mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-08-29 16:53:11 +08:00
Merge pull request #1 from XXXXRT666/XXXXRT666-patch-1
Update .pre-commit-config.yaml
This commit is contained in:
commit
c26354b1b7
@ -13,9 +13,3 @@ repos:
|
||||
- id: ruff-format
|
||||
types_or: [ python, pyi ]
|
||||
args: [ --line-length, "120", --target-version, "py310" ]
|
||||
|
||||
# - repo: https://github.com/codespell-project/codespell
|
||||
# rev: v2.4.1
|
||||
# hooks:
|
||||
# - id: codespell
|
||||
# files: ^.*\.(py|md)$
|
@ -108,7 +108,7 @@ resample_transform_dict = {}
|
||||
|
||||
def resample(audio_tensor, sr0, sr1, device):
|
||||
global resample_transform_dict
|
||||
key="%s-%s"%(sr0,sr1)
|
||||
key = "%s-%s" % (sr0, sr1)
|
||||
if key not in resample_transform_dict:
|
||||
resample_transform_dict[key] = torchaudio.transforms.Resample(sr0, sr1).to(device)
|
||||
return resample_transform_dict[key](audio_tensor)
|
||||
@ -252,7 +252,6 @@ class TTS_Config:
|
||||
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
||||
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
||||
},
|
||||
|
||||
}
|
||||
configs: dict = None
|
||||
v1_languages: list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
|
||||
@ -432,7 +431,6 @@ class TTS:
|
||||
"aux_ref_audio_paths": [],
|
||||
}
|
||||
|
||||
|
||||
self.stop_flag: bool = False
|
||||
self.precision: torch.dtype = torch.float16 if self.configs.is_half else torch.float32
|
||||
|
||||
@ -468,7 +466,7 @@ class TTS:
|
||||
path_sovits = self.configs.default_configs[model_version]["vits_weights_path"]
|
||||
|
||||
if if_lora_v3 == True and os.path.exists(path_sovits) == False:
|
||||
info = path_sovits + i18n("SoVITS %s 底模缺失,无法加载相应 LoRA 权重"%model_version)
|
||||
info = path_sovits + i18n("SoVITS %s 底模缺失,无法加载相应 LoRA 权重" % model_version)
|
||||
raise FileExistsError(info)
|
||||
|
||||
# dict_s2 = torch.load(weights_path, map_location=self.configs.device,weights_only=False)
|
||||
@ -507,7 +505,7 @@ class TTS:
|
||||
)
|
||||
self.configs.use_vocoder = False
|
||||
else:
|
||||
kwargs["version"]=model_version
|
||||
kwargs["version"] = model_version
|
||||
vits_model = SynthesizerTrnV3(
|
||||
self.configs.filter_length // 2 + 1,
|
||||
self.configs.segment_size // self.configs.hop_length,
|
||||
@ -572,7 +570,7 @@ class TTS:
|
||||
self.vocoder.cpu()
|
||||
del self.vocoder
|
||||
self.empty_cache()
|
||||
|
||||
|
||||
self.vocoder = BigVGAN.from_pretrained(
|
||||
"%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,),
|
||||
use_cuda_kernel=False,
|
||||
@ -595,18 +593,21 @@ class TTS:
|
||||
self.empty_cache()
|
||||
|
||||
self.vocoder = Generator(
|
||||
initial_channel=100,
|
||||
resblock="1",
|
||||
resblock_kernel_sizes=[3, 7, 11],
|
||||
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
upsample_rates=[10, 6, 2, 2, 2],
|
||||
upsample_initial_channel=512,
|
||||
upsample_kernel_sizes=[20, 12, 4, 4, 4],
|
||||
gin_channels=0, is_bias=True
|
||||
)
|
||||
initial_channel=100,
|
||||
resblock="1",
|
||||
resblock_kernel_sizes=[3, 7, 11],
|
||||
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
upsample_rates=[10, 6, 2, 2, 2],
|
||||
upsample_initial_channel=512,
|
||||
upsample_kernel_sizes=[20, 12, 4, 4, 4],
|
||||
gin_channels=0,
|
||||
is_bias=True,
|
||||
)
|
||||
self.vocoder.remove_weight_norm()
|
||||
state_dict_g = torch.load("%s/GPT_SoVITS/pretrained_models/gsv-v4-pretrained/vocoder.pth" % (now_dir,), map_location="cpu")
|
||||
print("loading vocoder",self.vocoder.load_state_dict(state_dict_g))
|
||||
state_dict_g = torch.load(
|
||||
"%s/GPT_SoVITS/pretrained_models/gsv-v4-pretrained/vocoder.pth" % (now_dir,), map_location="cpu"
|
||||
)
|
||||
print("loading vocoder", self.vocoder.load_state_dict(state_dict_g))
|
||||
|
||||
self.vocoder_configs["sr"] = 48000
|
||||
self.vocoder_configs["T_ref"] = 500
|
||||
@ -614,9 +615,6 @@ class TTS:
|
||||
self.vocoder_configs["upsample_rate"] = 480
|
||||
self.vocoder_configs["overlapped_len"] = 12
|
||||
|
||||
|
||||
|
||||
|
||||
self.vocoder = self.vocoder.eval()
|
||||
if self.configs.is_half == True:
|
||||
self.vocoder = self.vocoder.half().to(self.configs.device)
|
||||
@ -1439,7 +1437,7 @@ class TTS:
|
||||
ref_audio = ref_audio.to(self.configs.device).float()
|
||||
if ref_audio.shape[0] == 2:
|
||||
ref_audio = ref_audio.mean(0).unsqueeze(0)
|
||||
|
||||
|
||||
# tgt_sr = self.vocoder_configs["sr"]
|
||||
tgt_sr = 24000 if self.configs.version == "v3" else 32000
|
||||
if ref_sr != tgt_sr:
|
||||
|
@ -106,7 +106,7 @@ cnhubert.cnhubert_base_path = cnhubert_base_path
|
||||
|
||||
import random
|
||||
|
||||
from GPT_SoVITS.module.models import SynthesizerTrn, SynthesizerTrnV3,Generator
|
||||
from GPT_SoVITS.module.models import SynthesizerTrn, SynthesizerTrnV3, Generator
|
||||
|
||||
|
||||
def set_seed(seed):
|
||||
@ -226,9 +226,9 @@ else:
|
||||
resample_transform_dict = {}
|
||||
|
||||
|
||||
def resample(audio_tensor, sr0,sr1):
|
||||
def resample(audio_tensor, sr0, sr1):
|
||||
global resample_transform_dict
|
||||
key="%s-%s"%(sr0,sr1)
|
||||
key = "%s-%s" % (sr0, sr1)
|
||||
if key not in resample_transform_dict:
|
||||
resample_transform_dict[key] = torchaudio.transforms.Resample(sr0, sr1).to(device)
|
||||
return resample_transform_dict[key](audio_tensor)
|
||||
@ -238,14 +238,18 @@ def resample(audio_tensor, sr0,sr1):
|
||||
# symbol_version-model_version-if_lora_v3
|
||||
from process_ckpt import get_sovits_version_from_path_fast, load_sovits_new
|
||||
|
||||
v3v4set={"v3","v4"}
|
||||
v3v4set = {"v3", "v4"}
|
||||
|
||||
|
||||
def change_sovits_weights(sovits_path, prompt_language=None, text_language=None):
|
||||
global vq_model, hps, version, model_version, dict_language, if_lora_v3
|
||||
version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path)
|
||||
print(sovits_path,version, model_version, if_lora_v3)
|
||||
is_exist=is_exist_s2gv3 if model_version=="v3"else is_exist_s2gv4
|
||||
print(sovits_path, version, model_version, if_lora_v3)
|
||||
is_exist = is_exist_s2gv3 if model_version == "v3" else is_exist_s2gv4
|
||||
if if_lora_v3 == True and is_exist == False:
|
||||
info = "GPT_SoVITS/pretrained_models/s2Gv3.pth" + i18n("SoVITS %s 底模缺失,无法加载相应 LoRA 权重"%model_version)
|
||||
info = "GPT_SoVITS/pretrained_models/s2Gv3.pth" + i18n(
|
||||
"SoVITS %s 底模缺失,无法加载相应 LoRA 权重" % model_version
|
||||
)
|
||||
gr.Warning(info)
|
||||
raise FileExistsError(info)
|
||||
dict_language = dict_language_v1 if version == "v1" else dict_language_v2
|
