utils import load_audio -from tools.i18n.i18n import I18nAuto - -i18n = I18nAuto() - -os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。 - -if torch.cuda.is_available(): - device = "cuda" -elif torch.backends.mps.is_available(): - device = "mps" -else: - device = "cpu" - -tokenizer = AutoTokenizer.from_pretrained(bert_path) -bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) -if is_half == True: - bert_model = bert_model.half().to(device) -else: - bert_model = bert_model.to(device) - - -def get_bert_feature(text, word2ph): - print(23333334444444,text,word2ph) - with torch.no_grad(): - inputs = tokenizer(text, return_tensors="pt") - for i in inputs: - inputs[i] = inputs[i].to(device) - res = bert_model(**inputs, output_hidden_states=True) - res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] - assert len(word2ph) == len(text) - phone_level_feature = [] - for i in range(len(word2ph)): - repeat_feature = res[i].repeat(word2ph[i], 1) - phone_level_feature.append(repeat_feature) - phone_level_feature = torch.cat(phone_level_feature, dim=0) - return phone_level_feature.T - - -class DictToAttrRecursive(dict): - def __init__(self, input_dict): - super().__init__(input_dict) - for key, value in input_dict.items(): - if isinstance(value, dict): - value = DictToAttrRecursive(value) - self[key] = value - setattr(self, key, value) - - def __getattr__(self, item): - try: - return self[item] - except KeyError: - raise AttributeError(f"Attribute {item} not found") - - def __setattr__(self, key, value): - if isinstance(value, dict): - value = DictToAttrRecursive(value) - super(DictToAttrRecursive, self).__setitem__(key, value) - super().__setattr__(key, value) - - def __delattr__(self, item): - try: - del self[item] - except KeyError: - raise AttributeError(f"Attribute {item} not found") - - -ssl_model = cnhubert.get_model() -if is_half == True: - ssl_model = ssl_model.half().to(device) -else: - ssl_model = ssl_model.to(device) - - -def change_sovits_weights(sovits_path): - global vq_model, hps - dict_s2 = torch.load(sovits_path, map_location="cpu") - hps = dict_s2["config"] - hps = DictToAttrRecursive(hps) - hps.model.semantic_frame_rate = "25hz" - vq_model = SynthesizerTrn( - hps.data.filter_length // 2 + 1, - hps.train.segment_size // hps.data.hop_length, - n_speakers=hps.data.n_speakers, - **hps.model - ) - if ("pretrained" not in sovits_path): - del vq_model.enc_q - if is_half == True: - vq_model = vq_model.half().to(device) - else: - vq_model = vq_model.to(device) - vq_model.eval() - print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) - with open("./sweight.txt", "w", encoding="utf-8") as f: - f.write(sovits_path) - - -change_sovits_weights(sovits_path) - - -def change_gpt_weights(gpt_path): - global hz, max_sec, t2s_model, config - hz = 50 - dict_s1 = torch.load(gpt_path, map_location="cpu") - config = dict_s1["config"] - max_sec = config["data"]["max_sec"] - t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) - t2s_model.load_state_dict(dict_s1["weight"]) - if is_half == True: - t2s_model = t2s_model.half() - t2s_model = t2s_model.to(device) - t2s_model.eval() - total = sum([param.nelement() for param in t2s_model.parameters()]) - print("Number of parameter: %.2fM" % (total / 1e6)) - with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path) - - -change_gpt_weights(gpt_path) - - -def get_spepc(hps, filename): - audio = load_audio(filename, int(hps.data.sampling_rate)) - audio = torch.FloatTensor(audio) - audio_norm = audio - audio_norm = audio_norm.unsqueeze(0) - spec = spectrogram_torch( - audio_norm, - hps.data.filter_length, - hps.data.sampling_rate, - hps.data.hop_length, - hps.data.win_length, - center=False, - ) - return spec - - -dict_language = { - i18n("中文"): "all_zh",#全部按中文识别 - i18n("英文"): "en",#全部按英文识别#######不变 - i18n("日文"): "all_ja",#全部按日文识别 - i18n("中英混合"): "zh",#按中英混合识别####不变 - i18n("日英混合"): "ja",#按日英混合识别####不变 - i18n("多语种混合"): "auto",#多语种启动切分识别语种 -} - - -def splite_en_inf(sentence, language): - pattern = re.compile(r'[a-zA-Z ]+') - textlist = [] - langlist = [] - pos = 0 - for match in pattern.finditer(sentence): - start, end = match.span() - if start > pos: - textlist.append(sentence[pos:start]) - langlist.append(language) - textlist.append(sentence[start:end]) - langlist.append("en") - pos = end - if pos < len(sentence): - textlist.append(sentence[pos:]) - langlist.append(language) - # Merge punctuation