mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
Optimize-English-G2P
This commit is contained in:
parent
c287430ecc
commit
ca57a01bea
232173
GPT_SoVITS/text/cmudict.rep
232173
GPT_SoVITS/text/cmudict.rep
File diff suppressed because it is too large
Load Diff
Binary file not shown.
@ -1,6 +1,7 @@
|
|||||||
import pickle
|
import pickle
|
||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
|
import wordsegment
|
||||||
from g2p_en import G2p
|
from g2p_en import G2p
|
||||||
|
|
||||||
from string import punctuation
|
from string import punctuation
|
||||||
@ -12,7 +13,6 @@ CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep")
|
|||||||
CMU_DICT_FAST_PATH = os.path.join(current_file_path, "cmudict-fast.rep")
|
CMU_DICT_FAST_PATH = os.path.join(current_file_path, "cmudict-fast.rep")
|
||||||
CMU_DICT_HOT_PATH = os.path.join(current_file_path, "engdict-hot.rep")
|
CMU_DICT_HOT_PATH = os.path.join(current_file_path, "engdict-hot.rep")
|
||||||
CACHE_PATH = os.path.join(current_file_path, "engdict_cache.pickle")
|
CACHE_PATH = os.path.join(current_file_path, "engdict_cache.pickle")
|
||||||
_g2p = G2p()
|
|
||||||
|
|
||||||
arpa = {
|
arpa = {
|
||||||
"AH0",
|
"AH0",
|
||||||
@ -112,7 +112,7 @@ def read_dict():
|
|||||||
if line_index >= start_line:
|
if line_index >= start_line:
|
||||||
line = line.strip()
|
line = line.strip()
|
||||||
word_split = line.split(" ")
|
word_split = line.split(" ")
|
||||||
word = word_split[0]
|
word = word_split[0].lower()
|
||||||
|
|
||||||
syllable_split = word_split[1].split(" - ")
|
syllable_split = word_split[1].split(" - ")
|
||||||
g2p_dict[word] = []
|
g2p_dict[word] = []
|
||||||
@ -132,16 +132,11 @@ def read_dict_new():
|
|||||||
line = f.readline()
|
line = f.readline()
|
||||||
line_index = 1
|
line_index = 1
|
||||||
while line:
|
while line:
|
||||||
if line_index >= 49:
|
if line_index >= 57:
|
||||||
line = line.strip()
|
line = line.strip()
|
||||||
word_split = line.split(" ")
|
word_split = line.split(" ")
|
||||||
word = word_split[0]
|
word = word_split[0].lower()
|
||||||
|
g2p_dict[word] = [word_split[1].split(" ")]
|
||||||
syllable_split = word_split[1].split(" - ")
|
|
||||||
g2p_dict[word] = []
|
|
||||||
for syllable in syllable_split:
|
|
||||||
phone_split = syllable.split(" ")
|
|
||||||
g2p_dict[word].append(phone_split)
|
|
||||||
|
|
||||||
line_index = line_index + 1
|
line_index = line_index + 1
|
||||||
line = f.readline()
|
line = f.readline()
|
||||||
@ -153,10 +148,9 @@ def read_dict_new():
|
|||||||
if line_index >= 0:
|
if line_index >= 0:
|
||||||
line = line.strip()
|
line = line.strip()
|
||||||
word_split = line.split(" ")
|
word_split = line.split(" ")
|
||||||
word = word_split[0]
|
word = word_split[0].lower()
|
||||||
if word not in g2p_dict:
|
if word not in g2p_dict:
|
||||||
g2p_dict[word] = []
|
g2p_dict[word] = [word_split[1:]]
|
||||||
g2p_dict[word].append(word_split[1:])
|
|
||||||
|
|
||||||
line_index = line_index + 1
|