||||
@ -276,10 +280,15 @@ def change_sovits_weights(sovits_path, prompt_language=None, text_language=None)
|
||||
prompt_language_update,
|
||||
text_update,
|
||||
text_language_update,
|
||||
{"__type__": "update", "visible": visible_sample_steps, "value": 32 if model_version=="v3"else 8,"choices":[4, 8, 16, 32,64,128]if model_version=="v3"else [4, 8, 16, 32]},
|
||||
{
|
||||
"__type__": "update",
|
||||
"visible": visible_sample_steps,
|
||||
"value": 32 if model_version == "v3" else 8,
|
||||
"choices": [4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32],
|
||||
},
|
||||
{"__type__": "update", "visible": visible_inp_refs},
|
||||
{"__type__": "update", "value": False, "interactive": True if model_version not in v3v4set else False},
|
||||
{"__type__": "update", "visible": True if model_version =="v3" else False},
|
||||
{"__type__": "update", "visible": True if model_version == "v3" else False},
|
||||
{"__type__": "update", "value": i18n("模型加载中,请等待"), "interactive": False},
|
||||
)
|
||||
|
||||
@ -304,7 +313,7 @@ def change_sovits_weights(sovits_path, prompt_language=None, text_language=None)
|
||||
)
|
||||
model_version = version
|
||||
else:
|
||||
hps.model.version=model_version
|
||||
hps.model.version = model_version
|
||||
vq_model = SynthesizerTrnV3(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
@ -326,7 +335,7 @@ def change_sovits_weights(sovits_path, prompt_language=None, text_language=None)
|
||||
else:
|
||||
path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4
|
||||
print(
|
||||
"loading sovits_%spretrained_G"%model_version,
|
||||
"loading sovits_%spretrained_G" % model_version,
|
||||
vq_model.load_state_dict(load_sovits_new(path_sovits)["weight"], strict=False),
|
||||
)
|
||||
lora_rank = dict_s2["lora_rank"]
|
||||
@ -337,7 +346,7 @@ def change_sovits_weights(sovits_path, prompt_language=None, text_language=None)
|
||||
init_lora_weights=True,
|
||||
)
|
||||
vq_model.cfm = get_peft_model(vq_model.cfm, lora_config)
|
||||
print("loading sovits_%s_lora%s" % (model_version,lora_rank))
|
||||
print("loading sovits_%s_lora%s" % (model_version, lora_rank))
|
||||
vq_model.load_state_dict(dict_s2["weight"], strict=False)
|
||||
vq_model.cfm = vq_model.cfm.merge_and_unload()
|
||||
# torch.save(vq_model.state_dict(),"merge_win.pth")
|
||||
@ -350,10 +359,15 @@ def change_sovits_weights(sovits_path, prompt_language=None, text_language=None)
|
||||
prompt_language_update,
|
||||
text_update,
|
||||
text_language_update,
|
||||
{"__type__": "update", "visible": visible_sample_steps, "value":32 if model_version=="v3"else 8,"choices":[4, 8, 16, 32,64,128]if model_version=="v3"else [4, 8, 16, 32]},
|
||||
{
|
||||
"__type__": "update",
|
||||
"visible": visible_sample_steps,
|
||||
"value": 32 if model_version == "v3" else 8,
|
||||
"choices": [4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32],
|
||||
},
|
||||
{"__type__": "update", "visible": visible_inp_refs},
|
||||
{"__type__": "update", "value": False, "interactive": True if model_version not in v3v4set else False},
|
||||
{"__type__": "update", "visible": True if model_version =="v3" else False},
|
||||
{"__type__": "update", "visible": True if model_version == "v3" else False},
|
||||
{"__type__": "update", "value": i18n("合成语音"), "interactive": True},
|
||||
)
|
||||
with open("./weight.json") as f:
|
||||
@ -400,7 +414,7 @@ now_dir = os.getcwd()
|
||||
|
||||
|
||||
def init_bigvgan():
|
||||
global bigvgan_model,hifigan_model
|
||||
global bigvgan_model, hifigan_model
|
||||
from BigVGAN import bigvgan
|
||||
|
||||
bigvgan_model = bigvgan.BigVGAN.from_pretrained(
|
||||
@ -411,17 +425,20 @@ def init_bigvgan():
|
||||
bigvgan_model.remove_weight_norm()
|
||||
bigvgan_model = bigvgan_model.eval()
|
||||
if hifigan_model:
|
||||
hifigan_model=hifigan_model.cpu()
|
||||
hifigan_model=None
|
||||
try:torch.cuda.empty_cache()
|
||||
except:pass
|
||||
hifigan_model = hifigan_model.cpu()
|
||||
hifigan_model = None
|
||||
try:
|
||||
torch.cuda.empty_cache()
|
||||
except:
|
||||
pass
|
||||
if is_half == True:
|
||||
bigvgan_model = bigvgan_model.half().to(device)
|
||||
else:
|
||||
bigvgan_model = bigvgan_model.to(device)
|
||||
|
||||
|
||||
def init_hifigan():
|
||||
global hifigan_model,bigvgan_model
|
||||
global hifigan_model, bigvgan_model
|
||||
hifigan_model = Generator(
|
||||
initial_channel=100,
|
||||
resblock="1",
|
||||
@ -430,26 +447,32 @@ def init_hifigan():
|
||||
upsample_rates=[10, 6, 2, 2, 2],
|
||||
upsample_initial_channel=512,
|
||||
upsample_kernel_sizes=[20, 12, 4, 4, 4],
|
||||
gin_channels=0, is_bias=True
|
||||
gin_channels=0,
|
||||
is_bias=True,
|
||||
)
|
||||
hifigan_model.eval()
|
||||
hifigan_model.remove_weight_norm()
|
||||
state_dict_g = torch.load("%s/GPT_SoVITS/pretrained_models/gsv-v4-pretrained/vocoder.pth" % (now_dir,), map_location="cpu")
|
||||
print("loading vocoder",hifigan_model.load_state_dict(state_dict_g))
|
||||
state_dict_g = torch.load(
|
||||
"%s/GPT_SoVITS/pretrained_models/gsv-v4-pretrained/vocoder.pth" % (now_dir,), map_location="cpu"
|
||||
)
|
||||
print("loading vocoder", hifigan_model.load_state_dict(state_dict_g))
|
||||
if bigvgan_model:
|
||||
bigvgan_model=bigvgan_model.cpu()
|
||||
bigvgan_model=None
|
||||
try:torch.cuda.empty_cache()
|
||||
except:pass
|
||||
bigvgan_model = bigvgan_model.cpu()
|
||||
bigvgan_model = None
|
||||
try:
|
||||
torch.cuda.empty_cache()
|
||||
except:
|
||||
pass
|
||||
if is_half == True:
|
||||
hifigan_model = hifigan_model.half().to(device)
|
||||
else:
|
||||
hifigan_model = hifigan_model.to(device)
|
||||
|
||||
bigvgan_model=hifigan_model=None
|
||||
if model_version=="v3":
|
||||
|
||||
bigvgan_model = hifigan_model = None
|
||||
if model_version == "v3":
|
||||
init_bigvgan()
|
||||
if model_version=="v4":
|
||||
if model_version == "v4":
|
||||
init_hifigan()
|
||||
|
||||
|
||||
@ -831,17 +854,17 @@ def get_tts_wav(
|
||||
ref_audio = ref_audio.to(device).float()
|
||||
if ref_audio.shape[0] == 2:
|
||||
ref_audio = ref_audio.mean(0).unsqueeze(0)
|
||||
tgt_sr=24000 if model_version=="v3"else 32000
|
||||
tgt_sr = 24000 if model_version == "v3" else 32000
|
||||
if sr != tgt_sr:
|
||||
ref_audio = resample(ref_audio, sr,tgt_sr)
|
||||
ref_audio = resample(ref_audio, sr, tgt_sr)
|
||||
# print("ref_audio",ref_audio.abs().mean())
|
||||
mel2 = mel_fn(ref_audio)if model_version=="v3"else mel_fn_v4(ref_audio)
|
||||
mel2 = mel_fn(ref_audio) if model_version == "v3" else mel_fn_v4(ref_audio)