into previous word - for i in range(len(textlist)-1, 0, -1): - if re.match(r'^[\W_]+$', textlist[i]): - textlist[i-1] += textlist[i] - del textlist[i] - del langlist[i] - # Merge consecutive words with the same language tag - i = 0 - while i < len(langlist) - 1: - if langlist[i] == langlist[i+1]: - textlist[i] += textlist[i+1] - del textlist[i+1] - del langlist[i+1] - else: - i += 1 - - return textlist, langlist - - -def clean_text_inf(text, language): - phones, word2ph, norm_text = clean_text(text, language.replace("all_","")) - phones = cleaned_text_to_sequence(phones) - return phones, word2ph, norm_text - -dtype=torch.float16 if is_half == True else torch.float32 -def get_bert_inf(phones, word2ph, norm_text, language): - language=language.replace("all_","") - if language == "zh": - bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype) - else: - bert = torch.zeros( - (1024, len(phones)), - dtype=torch.float16 if is_half == True else torch.float32, - ).to(device) - - return bert - - -def nonen_clean_text_inf(text, language): - if(language!="auto"): - textlist, langlist = splite_en_inf(text, language) - else: - textlist=[] - langlist=[] - for tmp in LangSegment.getTexts(text): - langlist.append(tmp["lang"]) - textlist.append(tmp["text"]) - print(textlist) - print(langlist) - phones_list = [] - word2ph_list = [] - norm_text_list = [] - for i in range(len(textlist)): - lang = langlist[i] - phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) - phones_list.append(phones) - if lang == "zh": - word2ph_list.append(word2ph) - norm_text_list.append(norm_text) - print(word2ph_list) - phones = sum(phones_list, []) - word2ph = sum(word2ph_list, []) - norm_text = ' '.join(norm_text_list) - - return phones, word2ph, norm_text - - -def nonen_get_bert_inf(text, language): - if(language!="auto"): - textlist, langlist = splite_en_inf(text, language) - else: - textlist=[] - langlist=[] - for tmp in LangSegment.getTexts(text): - langlist.append(tmp["lang"]) - textlist.append(tmp["text"]) - print(textlist) - print(langlist) - bert_list = [] - for i in range(len(textlist)): - text = textlist[i] - lang = langlist[i] - phones, word2ph, norm_text = clean_text_inf(text, lang) - bert = get_bert_inf(phones, word2ph, norm_text, lang) - bert_list.append(bert) - bert = torch.cat(bert_list, dim=1) - - return bert - - -splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", } - - -def get_first(text): - pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" - text = re.split(pattern, text)[0].strip() - return text - - -def get_cleaned_text_final(text,language): - if language in {"en","all_zh","all_ja"}: - phones, word2ph, norm_text = clean_text_inf(text, language) - elif language in {"zh", "ja","auto"}: - phones, word2ph, norm_text = nonen_clean_text_inf(text, language) - return phones, word2ph, norm_text - -def get_bert_final(phones, word2ph, text,language,device): - if language == "en": - bert = get_bert_inf(phones, word2ph, text, language) - elif language in {"zh", "ja","auto"}: - bert = nonen_get_bert_inf(text, language) - elif language == "all_zh": - bert = get_bert_feature(text, word2ph).to(device) - else: - bert = torch.zeros((1024, len(phones))).to(device) - return bert - -def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切")): - t0 = ttime() - prompt_language = dict_language[prompt_language] - text_language = dict_language[text_language] - prompt_text = prompt_text.strip("\n") - if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "." - text = text.strip("\n") - if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text - print(i18n("实际输入的参考文本:"), prompt_text) - print(i18n("实际输入的目标文本:"), text) - zero_wav = np.zeros( - int(hps.data.sampling_rate * 0.3), - dtype=np.float16 if is_half == True else np.float32, - ) - with torch.no_grad(): - wav16k, sr = librosa.load(ref_wav_path, sr=16000) - if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): - raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) - wav16k = torch.from_numpy(wav16k) - zero_wav_torch = torch.from_numpy(zero_wav) - if is_half == True: - wav16k = wav16k.half().to(device) - zero_wav_torch = zero_wav_torch.half().to(device) - else: - wav16k = wav16k.to(device) - zero_wav_torch = zero_wav_torch.to(device) - wav16k = torch.cat([wav16k, zero_wav_torch]) - ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ - "last_hidden_state" - ].transpose( - 1, 2 - ) # .float() - codes = vq_model.extract_latent(ssl_content) - prompt_semantic = codes[0, 0] - t1 = ttime() - - phones1, word2ph1, norm_text1=get_cleaned_text_final(prompt_text, prompt_language) - - if (how_to_cut == i18n("凑四句一切")): - text = cut1(text) - elif (how_to_cut == i18n("凑50字一切")): - text = cut2(text) - elif (how_to_cut == i18n("按中文句号。