feat:successfully unified first step and following step

This commit is contained in:
zpeng11 2025-08-25 17:57:04 -04:00
parent d413a4f5b1
commit c85ee3d521

View File

@ -105,110 +105,6 @@ class OnnxEncoder(nn.Module):
x = x + self.bert_proj(bert_feature.transpose(1, 2)) x = x + self.bert_proj(bert_feature.transpose(1, 2))
return self.ar_text_position(x) return self.ar_text_position(x)
class T2SFirstStageDecoder(nn.Module):
def __init__(
self,
ar_audio_embedding,
ar_audio_position,
h,
ar_predict_layer,
loss_fct,
ar_accuracy_metric,
early_stop_num,
num_layers,
):
super().__init__()
self.ar_audio_embedding = ar_audio_embedding
self.ar_audio_position = ar_audio_position
self.h = h
self.ar_predict_layer = ar_predict_layer
self.loss_fct = loss_fct
self.ar_accuracy_metric = ar_accuracy_metric
self.early_stop_num = early_stop_num
self.num_layers = num_layers
def forward(self, x, prompt, y_emb, top_k = None, top_p = None, repetition_penalty = None, temperature = None, first_infer = None, x_seq_len = None, y_seq_len = None):
if top_k is None:
top_k = torch.LongTensor([15]).to(device=x.device)
if top_p is None:
top_p = torch.FloatTensor([1.0]).to(device=x.device)
if repetition_penalty is None:
repetition_penalty = torch.FloatTensor([1.0]).to(device=x.device)
if temperature is None:
temperature = torch.FloatTensor([1.0]).to(device=x.device)
minus_one = torch.tensor([-1]).to(x.device).to(torch.int64)
y = prompt
x_example = x[:, :, 0] * 0.0
# N, 1, 512
cache = {
"all_stage": self.num_layers,
"k": None,
"v": None,
"y_emb": y_emb,
"first_infer": first_infer,
"stage": 0,
}
# 运行时判断对最后一个y还是整个y做embedding以正确应对首次和后续
multipled = minus_one * first_infer * torch.onnx.operators.shape_as_tensor(y)[1]
index_offset = torch.min(minus_one, multipled)
y_to_emb = y[:, index_offset:]
print("y_emb shape:", y_emb.shape)
y_emb = torch.cat(
[
cache["y_emb"],
self.ar_audio_embedding(y_to_emb),
],
1,
)
cache["y_emb"] = y_emb
y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x, y_pos], dim=1)
# 运行时判断对最后一个xy_pos还是整个xy_pos做self attention
multipled = minus_one * first_infer * torch.onnx.operators.shape_as_tensor(xy_pos)[1]
index_offset = torch.min(minus_one, multipled)
xy_pos = xy_pos[:, index_offset:]
# 构造xy的attention mask
x_attn_mask = torch.zeros((x_seq_len, x_seq_len)).bool()
y_attn_mask = torch.ones((y_seq_len, y_seq_len)).to(torch.int64)
y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum(
torch.ones(
(y_seq_len, 1),
dtype=torch.int64,
),
dim=0,
)
y_attn_mask = y_attn_mask > 0
x_y_pad = torch.ones((x_seq_len, y_seq_len)).to(torch.bool)
y_x_pad = torch.zeros((y_seq_len, x_seq_len)).to(torch.bool)
x_attn_mask_pad = torch.cat([x_attn_mask, x_y_pad], dim=1)
y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
print("first iter xy_attn_mask shape:", xy_attn_mask.shape)
cache["k"] = torch.zeros((self.num_layers, (x_seq_len + y_seq_len), 1, 512), dtype=torch.float)
cache["v"] = torch.zeros((self.num_layers, (x_seq_len + y_seq_len), 1, 512), dtype=torch.float)
print("first iter cache k shape:", cache["k"].shape, 'cache v shape:', cache["v"].shape)
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
logits = self.ar_predict_layer(xy_dec[:, -1])
samples = sample(logits[0], y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature)[0].unsqueeze(0)
y = torch.concat([y, samples], dim=1)
return y, cache["k"], cache["v"], cache["y_emb"], x_example
class T2SStageDecoder(nn.Module): class T2SStageDecoder(nn.Module):
def __init__( def __init__(
self, self,
@ -231,7 +127,7 @@ class T2SStageDecoder(nn.Module):
self.early_stop_num = early_stop_num self.early_stop_num = early_stop_num
self.num_layers = num_layers self.num_layers = num_layers
def forward(self, x, y, k, v, y_emb, x_example, top_k = None, top_p = None, repetition_penalty = None, temperature = None, first_infer = None): def forward(self, x, y, k, v, y_emb, top_k = None, top_p = None, repetition_penalty = None, temperature = None, first_infer = None, x_seq_len = None, y_seq_len = None):
if top_k is None: if top_k is None:
top_k = torch.LongTensor([15]).to(device=y.device) top_k = torch.LongTensor([15]).to(device=y.device)
if top_p is None: if top_p is None:
@ -244,8 +140,8 @@ class T2SStageDecoder(nn.Module):
cache = { cache = {
"all_stage": self.num_layers, "all_stage": self.num_layers,
"k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)), "k": k,
"v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)), "v": v,
"y_emb": y_emb, "y_emb": y_emb,
"first_infer": first_infer, "first_infer": first_infer,
"stage": 0, "stage": 0,
@ -273,10 +169,29 @@ class T2SStageDecoder(nn.Module):
index_offset = torch.min(minus_one, multipled) index_offset = torch.min(minus_one, multipled)
xy_pos = xy_pos[:, index_offset:] xy_pos = xy_pos[:, index_offset:]
x_example_len = torch.onnx.operators.shape_as_tensor(x_example)[1] # 构造xy的attention mask
y_example_len = torch.onnx.operators.shape_as_tensor(y_pos)[1] x_attn_mask = torch.zeros((x_seq_len, x_seq_len)).bool()
xy_attn_mask = torch.zeros((1, x_example_len + y_example_len), dtype=torch.bool) y_attn_mask = torch.ones((y_seq_len, y_seq_len)).to(torch.int64)
print('xy_attn_mask shape:', xy_attn_mask.shape) y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum(
torch.ones(
(y_seq_len, 1),
dtype=torch.int64,
),
dim=0,
)
y_attn_mask = y_attn_mask > 0
x_y_pad = torch.ones((x_seq_len, y_seq_len)).to(torch.bool)
y_x_pad = torch.zeros((y_seq_len, x_seq_len)).to(torch.bool)
x_attn_mask_pad = torch.cat([x_attn_mask, x_y_pad], dim=1)
y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
# 运行时判断attension mask使用最后一个还是整个
multipled = minus_one * first_infer * torch.onnx.operators.shape_as_tensor(xy_attn_mask)[0]
index_offset = torch.min(minus_one, multipled)
xy_attn_mask = xy_attn_mask[index_offset:, :]
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache) xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
logits = self.ar_predict_layer(xy_dec[:, -1]) logits = self.ar_predict_layer(xy_dec[:, -1])
@ -332,16 +247,6 @@ class Text2SemanticDecoder(nn.Module):
def init_onnx(self): def init_onnx(self):
self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position) self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position)
self.first_stage_decoder = T2SFirstStageDecoder(
self.ar_audio_embedding,
self.ar_audio_position,
self.h,
self.ar_predict_layer,
self.loss_fct,
self.ar_accuracy_metric,
self.early_stop_num,
self.num_layers,
)
self.stage_decoder = T2SStageDecoder( self.stage_decoder = T2SStageDecoder(
self.ar_audio_embedding, self.ar_audio_embedding,
self.ar_audio_position, self.ar_audio_position,
@ -362,14 +267,21 @@ class Text2SemanticDecoder(nn.Module):
prefix_len = prompts.shape[1] prefix_len = prompts.shape[1]
x = self.onnx_encoder(x, bert_feature) x = self.onnx_encoder(x, bert_feature)
y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts, torch.empty((1,0,512)).to(torch.float), top_k=top_k,
first_infer=torch.LongTensor([1]), init_k = torch.zeros((self.num_layers, (x.shape[1] + prompts.shape[1]), 1, 512), dtype=torch.float)
x_seq_len=x.shape[1], y_seq_len=prompts.shape[1]) init_v = torch.zeros((self.num_layers, (x.shape[1] + prompts.shape[1]), 1, 512), dtype=torch.float)
y, k, v, y_emb, logits, samples = self.stage_decoder(x, prompts, init_k, init_v,
torch.empty((1,0,512)).to(torch.float), top_k=top_k,
first_infer=torch.LongTensor([1]),
x_seq_len=x.shape[1], y_seq_len=prompts.shape[1])
stop = False stop = False
for idx in tqdm(range(1, 1500)): for idx in tqdm(range(1, 1500)):
enco = self.stage_decoder( torch.empty((1,0,512)).to(torch.float) ,y, k, v, y_emb, x_example, top_k=top_k, k = torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1))
first_infer=torch.LongTensor([0])) v = torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1))
enco = self.stage_decoder( torch.empty((1,0,512)).to(torch.float) ,y, k, v, y_emb, top_k=top_k,
first_infer=torch.LongTensor([0]), x_seq_len=x.shape[1], y_seq_len=y.shape[1])
y, k, v, y_emb, logits, samples = enco y, k, v, y_emb, logits, samples = enco
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
stop = True stop = True