|
||||
mel2 = norm_spec(mel2)
|
||||
T_min = min(mel2.shape[2], fea_ref.shape[2])
|
||||
mel2 = mel2[:, :, :T_min]
|
||||
fea_ref = fea_ref[:, :, :T_min]
|
||||
Tref=468 if model_version=="v3"else 500
|
||||
Tchunk=934 if model_version=="v3"else 1000
|
||||
Tref = 468 if model_version == "v3" else 500
|
||||
Tchunk = 934 if model_version == "v3" else 1000
|
||||
if T_min > Tref:
|
||||
mel2 = mel2[:, :, -Tref:]
|
||||
fea_ref = fea_ref[:, :, -Tref:]
|
||||
@ -866,13 +889,13 @@ def get_tts_wav(
|
||||
cfm_resss.append(cfm_res)
|
||||
cfm_res = torch.cat(cfm_resss, 2)
|
||||
cfm_res = denorm_spec(cfm_res)
|
||||
if model_version=="v3":
|
||||
if model_version == "v3":
|
||||
if bigvgan_model == None:
|
||||
init_bigvgan()
|
||||
else:#v4
|
||||
else: # v4
|
||||
if hifigan_model == None:
|
||||
init_hifigan()
|
||||
vocoder_model=bigvgan_model if model_version=="v3"else hifigan_model
|
||||
vocoder_model = bigvgan_model if model_version == "v3" else hifigan_model
|
||||
with torch.inference_mode():
|
||||
wav_gen = vocoder_model(cfm_res)
|
||||
audio = wav_gen[0][0] # .cpu().detach().numpy()
|
||||
@ -886,9 +909,12 @@ def get_tts_wav(
|
||||
t1 = ttime()
|
||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3])))
|
||||
audio_opt = torch.cat(audio_opt, 0) # np.concatenate
|
||||
if model_version in {"v1","v2"}:opt_sr=32000
|
||||
elif model_version=="v3":opt_sr=24000
|
||||
else:opt_sr=48000#v4
|
||||
if model_version in {"v1", "v2"}:
|
||||
opt_sr = 32000
|
||||
elif model_version == "v3":
|
||||
opt_sr = 24000
|
||||
else:
|
||||
opt_sr = 48000 # v4
|
||||
if if_sr == True and opt_sr == 24000:
|
||||
print(i18n("音频超分中"))
|
||||
audio_opt, opt_sr = audio_sr(audio_opt.unsqueeze(0), opt_sr)
|
||||
@ -1131,16 +1157,16 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
sample_steps = (
|
||||
gr.Radio(
|
||||
label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"),
|
||||
value=32 if model_version=="v3"else 8,
|
||||
choices=[4, 8, 16, 32,64,128]if model_version=="v3"else [4, 8, 16, 32],
|
||||
value=32 if model_version == "v3" else 8,
|
||||
choices=[4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32],
|
||||
visible=True,
|
||||
)
|
||||
if model_version in v3v4set
|
||||
else gr.Radio(
|
||||
label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"),
|
||||
choices=[4, 8, 16, 32,64,128]if model_version=="v3"else [4, 8, 16, 32],
|
||||
choices=[4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32],
|
||||
visible=False,
|
||||
value=32 if model_version=="v3"else 8,
|
||||
value=32 if model_version == "v3" else 8,
|
||||
)
|
||||
)
|
||||
if_sr_Checkbox = gr.Checkbox(
|
||||
@ -1148,7 +1174,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
value=False,
|
||||
interactive=True,
|
||||
show_label=True,
|
||||
visible=False if model_version !="v3" else True,
|
||||
visible=False if model_version != "v3" else True,
|
||||
)
|
||||
gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"), "h3"))
|
||||
with gr.Row():
|
||||
|
@ -262,15 +262,17 @@ SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
|
||||
|
||||
from process_ckpt import get_sovits_version_from_path_fast
|
||||
|
||||
v3v4set={"v3","v4"}
|
||||
v3v4set = {"v3", "v4"}
|
||||
|
||||
|
||||
def change_sovits_weights(sovits_path, prompt_language=None, text_language=None):
|
||||
global version, model_version, dict_language, if_lora_v3
|
||||
version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path)
|
||||
# print(sovits_path,version, model_version, if_lora_v3)
|
||||
is_exist=is_exist_s2gv3 if model_version=="v3"else is_exist_s2gv4
|
||||
is_exist = is_exist_s2gv3 if model_version == "v3" else is_exist_s2gv4
|
||||
path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4
|
||||
if if_lora_v3 == True and is_exist == False:
|
||||
info = path_sovits + i18n("SoVITS %s 底模缺失,无法加载相应 LoRA 权重"%model_version)
|
||||
info = path_sovits + i18n("SoVITS %s 底模缺失,无法加载相应 LoRA 权重" % model_version)
|
||||
gr.Warning(info)
|
||||
raise FileExistsError(info)
|
||||
dict_language = dict_language_v1 if version == "v1" else dict_language_v2
|
||||
|
@ -470,6 +470,7 @@ class TextAudioSpeakerCollateV3:
|
||||
# return ssl_padded, spec_padded,mel_padded, ssl_lengths, spec_lengths, text_padded, text_lengths, wav_padded, wav_lengths,mel_lengths
|
||||
return ssl_padded, spec_padded, mel_padded, ssl_lengths, spec_lengths, text_padded, text_lengths, mel_lengths
|
||||
|
||||
|
||||
class TextAudioSpeakerLoaderV4(torch.utils.data.Dataset):
|
||||
"""
|
||||
1) loads audio, speaker_id, text pairs
|
||||
@ -596,7 +597,7 @@ class TextAudioSpeakerLoaderV4(torch.utils.data.Dataset):
|
||||
audio_norm, self.filter_length, self.sampling_rate, self.hop_length, self.win_length, center=False
|
||||
)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
spec1 = spectrogram_torch(audio_norm, 1280,32000, 320, 1280,center=False)
|
||||
spec1 = spectrogram_torch(audio_norm, 1280, 32000, 320, 1280, center=False)
|
||||
mel = spec_to_mel_torch(spec1, 1280, 100, 32000, 0, None)
|
||||
mel = self.norm_spec(torch.squeeze(mel, 0))
|
||||
return spec, mel
|
||||
@ -643,7 +644,7 @@ class TextAudioSpeakerCollateV4:
|
||||
mel_lengths = torch.LongTensor(len(batch))
|
||||
|
||||
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
||||
mel_padded = torch.FloatTensor(len(batch), batch[0][2].size(0), max_spec_len*2)
|
||||
mel_padded = torch.FloatTensor(len(batch), batch[0][2].size(0), max_spec_len * 2)
|
||||
ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len)
|
||||
text_padded = torch.LongTensor(len(batch), max_text_len)
|
||||
# wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
||||
|
@ -39,24 +39,36 @@ hann_window = {}
|
||||
|
||||
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
||||
if torch.min(y) < -1.2:
|
||||
print('min value is ', torch.min(y))
|
||||
print("min value is ", torch.min(y))
|
||||
if torch.max(y) > 1.2:
|
||||
print('max value is ', torch.max(y))
|
||||
print("max value is ", torch.max(y))
|
||||
|
||||
global hann_window
|
||||
dtype_device = str(y.dtype) + '_' + str(y.device)
|
||||
dtype_device = str(y.dtype) + "_" + str(y.device)
|
||||
# wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
||||
key = "%s-%s-%s-%s-%s" %(dtype_device,n_fft, sampling_rate, hop_size, win_size)
|
||||
key = "%s-%s-%s-%s-%s" % (dtype_device, n_fft, sampling_rate, hop_size, win_size)
|
||||
# if wnsize_dtype_device not in hann_window:
|
||||
if key not in hann_window:
|
||||
# hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
||||