切")): - text = cut3(text) - elif (how_to_cut == i18n("按英文句号.切")): - text = cut4(text) - elif (how_to_cut == i18n("按标点符号切")): - text = cut5(text) - text = text.replace("\n\n", "\n").replace("\n\n", "\n").replace("\n\n", "\n") - print(i18n("实际输入的目标文本(切句后):"), text) - texts = text.split("\n") - audio_opt = [] - bert1=get_bert_final(phones1, word2ph1, norm_text1,prompt_language,device).to(dtype) - - for text in texts: - # 解决输入目标文本的空行导致报错的问题 - if (len(text.strip()) == 0): - continue - if (text[-1] not in splits): text += "。" if text_language != "en" else "." - print(i18n("实际输入的目标文本(每句):"), text) - phones2, word2ph2, norm_text2 = get_cleaned_text_final(text, text_language) - bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype) - print(bert1,bert2) - bert = torch.cat([bert1, bert2], 1) - - all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) - bert = bert.to(device).unsqueeze(0) - all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) - prompt = prompt_semantic.unsqueeze(0).to(device) - t2 = ttime() - with torch.no_grad(): - # pred_semantic = t2s_model.model.infer( - pred_semantic, idx = t2s_model.model.infer_panel( - all_phoneme_ids, - all_phoneme_len, - prompt, - bert, - # prompt_phone_len=ph_offset, - top_k=config["inference"]["top_k"], - early_stop_num=hz * max_sec, - ) - t3 = ttime() - # print(pred_semantic.shape,idx) - pred_semantic = pred_semantic[:, -idx:].unsqueeze( - 0 - ) # .unsqueeze(0)#mq要多unsqueeze一次 - refer = get_spepc(hps, ref_wav_path) # .to(device) - if is_half == True: - refer = refer.half().to(device) - else: - refer = refer.to(device) - # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] - audio = ( - vq_model.decode( - pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer - ) - .detach() - .cpu() - .numpy()[0, 0] - ) ###试试重建不带上prompt部分 - max_audio=np.abs(audio).max()#简单防止16bit爆音 - if max_audio>1:audio/=max_audio - audio_opt.append(audio) - audio_opt.append(zero_wav) - t4 = ttime() - print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) - yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype( - np.int16 - ) - - -def split(todo_text): - todo_text = todo_text.replace("……", "。").replace("——", ",") - if todo_text[-1] not in splits: - todo_text += "。" - i_split_head = i_split_tail = 0 - len_text = len(todo_text) - todo_texts = [] - while 1: - if i_split_head >= len_text: - break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 - if todo_text[i_split_head] in splits: - i_split_head += 1 - todo_texts.append(todo_text[i_split_tail:i_split_head]) - i_split_tail = i_split_head - else: - i_split_head += 1 - return todo_texts - - -def cut1(inp): - inp = inp.strip("\n") - inps = split(inp) - split_idx = list(range(0, len(inps), 4)) - split_idx[-1] = None - if len(split_idx) > 1: - opts = [] - for idx in range(len(split_idx) - 1): - opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]])) - else: - opts = [inp] - return "\n".join(opts) - - -def cut2(inp): - inp = inp.strip("\n") - inps = split(inp) - if len(inps) < 2: - return inp - opts = [] - summ = 0 - tmp_str = "" - for i in range(len(inps)): - summ += len(inps[i]) - tmp_str += inps[i] - if summ > 50: - summ = 0 - opts.append(tmp_str) - tmp_str = "" - if tmp_str != "": - opts.append(tmp_str) - # print(opts) - if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起 - opts[-2] = opts[-2] + opts[-1] - opts = opts[:-1] - return "\n".join(opts) - - -def cut3(inp): - inp = inp.strip("\n") - return "\n".join(["%s" % item for item in inp.strip("。").split("。")]) - - -def cut4(inp): - inp = inp.strip("\n") - return "\n".join(["%s" % item for item in inp.strip(".").split(".")]) - - -# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py -def cut5(inp): - # if not re.search(r'[^\w\s]', inp[-1]): - # inp += '。' - inp = inp.strip("\n") - punds = r'[,.;?!