line_index = line_index + 1
|
||||||
line = f.readline()
|
line = f.readline()
|
||||||
@ -168,10 +162,9 @@ def read_dict_new():
|
|||||||
if line_index >= 0:
|
if line_index >= 0:
|
||||||
line = line.strip()
|
line = line.strip()
|
||||||
word_split = line.split(" ")
|
word_split = line.split(" ")
|
||||||
word = word_split[0]
|
word = word_split[0].lower()
|
||||||
#if word not in g2p_dict:
|
# 自定义发音词直接覆盖字典
|
||||||
g2p_dict[word] = []
|
g2p_dict[word] = [word_split[1:]]
|
||||||
g2p_dict[word].append(word_split[1:])
|
|
||||||
|
|
||||||
line_index = line_index + 1
|
line_index = line_index + 1
|
||||||
line = f.readline()
|
line = f.readline()
|
||||||
@ -200,24 +193,52 @@ eng_dict = get_dict()
|
|||||||
|
|
||||||
def text_normalize(text):
|
def text_normalize(text):
|
||||||
# todo: eng text normalize
|
# todo: eng text normalize
|
||||||
return text.replace(";", ",")
|
# 适配 g2p_en 标点
|
||||||
|
return text.replace(";", ",").replace(":", ",").replace('"', "'")
|
||||||
|
|
||||||
|
|
||||||
|
class en_G2p(G2p):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
# 分词初始化
|
||||||
|
wordsegment.load()
|
||||||
|
|
||||||
|
# 扩展过时字典
|
||||||
|
self.cmu = get_dict()
|
||||||
|
|
||||||
|
# 剔除读音错误的几个缩写
|
||||||
|
for word in ["AE", "AI", "AR", "IOS", "HUD", "OS"]:
|
||||||
|
del self.cmu[word.lower()]
|
||||||
|
|
||||||
|
# "A" 落单不读 "AH0" 读 "EY1"
|
||||||
|
self.cmu['a'] = [['EY1']]
|
||||||
|
|
||||||
|
|
||||||
|
def predict(self, word):
|
||||||
|
# 小写 oov 长度小于等于 3 直接读字母
|
||||||
|
if (len(word) <= 3):
|
||||||
|
return [phone for w in word for phone in self(w)]
|
||||||
|
|
||||||
|
# 尝试进行分词,应对复合词
|
||||||
|
comps = wordsegment.segment(word.lower())
|
||||||
|
|
||||||
|
# 无法分词的送回去预测
|
||||||
|
if len(comps)==1:
|
||||||
|
return super().predict(word)
|
||||||
|
|
||||||
|
# 可以分词的递归处理
|
||||||
|
return [phone for comp in comps for phone in self(comp)]
|
||||||
|
|
||||||
|
|
||||||
|
_g2p = en_G2p()
|
||||||
|
|
||||||
|
|
||||||
def g2p(text):
|
def g2p(text):
|
||||||
phones = []
|
text = text_normalize(text)
|
||||||
words = re.split(r"([,;.\-\?\!\s+])", text)
|
|
||||||
for w in words:
|
# g2p_en 整段推理,剔除不存在的arpa返回
|
||||||
if w.upper() in eng_dict:
|
phone_list = _g2p(text)
|
||||||
phns = eng_dict[w.upper()]
|
phones = [ph if ph != "<unk>" else "UNK" for ph in phone_list if ph not in [" ", "<pad>", "UW", "</s>", "<s>"]]
|
||||||
for ph in phns:
|
|
||||||
phones += ph
|
|
||||||
else:
|
|
||||||
phone_list = list(filter(lambda p: p != " ", _g2p(w)))
|
|
||||||
for ph in phone_list:
|
|
||||||
if ph in arpa:
|
|
||||||
phones.append(ph)
|
|
||||||
else:
|
|
||||||
phones.append(ph)
|
|
||||||
|
|
||||||
return replace_phs(phones)
|
return replace_phs(phones)
|
||||||
|
|
||||||
|
@ -24,4 +24,5 @@ psutil
|
|||||||
jieba_fast
|
jieba_fast
|
||||||
jieba
|
jieba
|
||||||
LangSegment>=0.2.0
|
LangSegment>=0.2.0
|
||||||
Faster_Whisper
|
Faster_Whisper
|
||||||
|
wordsegment
|
Loading…
x
Reference in New Issue
Block a user