hann_window[key] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
||||
|
||||
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
|
||||
)
|
||||
y = y.squeeze(1)
|
||||
# spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
||||
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[key],
|
||||
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
||||
spec = torch.stft(
|
||||
y,
|
||||
n_fft,
|
||||
hop_length=hop_size,
|
||||
win_length=win_size,
|
||||
window=hann_window[key],
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=False,
|
||||
)
|
||||
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-8)
|
||||
return spec
|
||||
@ -64,9 +76,9 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
||||
|
||||
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
||||
global mel_basis
|
||||
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
||||
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
||||
# fmax_dtype_device = str(fmax) + '_' + dtype_device
|
||||
key = "%s-%s-%s-%s-%s-%s"%(dtype_device,n_fft, num_mels, sampling_rate, fmin, fmax)
|
||||
key = "%s-%s-%s-%s-%s-%s" % (dtype_device, n_fft, num_mels, sampling_rate, fmin, fmax)
|
||||
# if fmax_dtype_device not in mel_basis:
|
||||
if key not in mel_basis:
|
||||
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
||||
@ -78,17 +90,25 @@ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
||||
return spec
|
||||
|
||||
|
||||
|
||||
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
||||
if torch.min(y) < -1.2:
|
||||
print('min value is ', torch.min(y))
|
||||
print("min value is ", torch.min(y))
|
||||
if torch.max(y) > 1.2:
|
||||
print('max value is ', torch.max(y))
|
||||
print("max value is ", torch.max(y))
|
||||
|
||||
global mel_basis, hann_window
|
||||
dtype_device = str(y.dtype) + '_' + str(y.device)
|
||||
dtype_device = str(y.dtype) + "_" + str(y.device)
|
||||
# fmax_dtype_device = str(fmax) + '_' + dtype_device
|
||||
fmax_dtype_device = "%s-%s-%s-%s-%s-%s-%s-%s"%(dtype_device,n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax)
|
||||
fmax_dtype_device = "%s-%s-%s-%s-%s-%s-%s-%s" % (
|
||||
dtype_device,
|
||||
n_fft,
|
||||
num_mels,
|
||||
sampling_rate,
|
||||
hop_size,
|
||||
win_size,
|
||||
fmin,
|
||||
fmax,
|
||||
)
|
||||
# wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
||||
wnsize_dtype_device = fmax_dtype_device
|
||||
if fmax_dtype_device not in mel_basis:
|
||||
@ -97,11 +117,23 @@ def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size,
|
||||
if wnsize_dtype_device not in hann_window:
|
||||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
||||
|
||||
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
|
||||
)
|
||||
y = y.squeeze(1)
|
||||
|
||||
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
||||
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
||||
spec = torch.stft(
|
||||
y,
|
||||
n_fft,
|
||||
hop_length=hop_size,
|
||||
win_length=win_size,
|
||||
window=hann_window[wnsize_dtype_device],
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=False,
|
||||
)
|
||||
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-8)
|
||||
|
||||
|
@ -414,7 +414,8 @@ class Generator(torch.nn.Module):
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=0,is_bias=False,
|
||||
gin_channels=0,
|
||||
is_bias=False,
|
||||
):
|
||||
super(Generator, self).__init__()
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
@ -1173,7 +1174,7 @@ class SynthesizerTrnV3(nn.Module):
|
||||
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest") ##BCT
|
||||
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
|
||||
fea = self.bridge(x)
|
||||
fea = F.interpolate(fea, scale_factor=(1.875 if self.version=="v3"else 2), mode="nearest") ##BCT
|
||||
fea = F.interpolate(fea, scale_factor=(1.875 if self.version == "v3" else 2), mode="nearest") ##BCT
|
||||
fea, y_mask_ = self.wns1(
|
||||
fea, mel_lengths, ge
|
||||
) ##If the 1-minute fine-tuning works fine, no need to manually adjust the learning rate.
|
||||
@ -1196,9 +1197,9 @@ class SynthesizerTrnV3(nn.Module):
|
||||
ge = self.ref_enc(refer[:, :704] * refer_mask, refer_mask)
|
||||
y_lengths = torch.LongTensor([int(codes.size(2) * 2)]).to(codes.device)
|
||||
if speed == 1:
|
||||
sizee = int(codes.size(2) * (3.875 if self.version=="v3"else 4))
|
||||
sizee = int(codes.size(2) * (3.875 if self.version == "v3" else 4))
|
||||
else:
|
||||
sizee = int(codes.size(2) * (3.875 if self.version=="v3"else 4) / speed) + 1
|
||||
sizee = int(codes.size(2) * (3.875 if self.version == "v3" else 4) / speed) + 1
|
||||
y_lengths1 = torch.LongTensor([sizee]).to(codes.device)
|
||||
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
|
||||
|
||||
@ -1207,7 +1208,7 @@ class SynthesizerTrnV3(nn.Module):
|
||||
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest") ##BCT
|
||||
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge, speed)
|
||||
fea = self.bridge(x)
|
||||
fea = F.interpolate(fea, scale_factor=(1.875 if self.version=="v3"else 2), mode="nearest") ##BCT
|
||||
fea = F.interpolate(fea, scale_factor=(1.875 if self.version == "v3" else 2), mode="nearest") ##BCT
|
||||
####more wn paramter to learn mel
|
||||
fea, y_mask_ = self.wns1(fea, y_lengths1, ge)
|
||||
return fea, ge
|
||||
|
@ -28,18 +28,18 @@ def my_save(fea, path): #####fix issue: torch.save doesn't support chinese path
|
||||
from io import BytesIO
|
||||
|
||||
|
||||
def my_save2(fea, path,cfm_version):
|
||||
def my_save2(fea, path, cfm_version):
|
||||
bio = BytesIO()
|
||||
torch.save(fea, bio)
|
||||
bio.seek(0)
|
||||
data = bio.getvalue()
|
||||
byte=b"03" if cfm_version=="v3"else b"04"
|
||||
byte = b"03" if cfm_version == "v3" else b"04"
|
||||
data = byte + data[2:]
|
||||
with open(path, "wb") as f:
|
||||
f.write(data)
|
||||
|
||||
|
||||
def savee(ckpt, name, epoch, steps, hps, cfm_version=None,lora_rank=None):
|
||||
def savee(ckpt, name, epoch, steps, hps, cfm_version=None, lora_rank=None):
|
||||
try:
|
||||
opt = OrderedDict()
|
||||
opt["weight"] = {}
|
||||
@ -51,7 +51,7 @@ def savee(ckpt, name, epoch, steps, hps, cfm_version=None,lora_rank=None):
|
||||
opt["info"] = "%sepoch_%siteration" % (epoch, steps)
|
||||
if lora_rank:
|
||||
opt["lora_rank"] = lora_rank
|
||||
my_save2(opt, "%s/%s.pth" % (hps.save_weight_dir, name),cfm_version)
|
||||
my_save2(opt, "%s/%s.pth" % (hps.save_weight_dir, name), cfm_version)
|
||||
else:
|
||||
my_save(opt, "%s/%s.pth" % (hps.save_weight_dir, name))
|
||||
return "Success."