、,。?!;:]' - items = re.split(f'({punds})', inp) - items = ["".join(group) for group in zip(items[::2], items[1::2])] - opt = "\n".join(items) - return opt - - -def custom_sort_key(s): - # 使用正则表达式提取字符串中的数字部分和非数字部分 - parts = re.split('(\d+)', s) - # 将数字部分转换为整数,非数字部分保持不变 - parts = [int(part) if part.isdigit() else part for part in parts] - return parts - - -def change_choices(): - SoVITS_names, GPT_names = get_weights_names() - return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"} - - -pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth" -pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" -SoVITS_weight_root = "SoVITS_weights" -GPT_weight_root = "GPT_weights" -os.makedirs(SoVITS_weight_root, exist_ok=True) -os.makedirs(GPT_weight_root, exist_ok=True) - - -def get_weights_names(): - SoVITS_names = [pretrained_sovits_name] - for name in os.listdir(SoVITS_weight_root): - if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name)) - GPT_names = [pretrained_gpt_name] - for name in os.listdir(GPT_weight_root): - if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name)) - return SoVITS_names, GPT_names - - -SoVITS_names, GPT_names = get_weights_names() - -with gr.Blocks(title="GPT-SoVITS WebUI") as app: - gr.Markdown( - value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.") - ) - with gr.Group(): - gr.Markdown(value=i18n("模型切换")) - with gr.Row(): - GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True) - SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True) - refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary") - refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown]) - SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], []) - GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], []) - gr.Markdown(value=i18n("*请上传并填写参考信息")) - with gr.Row(): - inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath") - prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="") - prompt_language = gr.Dropdown( - label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文") - ) - gr.Markdown(value=i18n("*请填写需要合成的目标文本。中英混合选中文,日英混合选日文,中日混合暂不支持,非目标语言文本自动遗弃。")) - with gr.Row(): - text = gr.Textbox(label=i18n("需要合成的文本"), value="") - text_language = gr.Dropdown( - label=i18n("需要合成的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文") - ) - how_to_cut = gr.Radio( - label=i18n("怎么切"), - choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ], - value=i18n("凑四句一切"), - interactive=True, - ) - inference_button = gr.Button(i18n("合成语音"), variant="primary") - output = gr.Audio(label=i18n("输出的语音")) - - inference_button.click( - get_tts_wav, - [inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut], - [output], - ) - - gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。")) - with gr.Row(): - text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="") - button1 = gr.Button(i18n("凑四句一切"), variant="primary") - button2 = gr.Button(i18n("凑50字一切"), variant="primary") - button3 = gr.Button(i18n("按中文句号。切"), variant="primary") - button4 = gr.Button(i18n("按英文句号.切"), variant="primary") - button5 = gr.Button(i18n("按标点符号切"), variant="primary") - text_opt = gr.Textbox(label=i18n("切分后文本"), value="") - button1.click(cut1, [text_inp], [text_opt]) - button2.click(cut2, [text_inp], [text_opt]) - button3.click(cut3, [text_inp], [text_opt]) - button4.click(cut4, [text_inp], [text_opt]) - button5.click(cut5, [text_inp], [text_opt]) - gr.Markdown(value=i18n("后续将支持混合语种编码文本输入。")) - -app.queue(concurrency_count=511, max_size=1022).launch( - server_name="0.0.0.0", - inbrowser=True, - share=is_share, - server_port=infer_ttswebui, - quiet=True, -) +''' +按中英混合识别 +按日英混合识别 +多语种启动切分识别语种 +全部按中文识别 +全部按英文识别 +全部按日文识别 +''' +import os, re, logging +import LangSegment +logging.getLogger("markdown_it").setLevel(logging.ERROR) +logging.getLogger("urllib3").setLevel(logging.ERROR) +logging.getLogger("httpcore").setLevel(logging.ERROR) +logging.getLogger("httpx").setLevel(logging.ERROR) +logging.getLogger("asyncio").setLevel(logging.ERROR) +logging.getLogger("charset_normalizer").setLevel(logging.ERROR) +logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) +import pdb + +if os.path.exists("./gweight.txt"): + with open("./gweight.txt", 'r', encoding="utf-8") as file: + gweight_data = file.read() + gpt_path = os.environ.get( + "gpt_path", gweight_data) +else: + gpt_path = os.environ.get( + "gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt") + +if os.path.exists("./sweight.txt"): + with open("./sweight.txt", 'r', encoding="utf-8") as file: + sweight_data = file.read() + sovits_path = os.environ.get("sovits_path", sweight_data) +else: + sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth") +# gpt_path = os.environ.get( +# "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" +# ) +# sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth") +cnhubert_base_path = os.environ.get( + "cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base" +) +bert_path = os.environ.get( + "bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" +) +infer_ttswebui = os.environ.get("infer_ttswebui", 9872) +infer_ttswebui = int(infer_ttswebui) +is_share = os.environ.get("is_share", "False") +is_share = eval(is_share) +if "_CUDA_VISIBLE_DEVICES" in os.environ: + os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] +is_half = eval(os.environ.get("is_half", "True")) +import gradio as gr +from transformers import AutoModelForMaskedLM, AutoTokenizer +import numpy as np +import librosa, torch +from feature_extractor import cnhubert + +cnhubert.cnhubert_base_path = cnhubert_base_path + +from module.models import SynthesizerTrn +from AR.models.t2s_lightning_module import Text2SemanticLightningModule +from text import cleaned_text_to_sequence +from text.cleaner import clean_text +from time import time as ttime +from module.mel_processing import spectrogram_torch +from my_utils import load_audio +from tools.i18n.i18n import I18nAuto + +i18n = I18nAuto() + +os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。 + +if torch.cuda.is_available(): + device = "cuda" +elif torch.backends.mps.is_available(): + device = "mps" +else: + device = "cpu" + +tokenizer = AutoTokenizer.from_pretrained(bert_path) +bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) +if is_half == True: + bert_model = bert_model.half().to(device) +else: + bert_model = bert_model.to(device) + + +def get_bert_feature(text, word2ph): + with torch.no_grad(): + inputs = tokenizer(text, return_tensors="pt") + for i in inputs: + inputs[i] = inputs[i].to(device) + res = bert_model(**inputs, output_hidden_states=True) + res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] + assert len(word2ph) == len(text) + phone_level_feature = [] + for i in range(len(word2ph)): + repeat_feature = res[i].repeat(word2ph[i], 1) + phone_level_feature.append(repeat_feature) + phone_level_feature = torch.cat(phone_level_feature, dim=0) + return phone_level_feature.T + + +class DictToAttrRecursive(dict): + def __init__(self, input_dict): + super().__init__(input_dict) + for key, value in input_dict.items(): + if isinstance(value, dict): + value = DictToAttrRecursive(value) + self[key] = value + setattr(self, key, value) + + def __getattr__(self, item): + try: + return self[item] + except KeyError: + raise AttributeError(f"Attribute {item} not found") + + def __setattr__(self, key, value): + if isinstance(value, dict): + value = DictToAttrRecursive(value) + super(DictToAttrRecursive, self).__setitem__(key, value) + super().__setattr__(key, value) + + def __delattr__(self, item): + try: + del self[item] + except KeyError: + raise AttributeError(f"Attribute {item} not found") + + +ssl_model = cnhubert.get_model() +if is_half == True: + ssl_model = ssl_model.half().to(device) +else: + ssl_model = ssl_model.to(device) + + +def change_sovits_weights(sovits_path): + global vq_model, hps + dict_s2 = torch.load(sovits_path, map_location="cpu") + hps = dict_s2["config"] + hps = DictToAttrRecursive(hps) + hps.model.semantic_frame_rate = "25hz" + vq_model = SynthesizerTrn( + hps.data.filter_length // 2 + 1, + hps.train.segment_size // hps.data.hop_length, + n_speakers=hps.data.n_speakers, + **hps.model + ) + if ("pretrained" not in sovits_path): + del vq_model.enc_q + if is_half == True: + vq_model = vq_model.half().to(device) + else: + vq_model = vq_model.to(device) + vq_model.eval() + print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) + with open("./sweight.txt", "w", encoding="utf-8") as f: + f.write(sovits_path) + + +change_sovits_weights(sovits_path) + + +def change_gpt_weights(gpt_path): + global hz, max_sec, t2s_model, config + hz = 50 + dict_s1 = torch.load(gpt_path, map_location="cpu") + config = dict_s1["config"] + max_sec = config["data"]["max_sec"] + t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) + t2s_model.load_state_dict(dict_s1["weight"]) + if is_half == True: + t2s_model = t2s_model.half() + t2s_model = t2s_model.to(device) + t2s_model.eval() + total = sum([param.nelement() for param in t2s_model.parameters()]) + print("Number of parameter: %.2fM" % (total / 