diff --git a/GPT_SoVITS/inference_webui.py b/GPT_SoVITS/inference_webui.py index 81c1dd7..03b8e34 100644 --- a/GPT_SoVITS/inference_webui.py +++ b/GPT_SoVITS/inference_webui.py @@ -641,7 +641,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, if(len(refers)==0):refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)] audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers,speed=speed)[0][0]#.cpu().detach().numpy() else: - refer = get_spepc(hps, ref_wav_path).to(device).to(dtype)#######这里要重采样切到32k,因为src是24k的,没有单独的32k的src,所以不能改成2个路径 + refer = get_spepc(hps, ref_wav_path).to(device).to(dtype) phoneme_ids0=torch.LongTensor(phones1).to(device).unsqueeze(0) phoneme_ids1=torch.LongTensor(phones2).to(device).unsqueeze(0) # print(11111111, phoneme_ids0, phoneme_ids1) @@ -666,7 +666,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, # print("fea_ref",fea_ref,fea_ref.shape) # print("mel2",mel2) mel2=mel2.to(dtype) - fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge) + fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge,speed) # print("fea_todo",fea_todo) # print("ge",ge.abs().mean()) cfm_resss = []