|
||||
|
@ -31,7 +31,6 @@ from module.data_utils import (
|
||||
TextAudioSpeakerLoaderV3,
|
||||
TextAudioSpeakerCollateV4,
|
||||
TextAudioSpeakerLoaderV4,
|
||||
|
||||
)
|
||||
from module.models import (
|
||||
SynthesizerTrnV3 as SynthesizerTrn,
|
||||
@ -88,8 +87,8 @@ def run(rank, n_gpus, hps):
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.set_device(rank)
|
||||
|
||||
TextAudioSpeakerLoader=TextAudioSpeakerLoaderV3 if hps.model.version=="v3"else TextAudioSpeakerLoaderV4
|
||||
TextAudioSpeakerCollate=TextAudioSpeakerCollateV3 if hps.model.version=="v3"else TextAudioSpeakerCollateV4
|
||||
TextAudioSpeakerLoader = TextAudioSpeakerLoaderV3 if hps.model.version == "v3" else TextAudioSpeakerLoaderV4
|
||||
TextAudioSpeakerCollate = TextAudioSpeakerCollateV3 if hps.model.version == "v3" else TextAudioSpeakerCollateV4
|
||||
train_dataset = TextAudioSpeakerLoader(hps.data) ########
|
||||
train_sampler = DistributedBucketSampler(
|
||||
train_dataset,
|
||||
@ -365,7 +364,8 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
|
||||
hps.name + "_e%s_s%s_l%s" % (epoch, global_step, lora_rank),
|
||||
epoch,
|
||||
global_step,
|
||||
hps,cfm_version=hps.model.version,
|
||||
hps,
|
||||
cfm_version=hps.model.version,
|
||||
lora_rank=lora_rank,
|
||||
),
|
||||
)
|
||||
|
@ -32,18 +32,10 @@ def make_pair(mix_dir, inst_dir):
|
||||
input_exts = [".wav", ".m4a", ".mp3", ".mp4", ".flac"]
|
||||
|
||||
X_list = sorted(
|
||||
[
|
||||
os.path.join(mix_dir, fname)
|
||||
for fname in os.listdir(mix_dir)
|
||||
if os.path.splitext(fname)[1] in input_exts
|
||||
]
|
||||
[os.path.join(mix_dir, fname) for fname in os.listdir(mix_dir) if os.path.splitext(fname)[1] in input_exts]
|
||||
)
|
||||
y_list = sorted(
|
||||
[
|
||||
os.path.join(inst_dir, fname)
|
||||
for fname in os.listdir(inst_dir)
|
||||
if os.path.splitext(fname)[1] in input_exts
|
||||
]
|
||||
[os.path.join(inst_dir, fname) for fname in os.listdir(inst_dir) if os.path.splitext(fname)[1] in input_exts]
|
||||
)
|
||||
|
||||
filelist = list(zip(X_list, y_list))
|
||||
@ -65,14 +57,10 @@ def train_val_split(dataset_dir, split_mode, val_rate, val_filelist):
|
||||
train_filelist = filelist[:-val_size]
|
||||
val_filelist = filelist[-val_size:]
|
||||
else:
|
||||
train_filelist = [
|
||||
pair for pair in filelist if list(pair) not in val_filelist
|
||||
]
|
||||
train_filelist = [pair for pair in filelist if list(pair) not in val_filelist]
|
||||
elif split_mode == "subdirs":
|
||||
if len(val_filelist) != 0:
|
||||
raise ValueError(
|
||||
"The `val_filelist` option is not available in `subdirs` mode"
|
||||
)
|
||||
raise ValueError("The `val_filelist` option is not available in `subdirs` mode")
|
||||
|
||||
train_filelist = make_pair(
|
||||
os.path.join(dataset_dir, "training/mixtures"),
|
||||
@ -91,9 +79,7 @@ def augment(X, y, reduction_rate, reduction_mask, mixup_rate, mixup_alpha):
|
||||
perm = np.random.permutation(len(X))
|
||||
for i, idx in enumerate(tqdm(perm)):
|
||||
if np.random.uniform() < reduction_rate:
|
||||
y[idx] = spec_utils.reduce_vocal_aggressively(
|
||||
X[idx], y[idx], reduction_mask
|
||||
)
|
||||
y[idx] = spec_utils.reduce_vocal_aggressively(X[idx], y[idx], reduction_mask)
|
||||
|
||||
if np.random.uniform() < 0.5:
|
||||
# swap channel
|
||||
@ -152,9 +138,7 @@ def make_training_set(filelist, cropsize, patches, sr, hop_length, n_fft, offset
|
||||
|
||||
def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset):
|
||||
patch_list = []
|
||||
patch_dir = "cs{}_sr{}_hl{}_nf{}_of{}".format(
|
||||
cropsize, sr, hop_length, n_fft, offset
|
||||
)
|
||||
patch_dir = "cs{}_sr{}_hl{}_nf{}_of{}".format(cropsize, sr, hop_length, n_fft, offset)
|
||||
os.makedirs(patch_dir, exist_ok=True)
|
||||
|
||||
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
||||
|
@ -63,9 +63,7 @@ class Encoder(nn.Module):
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
||||
):
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
@ -91,24 +89,14 @@ class ASPPModule(nn.Module):
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
||||
)
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
||||
)
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
||||
)
|
||||
self.conv3 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
self.conv4 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
self.conv5 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.bottleneck = nn.Sequential(Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1))
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(
|
||||
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
||||
)
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode="bilinear", align_corners=True)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
|
@ -63,9 +63,7 @@ class Encoder(nn.Module):
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
||||
):
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
@ -91,24 +89,14 @@ class ASPPModule(nn.Module):
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
||||
)
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
||||
)
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
||||
)
|
||||
self.conv3 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
self.conv4 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
self.conv5 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.bottleneck = nn.Sequential(Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1))
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(
|
||||
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
||||
)
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode="bilinear", align_corners=True)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
|
@ -63,9 +63,7 @@ class Encoder(nn.Module):
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
||||
):
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
@ -91,24 +89,14 @@ class ASPPModule(nn.Module):
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
||||
)
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
||||
)
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
||||
)
|
||||
self.conv3 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
self.conv4 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
self.conv5 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.bottleneck = nn.Sequential(Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1))
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(
|
||||
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
||||
)
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode="bilinear", align_corners=True)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
|
@ -63,9 +63,7 @@ class Encoder(nn.Module):
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
||||
):
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
@ -91,30 +89,16 @@ class ASPPModule(nn.Module):
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
||||
)
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
||||
)
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.conv6 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.conv7 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
||||
)
|
||||
self.conv3 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
self.conv4 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
self.conv5 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.conv6 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.conv7 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.bottleneck = nn.Sequential(Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1))
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(