1e6)) + with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path) + + +change_gpt_weights(gpt_path) + + +def get_spepc(hps, filename): + audio = load_audio(filename, int(hps.data.sampling_rate)) + audio = torch.FloatTensor(audio) + audio_norm = audio + audio_norm = audio_norm.unsqueeze(0) + spec = spectrogram_torch( + audio_norm, + hps.data.filter_length, + hps.data.sampling_rate, + hps.data.hop_length, + hps.data.win_length, + center=False, + ) + return spec + + +dict_language = { + i18n("中文"): "all_zh",#全部按中文识别 + i18n("英文"): "en",#全部按英文识别#######不变 + i18n("日文"): "all_ja",#全部按日文识别 + i18n("中英混合"): "zh",#按中英混合识别####不变 + i18n("日英混合"): "ja",#按日英混合识别####不变 + i18n("多语种混合"): "auto",#多语种启动切分识别语种 +} + + +def splite_en_inf(sentence, language): + pattern = re.compile(r'[a-zA-Z ]+') + textlist = [] + langlist = [] + pos = 0 + for match in pattern.finditer(sentence): + start, end = match.span() + if start > pos: + textlist.append(sentence[pos:start]) + langlist.append(language) + textlist.append(sentence[start:end]) + langlist.append("en") + pos = end + if pos < len(sentence): + textlist.append(sentence[pos:]) + langlist.append(language) + # Merge punctuation into previous word + for i in range(len(textlist)-1, 0, -1): + if re.match(r'^[\W_]+$', textlist[i]): + textlist[i-1] += textlist[i] + del textlist[i] + del langlist[i] + # Merge consecutive words with the same language tag + i = 0 + while i < len(langlist) - 1: + if langlist[i] == langlist[i+1]: + textlist[i] += textlist[i+1] + del textlist[i+1] + del langlist[i+1] + else: + i += 1 + + return textlist, langlist + + +def clean_text_inf(text, language): + phones, word2ph, norm_text = clean_text(text, language.replace("all_","")) + phones = cleaned_text_to_sequence(phones) + return phones, word2ph, norm_text + +dtype=torch.float16 if is_half == True else torch.float32 +def get_bert_inf(phones, word2ph, norm_text, language): + language=language.replace("all_","") + if language == "zh": + bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype) + else: + bert = torch.zeros( + (1024, len(phones)), + dtype=torch.float16 if is_half == True else torch.float32, + ).to(device) + + return bert + + +def nonen_clean_text_inf(text, language): + if(language!="auto"): + textlist, langlist = splite_en_inf(text, language) + else: + textlist=[] + langlist=[] + for tmp in LangSegment.getTexts(text): + langlist.append(tmp["lang"]) + textlist.append(tmp["text"]) + print(textlist) + print(langlist) + phones_list = [] + word2ph_list = [] + norm_text_list = [] + for i in range(len(textlist)): + lang = langlist[i] + phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) + phones_list.append(phones) + if lang == "zh": + word2ph_list.append(word2ph) + norm_text_list.append(norm_text) + print(word2ph_list) + phones = sum(phones_list, []) + word2ph = sum(word2ph_list, []) + norm_text = ' '.join(norm_text_list) + + return phones, word2ph, norm_text + + +def nonen_get_bert_inf(text, language): + if(language!="auto"): + textlist, langlist = splite_en_inf(text, language) + else: + textlist=[] + langlist=[] + for tmp in LangSegment.getTexts(text): + langlist.append(tmp["lang"]) + textlist.append(tmp["text"]) + print(textlist) + print(langlist) + bert_list = [] + for i in range(len(textlist)): + text = textlist[i] + lang = langlist[i] + phones, word2ph, norm_text = clean_text_inf(text, lang) + bert = get_bert_inf(phones, word2ph, norm_text, lang) + bert_list.append(bert) + bert = torch.cat(bert_list, dim=1) + + return bert + + +splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", } + + +def get_first(text): + pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" + text = re.split(pattern, text)[0].strip() + return text + + +def get_cleaned_text_final(text,language): + if language in {"en","all_zh","all_ja"}: + phones, word2ph, norm_text = clean_text_inf(text, language) + elif language in {"zh", "ja","auto"}: + phones, word2ph, norm_text = nonen_clean_text_inf(text, language) + return phones, word2ph, norm_text + +def get_bert_final(phones, word2ph, text,language,device): + if language == "en": + bert = get_bert_inf(phones, word2ph, text, language) + elif language in {"zh", "ja","auto"}: + bert = nonen_get_bert_inf(text, language) + elif language == "all_zh": + bert = get_bert_feature(text, word2ph).to(device) + else: + bert = torch.zeros((1024, len(phones))).to(device) + return bert + +def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切")): + t0 = ttime() + prompt_language = dict_language[prompt_language] + text_language = dict_language[text_language] + prompt_text = prompt_text.strip("\n") + if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "." + text = text.strip("\n") + if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text + print(i18n("实际输入的参考文本:"), prompt_text) + print(i18n("实际输入的目标文本:"), text) + zero_wav = np.zeros( + int(hps.data.sampling_rate * 0.3), + dtype=np.float16 if is_half == True else np.float32, + ) + with torch.no_grad(): + wav16k, sr = librosa.load(ref_wav_path, sr=16000) + if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): + raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) + wav16k = torch.from_numpy(wav16k) + zero_wav_torch = torch.from_numpy(zero_wav) + if is_half == True: + wav16k = wav16k.half().to(device) + zero_wav_torch = zero_wav_torch.half().to(device) + else: + wav16k = wav16k.to(device) + zero_wav_torch = zero_wav_torch.to(device) + wav16k = torch.cat([wav16k, zero_wav_torch]) + ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ + "last_hidden_state" + ].transpose( + 1, 2 + ) # .float() + codes = vq_model.extract_latent(ssl_content) + prompt_semantic = codes[0, 0] + t1 = ttime() + + phones1, word2ph1, norm_text1=get_cleaned_text_final(prompt_text, prompt_language) + + if (how_to_cut == i18n("凑四句一切")): + text = cut1(text) + elif (how_to_cut == i18n("凑50字一切")): + text = cut2(text) + elif (how_to_cut == i18n("按中文句号。切")): + text = cut3(text) + elif (how_to_cut == i18n("按英文句号.切")): + text = cut4(text) + elif (how_to_cut == i18n("按标点符号切")): + text = cut5(text) + text = text.replace("\n\n", "\n").replace("\n\n", "\n").replace("\n\n", "\n") + print(i18n("实际输入的目标文本(切句后):"), text) + texts = text.split("\n") + audio_opt = [] + bert1=get_bert_final(phones1, word2ph1, norm_text1,prompt_language,device).to(dtype) + + for text in texts: + # 解决输入目标文本的空行导致报错的问题 + if (len(text.strip()) == 0): + continue + if (text[-1] not in splits): text += "。" if text_language != "en" else "." + print(i18n("实际输入的目标文本(每句):"), text) + phones2, word2ph2, norm_text2 = get_cleaned_text_final(text, text_language) + bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype) + bert = torch.cat([bert1, bert2], 1) + + all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) + bert = bert.to(device).unsqueeze(0) + all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) + prompt = prompt_semantic.unsqueeze(0).to(device) + t2 = ttime() + with torch.no_grad(): + # pred_semantic = t2s_model.model.infer( + pred_semantic, idx = t2s_model.model.infer_panel( + all_phoneme_ids, + all_phoneme_len, + prompt, + bert, + # prompt_phone_len=ph_offset, + top_k=config["inference"]["top_k"], + early_stop_num=hz * max_sec, + ) + t3 = ttime() + # print(pred_semantic.shape,idx) + pred_semantic = pred_semantic[:, -idx:].unsqueeze( + 0 + ) # .unsqueeze(0)#mq要多unsqueeze一次 + refer = get_spepc(hps, ref_wav_path) # .to(device) + if is_half == True: + refer = refer.half().to(device) + else: + refer = refer.to(device) + # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] + audio = ( + vq_model.decode( + pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer + ) + .detach() + .cpu() + .numpy()[0, 0] + ) ###试试重建不带上prompt部分 + max_audio=np.abs(audio).max()#简单防止16bit爆音 + if max_audio>1:audio/=max_audio + audio_opt.append(audio) + audio_opt.append(zero_wav) + t4 = ttime() + print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) + yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype( + np.int16 + ) + + +def split(todo_text): + todo_text = todo_text.replace("……", "。").replace("——", ",") + if todo_text[-1] not in splits: + todo_text += "。" + i_split_head = i_split_tail = 0 + len_text = len(todo_text) + todo_texts = [] + while 1: + if i_split_head >= len_text: + break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 + if todo_text[i_split_head] in splits: + i_split_head += 1 + todo_texts.append(todo_text[i_split_tail:i_split_head]) + i_split_tail = i_split_head + else: + i_split_head += 1 + return todo_texts + + +def cut1(inp): + inp = inp.strip("\n") + inps = split(inp) + split_idx = list(range(0, len(inps), 4)) + split_idx[-1] = None + if len(split_idx) > 1: + opts = [] + for idx in range(len(split_idx) - 1): + opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]])) + else: + opts = [inp] + return "\n".join(opts) + + +def cut2(inp): + inp = inp.strip("\n") + inps = split(inp) + if len(inps) < 