|
||||
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
||||
)
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode="bilinear", align_corners=True)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
|
@ -63,9 +63,7 @@ class Encoder(nn.Module):
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
||||
):
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
@ -91,30 +89,16 @@ class ASPPModule(nn.Module):
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
||||
)
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
||||
)
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.conv6 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.conv7 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
||||
)
|
||||
self.conv3 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
self.conv4 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
self.conv5 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.conv6 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.conv7 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.bottleneck = nn.Sequential(Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1))
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(
|
||||
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
||||
)
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode="bilinear", align_corners=True)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
|
@ -63,9 +63,7 @@ class Encoder(nn.Module):
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
||||
):
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
@ -91,30 +89,16 @@ class ASPPModule(nn.Module):
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
||||
)
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
||||
)
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.conv6 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.conv7 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
||||
)
|
||||
self.conv3 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
self.conv4 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
self.conv5 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.conv6 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.conv7 = SeperableConv2DBNActiv(nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.bottleneck = nn.Sequential(Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1))
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(
|
||||
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
||||
)
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode="bilinear", align_corners=True)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
|
@ -40,9 +40,7 @@ class Encoder(nn.Module):
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
||||
):
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
# self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
|
||||
@ -72,23 +70,15 @@ class ASPPModule(nn.Module):
|
||||
Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ),
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
|
||||
self.conv3 = Conv2DBNActiv(
|
||||
nin, nout, 3, 1, dilations[0], dilations[0], activ=activ
|
||||
)
|
||||
self.conv4 = Conv2DBNActiv(
|
||||
nin, nout, 3, 1, dilations[1], dilations[1], activ=activ
|
||||
)
|
||||
self.conv5 = Conv2DBNActiv(
|
||||
nin, nout, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.conv3 = Conv2DBNActiv(nin, nout, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
self.conv4 = Conv2DBNActiv(nin, nout, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
self.conv5 = Conv2DBNActiv(nin, nout, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.bottleneck = Conv2DBNActiv(nout * 5, nout, 1, 1, 0, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(
|
||||
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
||||
)
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode="bilinear", align_corners=True)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
@ -106,12 +96,8 @@ class LSTMModule(nn.Module):
|
||||
def __init__(self, nin_conv, nin_lstm, nout_lstm):
|
||||
super(LSTMModule, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
|
||||
self.lstm = nn.LSTM(
|
||||
input_size=nin_lstm, hidden_size=nout_lstm // 2, bidirectional=True
|
||||
)
|
||||
self.dense = nn.Sequential(
|
||||
nn.Linear(nout_lstm, nin_lstm), nn.BatchNorm1d(nin_lstm), nn.ReLU()
|
||||
)
|
||||
self.lstm = nn.LSTM(input_size=nin_lstm, hidden_size=nout_lstm // 2, bidirectional=True)
|
||||
self.dense = nn.Sequential(nn.Linear(nout_lstm, nin_lstm), nn.BatchNorm1d(nin_lstm), nn.ReLU())
|
||||
|
||||
def forward(self, x):
|
||||
N, _, nbins, nframes = x.size()
|
||||
|
@ -1,5 +1,4 @@
|
||||
import json
|
||||
import os
|
||||
import pathlib
|
||||
|
||||
default_param = {}
|
||||
@ -48,9 +47,7 @@ class ModelParameters(object):
|
||||
import zipfile
|
||||
|
||||
with zipfile.ZipFile(config_path, "r") as zip:
|
||||
self.param = json.loads(
|
||||
zip.read("param.json"), object_pairs_hook=int_keys
|
||||
)
|
||||
self.param = json.loads(zip.read("param.json"), object_pairs_hook=int_keys)
|
||||
elif ".json" == pathlib.Path(config_path).suffix:
|
||||
with open(config_path, "r") as f:
|
||||
self.param = json.loads(f.read(), object_pairs_hook=int_keys)
|
||||
@ -65,5 +62,5 @@ class ModelParameters(object):
|
||||
"stereo_n",
|
||||
"reverse",
|
||||
]:
|
||||
if not k in self.param:
|
||||
if k not in self.param:
|
||||
self.param[k] = False
|
||||
|
@ -3,8 +3,6 @@ import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from . import spec_utils
|
||||
|
||||
|
||||
class BaseASPPNet(nn.Module):
|
||||
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
||||
|
@ -1,4 +1,3 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
@ -1,4 +1,3 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
@ -6,9 +6,7 @@ from . import layers_new
|
||||
|
||||
|
||||
class BaseNet(nn.Module):
|
||||
def __init__(
|
||||
self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))
|
||||
):
|
||||
def __init__(self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))):
|
||||
super(BaseNet, self).__init__()
|
||||
self.enc1 = layers_new.Conv2DBNActiv(nin, nout, 3, 1, 1)
|
||||
self.enc2 = layers_new.Encoder(nout, nout * 2, 3, 2, 1)
|
||||
@ -56,21 +54,15 @@ class CascadedNet(nn.Module):
|
||||
layers_new.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0),
|
||||
)
|
||||
|
||||
self.stg1_high_band_net = BaseNet(
|
||||
2, nout // 4, self.nin_lstm // 2, nout_lstm // 2
|
||||
)
|
||||
self.stg1_high_band_net = BaseNet(2, nout // 4, self.nin_lstm // 2, nout_lstm // 2)
|
||||
|
||||
self.stg2_low_band_net = nn.Sequential(
|
||||
BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm),
|
||||
layers_new.Conv2DBNActiv(nout, nout // 2, 1, 1, 0),
|
||||
)
|
||||
self.stg2_high_band_net = BaseNet(
|
||||
nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2
|
||||
)
|
||||
self.stg2_high_band_net = BaseNet(nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2)
|
||||
|
||||
self.stg3_full_band_net = BaseNet(
|
||||
3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm
|
||||
)
|
||||
self.stg3_full_band_net = BaseNet(3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm)
|
||||
|
||||
self.out = nn.Conv2d(nout, 2, 1, bias=False)
|
||||
self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False)
|
||||
|
@ -27,9 +27,7 @@ def crop_center(h1, h2):
|
||||
return h1
|
||||
|
||||
|
||||
def wave_to_spectrogram(
|
||||
wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False
|
||||
):
|
||||
def wave_to_spectrogram(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False):
|
||||
if reverse:
|
||||
wave_left = np.flip(np.asfortranarray(wave[0]))
|
||||
wave_right = np.flip(np.asfortranarray(wave[1]))
|
||||
@ -43,7 +41,7 @@ def wave_to_spectrogram(
|
||||
wave_left = np.asfortranarray(wave[0])
|
||||
wave_right = np.asfortranarray(wave[1])
|
||||
|
||||
spec_left = librosa.stft(wave_left, n_fft=n_fft, hop_length=hop_length)
|
||||
spec_left = librosa.stft(wave_left, n_fft=n_fft, hop_length=hop_length)
|
||||
spec_right = librosa.stft(wave_right, n_fft=n_fft, hop_length=hop_length)
|
||||
|
||||
spec = np.asfortranarray([spec_left, spec_right])
|
||||
@ -51,9 +49,7 @@ def wave_to_spectrogram(
|
||||
return spec
|
||||
|
||||
|
||||
def wave_to_spectrogram_mt(
|
||||
wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False
|
||||
):
|
||||
def wave_to_spectrogram_mt(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False):
|
||||
import threading
|
||||
|
||||
if reverse:
|
||||
@ -103,21 +99,13 @@ def combine_spectrograms(specs, mp):
|
||||
raise ValueError("Too much bins")
|
||||
|
||||
# lowpass fiter
|
||||
if (
|
||||
mp.param["pre_filter_start"] > 0
|
||||
): # and mp.param['band'][bands_n]['res_type'] in ['scipy', 'polyphase']:
|
||||
if mp.param["pre_filter_start"] > 0: # and mp.param['band'][bands_n]['res_type'] in ['scipy', 'polyphase']:
|
||||
if bands_n == 1:
|
||||
spec_c = fft_lp_filter(
|
||||
spec_c, mp.param["pre_filter_start"], mp.param["pre_filter_stop"]
|
||||
)
|
||||
spec_c = fft_lp_filter(spec_c, mp.param["pre_filter_start"], mp.param["pre_filter_stop"])
|
||||
else:
|
||||
gp = 1
|
||||
for b in range(
|
||||
mp.param["pre_filter_start"] + 1, mp.param["pre_filter_stop"]
|
||||
):
|
||||
g = math.pow(
|
||||
10, -(b - mp.param["pre_filter_start"]) * (3.5 - gp) / 20.0
|
||||
)
|
||||
for b in range(mp.param["pre_filter_start"] + 1, mp.param["pre_filter_stop"]):
|
||||
g = math.pow(10, -(b - mp.param["pre_filter_start"]) * (3.5 - gp) / 20.0)
|
||||
gp = g
|
||||
spec_c[:, b, :] *= g
|
||||
|
||||
@ -189,9 +177,7 @@ def mask_silence(mag, ref, thres=0.2, min_range=64, fade_size=32):
|
||||
else:
|
||||
e += fade_size
|
||||
|
||||
mag[:, :, s + fade_size : e - fade_size] += ref[
|
||||
:, :, s + fade_size : e - fade_size
|
||||
]
|
||||
mag[:, :, s + fade_size : e - fade_size] += ref[:, :, s + fade_size : e - fade_size]
|
||||
old_e = e
|
||||
|
||||
return mag
|
||||
@ -207,9 +193,7 @@ def cache_or_load(mix_path, inst_path, mp):
|
||||
mix_basename = os.path.splitext(os.path.basename(mix_path))[0]
|
||||
inst_basename = os.path.splitext(os.path.basename(inst_path))[0]
|
||||
|
||||
cache_dir = "mph{}".format(
|
||||
hashlib.sha1(json.dumps(mp.param, sort_keys=True).encode("utf-8")).hexdigest()
|
||||
)
|
||||
cache_dir = "mph{}".format(hashlib.sha1(json.dumps(mp.param, sort_keys=True).encode("utf-8")).hexdigest())
|
||||
mix_cache_dir = os.path.join("cache", cache_dir)
|
||||
inst_cache_dir = os.path.join("cache", cache_dir)
|
||||
|
||||
@ -230,31 +214,27 @@ def cache_or_load(mix_path, inst_path, mp):
|
||||
|
||||
if d == len(mp.param["band"]): # high-end band
|
||||
X_wave[d], _ = librosa.load(
|
||||
mix_path,
|
||||
sr = bp["sr"],
|
||||
mono = False,
|
||||
dtype = np.float32,
|
||||
res_type = bp["res_type"]
|
||||
mix_path, sr=bp["sr"], mono=False, dtype=np.float32, res_type=bp["res_type"]
|
||||
)
|
||||
y_wave[d], _ = librosa.load(
|
||||
inst_path,
|
||||
sr = bp["sr"],
|
||||
mono = False,
|
||||
dtype = np.float32,
|
||||
res_type = bp["res_type"],
|
||||
sr=bp["sr"],
|
||||
mono=False,
|
||||
dtype=np.float32,
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
else: # lower bands
|
||||
X_wave[d] = librosa.resample(
|
||||
X_wave[d + 1],
|
||||
orig_sr = mp.param["band"][d + 1]["sr"],
|
||||
target_sr = bp["sr"],
|
||||
res_type = bp["res_type"],
|
||||
orig_sr=mp.param["band"][d + 1]["sr"],
|
||||
target_sr=bp["sr"],
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
y_wave[d] = librosa.resample(
|
||||
y_wave[d + 1],
|
||||
orig_sr = mp.param["band"][d + 1]["sr"],
|
||||
target_sr = bp["sr"],
|
||||
res_type = bp["res_type"],
|
||||
orig_sr=mp.param["band"][d + 1]["sr"],
|
||||
target_sr=bp["sr"],
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
|
||||
X_wave[d], y_wave[d] = align_wave_head_and_tail(X_wave[d], y_wave[d])
|
||||
@ -302,9 +282,7 @@ def spectrogram_to_wave(spec, hop_length, mid_side, mid_side_b2, reverse):
|
||||
if reverse:
|
||||
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
|
||||
elif mid_side:
|
||||
return np.asfortranarray(
|
||||
[np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)]
|
||||
)
|
||||
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
|
||||
elif mid_side_b2:
|
||||
return np.asfortranarray(
|
||||
[
|
||||
@ -326,9 +304,7 @@ def spectrogram_to_wave_mt(spec, hop_length, mid_side, reverse, mid_side_b2):
|
||||
global wave_left
|
||||
wave_left = librosa.istft(**kwargs)
|
||||
|
||||
thread = threading.Thread(
|
||||
target=run_thread, kwargs={"stft_matrix": spec_left, "hop_length": hop_length}
|
||||
)
|
||||
thread = threading.Thread(target=run_thread, kwargs={"stft_matrix": spec_left, "hop_length": hop_length})
|
||||
thread.start()
|
||||
wave_right = librosa.istft(spec_right, hop_length=hop_length)
|
||||
thread.join()
|
||||
@ -336,9 +312,7 @@ def spectrogram_to_wave_mt(spec, hop_length, mid_side, reverse, mid_side_b2):
|
||||
if reverse:
|
||||
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
|
||||
elif mid_side:
|
||||
return np.asfortranarray(
|
||||
[np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)]
|
||||
)
|
||||
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
|
||||
elif mid_side_b2:
|
||||
return np.asfortranarray(
|
||||
[
|
||||
@ -357,21 +331,15 @@ def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None):
|
||||
|
||||
for d in range(1, bands_n + 1):
|
||||
bp = mp.param["band"][d]
|
||||
spec_s = np.ndarray(
|
||||
shape=(2, bp["n_fft"] // 2 + 1, spec_m.shape[2]), dtype=complex
|
||||
)
|
||||
spec_s = np.ndarray(shape=(2, bp["n_fft"] // 2 + 1, spec_m.shape[2]), dtype=complex)
|
||||
h = bp["crop_stop"] - bp["crop_start"]
|
||||
spec_s[:, bp["crop_start"] : bp["crop_stop"], :] = spec_m[
|
||||
:, offset : offset + h, :
|
||||
]
|
||||
spec_s[:, bp["crop_start"] : bp["crop_stop"], :] = spec_m[:, offset : offset + h, :]
|
||||
|
||||
offset += h
|
||||
if d == bands_n: # higher
|
||||
if extra_bins_h: # if --high_end_process bypass
|
||||
max_bin = bp["n_fft"] // 2
|
||||
spec_s[:, max_bin - extra_bins_h : max_bin, :] = extra_bins[
|
||||
:, :extra_bins_h, :
|
||||
]
|
||||
spec_s[:, max_bin - extra_bins_h : max_bin, :] = extra_bins[:, :extra_bins_h, :]
|
||||
if bp["hpf_start"] > 0:
|
||||
spec_s = fft_hp_filter(spec_s, bp["hpf_start"], bp["hpf_stop"] - 1)
|
||||
if bands_n == 1:
|
||||
@ -405,9 +373,9 @@ def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None):
|
||||
mp.param["mid_side_b2"],
|
||||
mp.param["reverse"],
|
||||
),
|
||||
orig_sr = bp["sr"],
|
||||
target_sr = sr,
|
||||
res_type = "sinc_fastest",
|
||||
orig_sr=bp["sr"],
|
||||
target_sr=sr,
|
||||
res_type="sinc_fastest",
|
||||
)
|
||||
else: # mid
|
||||
spec_s = fft_hp_filter(spec_s, bp["hpf_start"], bp["hpf_stop"] - 1)
|
||||
@ -456,10 +424,7 @@ def mirroring(a, spec_m, input_high_end, mp):
|
||||
np.abs(
|
||||
spec_m[
|
||||
:,
|
||||
mp.param["pre_filter_start"]
|
||||
- 10
|
||||
- input_high_end.shape[1] : mp.param["pre_filter_start"]
|
||||
- 10,
|
||||
mp.param["pre_filter_start"] - 10 - input_high_end.shape[1] : mp.param["pre_filter_start"] - 10,
|
||||
:,
|
||||
]
|
||||
),
|
||||
@ -467,19 +432,14 @@ def mirroring(a, spec_m, input_high_end, mp):
|
||||
)
|
||||
mirror = mirror * np.exp(1.0j * np.angle(input_high_end))