2: + return inp + opts = [] + summ = 0 + tmp_str = "" + for i in range(len(inps)): + summ += len(inps[i]) + tmp_str += inps[i] + if summ > 50: + summ = 0 + opts.append(tmp_str) + tmp_str = "" + if tmp_str != "": + opts.append(tmp_str) + # print(opts) + if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起 + opts[-2] = opts[-2] + opts[-1] + opts = opts[:-1] + return "\n".join(opts) + + +def cut3(inp): + inp = inp.strip("\n") + return "\n".join(["%s" % item for item in inp.strip("。").split("。")]) + + +def cut4(inp): + inp = inp.strip("\n") + return "\n".join(["%s" % item for item in inp.strip(".").split(".")]) + + +# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py +def cut5(inp): + # if not re.search(r'[^\w\s]', inp[-1]): + # inp += '。' + inp = inp.strip("\n") + punds = r'[,.;?!、,。?!;:]' + items = re.split(f'({punds})', inp) + items = ["".join(group) for group in zip(items[::2], items[1::2])] + opt = "\n".join(items) + return opt + + +def custom_sort_key(s): + # 使用正则表达式提取字符串中的数字部分和非数字部分 + parts = re.split('(\d+)', s) + # 将数字部分转换为整数,非数字部分保持不变 + parts = [int(part) if part.isdigit() else part for part in parts] + return parts + + +def change_choices(): + SoVITS_names, GPT_names = get_weights_names() + return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"} + + +pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth" +pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" +SoVITS_weight_root = "SoVITS_weights" +GPT_weight_root = "GPT_weights" +os.makedirs(SoVITS_weight_root, exist_ok=True) +os.makedirs(GPT_weight_root, exist_ok=True) + + +def get_weights_names(): + SoVITS_names = [pretrained_sovits_name] + for name in os.listdir(SoVITS_weight_root): + if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name)) + GPT_names = [pretrained_gpt_name] + for name in os.listdir(GPT_weight_root): + if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name)) + return SoVITS_names, GPT_names + + +SoVITS_names, GPT_names = get_weights_names() + +with gr.Blocks(title="GPT-SoVITS WebUI") as app: + gr.Markdown( + value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.") + ) + with gr.Group(): + gr.Markdown(value=i18n("模型切换")) + with gr.Row(): + GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True) + SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True) + refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary") + refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown]) + SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], []) + GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], []) + gr.Markdown(value=i18n("*请上传并填写参考信息")) + with gr.Row(): + inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath") + prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="") + prompt_language = gr.Dropdown( + label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文") + ) + gr.Markdown(value=i18n("*请填写需要合成的目标文本。中英混合选中文,日英混合选日文,中日混合暂不支持,非目标语言文本自动遗弃。")) + with gr.Row(): + text = gr.Textbox(label=i18n("需要合成的文本"), value="") + text_language = gr.Dropdown( + label=i18n("需要合成的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文") + ) + how_to_cut = gr.Radio( + label=i18n("怎么切"), + choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ], + value=i18n("凑四句一切"), + interactive=True, + ) + inference_button = gr.Button(i18n("合成语音"), variant="primary") + output = gr.Audio(label=i18n("输出的语音")) + + inference_button.click( + get_tts_wav, + [inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut], + [output], + ) + + gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。")) + with gr.Row(): + text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="") + button1 = gr.Button(i18n("凑四句一切"), variant="primary") + button2 = gr.Button(i18n("凑50字一切"), variant="primary") + button3 = gr.Button(i18n("按中文句号。切"), variant="primary") + button4 = gr.Button(i18n("按英文句号.切"), variant="primary") + button5 = gr.Button(i18n("按标点符号切"), variant="primary") + text_opt = gr.Textbox(label=i18n("切分后文本"), value="") + button1.click(cut1, [text_inp], [text_opt]) + button2.click(cut2, [text_inp], [text_opt]) + button3.click(cut3, [text_inp], [text_opt]) + button4.click(cut4, [text_inp], [text_opt]) + button5.click(cut5, [text_inp], [text_opt]) + gr.Markdown(value=i18n("后续将支持混合语种编码文本输入。")) + +app.queue(concurrency_count=511, max_size=1022).launch( + server_name="0.0.0.0", + inbrowser=True, + share=is_share, + server_port=infer_ttswebui, + quiet=True, +)