|
||||
|
||||
return np.where(
|
||||
np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror
|
||||
)
|
||||
return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
|
||||
|
||||
if "mirroring2" == a:
|
||||
mirror = np.flip(
|
||||
np.abs(
|
||||
spec_m[
|
||||
:,
|
||||
mp.param["pre_filter_start"]
|
||||
- 10
|
||||
- input_high_end.shape[1] : mp.param["pre_filter_start"]
|
||||
- 10,
|
||||
mp.param["pre_filter_start"] - 10 - input_high_end.shape[1] : mp.param["pre_filter_start"] - 10,
|
||||
:,
|
||||
]
|
||||
),
|
||||
@ -528,7 +488,6 @@ def istft(spec, hl):
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
import sys
|
||||
import time
|
||||
|
||||
import cv2
|
||||
@ -573,10 +532,10 @@ if __name__ == "__main__":
|
||||
if d == len(mp.param["band"]): # high-end band
|
||||
wave[d], _ = librosa.load(
|
||||
args.input[i],
|
||||
sr = bp["sr"],
|
||||
mono = False,
|
||||
dtype = np.float32,
|
||||
res_type = bp["res_type"],
|
||||
sr=bp["sr"],
|
||||
mono=False,
|
||||
dtype=np.float32,
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
|
||||
if len(wave[d].shape) == 1: # mono to stereo
|
||||
@ -584,9 +543,9 @@ if __name__ == "__main__":
|
||||
else: # lower bands
|
||||
wave[d] = librosa.resample(
|
||||
wave[d + 1],
|
||||
orig_sr = mp.param["band"][d + 1]["sr"],
|
||||
target_sr = bp["sr"],
|
||||
res_type = bp["res_type"],
|
||||
orig_sr=mp.param["band"][d + 1]["sr"],
|
||||
target_sr=bp["sr"],
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
|
||||
spec[d] = wave_to_spectrogram(
|
||||
|
@ -27,9 +27,7 @@ def inference(X_spec, device, model, aggressiveness, data):
|
||||
data : dic configs
|
||||
"""
|
||||
|
||||
def _execute(
|
||||
X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half=True
|
||||
):
|
||||
def _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half=True):
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
preds = []
|
||||
@ -39,9 +37,7 @@ def inference(X_spec, device, model, aggressiveness, data):
|
||||
total_iterations = sum(iterations)
|
||||
for i in tqdm(range(n_window)):
|
||||
start = i * roi_size
|
||||
X_mag_window = X_mag_pad[
|
||||
None, :, :, start : start + data["window_size"]
|
||||
]
|
||||
X_mag_window = X_mag_pad[None, :, :, start : start + data["window_size"]]
|
||||
X_mag_window = torch.from_numpy(X_mag_window)
|
||||
if is_half:
|
||||
X_mag_window = X_mag_window.half()
|
||||
@ -76,9 +72,7 @@ def inference(X_spec, device, model, aggressiveness, data):
|
||||
is_half = True
|
||||
else:
|
||||
is_half = False
|
||||
pred = _execute(
|
||||
X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half
|
||||
)
|
||||
pred = _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half)
|
||||
pred = pred[:, :, :n_frame]
|
||||
|
||||
if data["tta"]:
|
||||
@ -88,9 +82,7 @@ def inference(X_spec, device, model, aggressiveness, data):
|
||||
|
||||
X_mag_pad = np.pad(X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode="constant")
|
||||
|
||||
pred_tta = _execute(
|
||||
X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half
|
||||
)
|
||||
pred_tta = _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half)
|
||||
pred_tta = pred_tta[:, :, roi_size // 2 :]
|
||||
pred_tta = pred_tta[:, :, :n_frame]
|
||||
|
||||
|
36
webui.py
36
webui.py
@ -147,7 +147,9 @@ if torch.cuda.is_available() or ngpu != 0:
|
||||
# mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) # 实测使用系统内存作为显存不会爆显存
|
||||
|
||||
|
||||
v3v4set={"v3","v4"}
|
||||
v3v4set = {"v3", "v4"}
|
||||
|
||||
|
||||
def set_default():
|
||||
global \
|
||||
default_batch_size, \
|
||||
@ -589,6 +591,7 @@ def close_denoise():
|
||||
p_train_SoVITS = None
|
||||
process_name_sovits = i18n("SoVITS训练")
|
||||
|
||||
|
||||
def open1Ba(
|
||||
batch_size,
|
||||
total_epoch,
|
||||
@ -641,7 +644,9 @@ def open1Ba(
|
||||
yield (
|
||||
process_info(process_name_sovits, "opened"),
|
||||
{"__type__": "update", "visible": False},
|
||||
{"__type__": "update", "visible": True},{"__type__": "update"},{"__type__": "update"}
|
||||
{"__type__": "update", "visible": True},
|
||||
{"__type__": "update"},
|
||||
{"__type__": "update"},
|
||||
)
|
||||
print(cmd)
|
||||
p_train_SoVITS = Popen(cmd, shell=True)
|
||||
@ -651,13 +656,17 @@ def open1Ba(
|
||||
yield (
|
||||
process_info(process_name_sovits, "finish"),
|
||||
{"__type__": "update", "visible": True},
|
||||
{"__type__": "update", "visible": False},SoVITS_dropdown_update,GPT_dropdown_update
|
||||
{"__type__": "update", "visible": False},
|
||||
SoVITS_dropdown_update,
|
||||
GPT_dropdown_update,
|
||||
)
|
||||
else:
|
||||
yield (
|
||||
process_info(process_name_sovits, "occupy"),
|
||||
{"__type__": "update", "visible": False},
|
||||
{"__type__": "update", "visible": True},{"__type__": "update"},{"__type__": "update"}
|
||||
{"__type__": "update", "visible": True},
|
||||
{"__type__": "update"},
|
||||
{"__type__": "update"},
|
||||
)
|
||||
|
||||
|
||||
@ -726,7 +735,9 @@ def open1Bb(
|
||||
yield (
|
||||
process_info(process_name_gpt, "opened"),
|
||||
{"__type__": "update", "visible": False},
|
||||
{"__type__": "update", "visible": True},{"__type__": "update"},{"__type__": "update"}
|
||||
{"__type__": "update", "visible": True},
|
||||
{"__type__": "update"},
|
||||
{"__type__": "update"},
|
||||
)
|
||||
print(cmd)
|
||||
p_train_GPT = Popen(cmd, shell=True)
|
||||
@ -736,13 +747,17 @@ def open1Bb(
|
||||
yield (
|
||||
process_info(process_name_gpt, "finish"),
|
||||
{"__type__": "update", "visible": True},
|
||||
{"__type__": "update", "visible": False},SoVITS_dropdown_update,GPT_dropdown_update
|
||||
{"__type__": "update", "visible": False},
|
||||
SoVITS_dropdown_update,
|
||||
GPT_dropdown_update,
|
||||
)
|
||||
else:
|
||||
yield (
|
||||
process_info(process_name_gpt, "occupy"),
|
||||
{"__type__": "update", "visible": False},
|
||||
{"__type__": "update", "visible": True},{"__type__": "update"},{"__type__": "update"}
|
||||
{"__type__": "update", "visible": True},
|
||||
{"__type__": "update"},
|
||||
{"__type__": "update"},
|
||||
)
|
||||
|
||||
|
||||
@ -1291,6 +1306,7 @@ def close1abc():
|
||||
{"__type__": "update", "visible": False},
|
||||
)
|
||||
|
||||
|
||||
def switch_version(version_):
|
||||
os.environ["version"] = version_
|
||||
global version
|
||||
@ -1492,7 +1508,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
with gr.Row():
|
||||
exp_name = gr.Textbox(label=i18n("*实验/模型名"), value="xxx", interactive=True)
|
||||
gpu_info = gr.Textbox(label=i18n("显卡信息"), value=gpu_info, visible=True, interactive=False)
|
||||
version_checkbox = gr.Radio(label=i18n("版本"), value=version, choices=["v1", "v2", "v4"])#, "v3"
|
||||
version_checkbox = gr.Radio(label=i18n("版本"), value=version, choices=["v1", "v2", "v4"]) # , "v3"
|
||||
with gr.Row():
|
||||
pretrained_s2G = gr.Textbox(
|
||||
label=i18n("预训练SoVITS-G模型路径"),
|
||||
@ -1915,7 +1931,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
if_grad_ckpt,
|
||||
lora_rank,
|
||||
],
|
||||
[info1Ba, button1Ba_open, button1Ba_close,SoVITS_dropdown,GPT_dropdown],
|
||||
[info1Ba, button1Ba_open, button1Ba_close, SoVITS_dropdown, GPT_dropdown],
|
||||
)
|
||||
button1Bb_open.click(
|
||||
open1Bb,
|
||||
@ -1930,7 +1946,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
gpu_numbers1Bb,
|
||||
pretrained_s1,
|
||||
],
|
||||
[info1Bb, button1Bb_open, button1Bb_close,SoVITS_dropdown,GPT_dropdown],
|
||||
[info1Bb, button1Bb_open, button1Bb_close, SoVITS_dropdown, GPT_dropdown],
|
||||
)
|
||||
version_checkbox.change(
|
||||
switch_version,
|
||||
|
Loading…
x
Reference in New Issue
Block a user