mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
Merge c65b448304e97220851ff45def6de62176aa0278 into 5dfce9a3f0def7f1ee1e075df569b0b2d41df9e3
This commit is contained in:
commit
c257f28954
@ -908,10 +908,53 @@ class TTS:
|
||||
else:
|
||||
# audio = [item for batch in audio for item in batch]
|
||||
audio = sum(audio, [])
|
||||
|
||||
def ms_to_srt_time(ms):
|
||||
N = int(ms)
|
||||
hours, remainder = divmod(N, 3600000)
|
||||
minutes, remainder = divmod(remainder, 60000)
|
||||
seconds, milliseconds = divmod(remainder, 1000)
|
||||
timesrt = f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"
|
||||
# print(timesrt)
|
||||
return timesrt
|
||||
|
||||
import soundfile as sf
|
||||
print("打印")
|
||||
text = ""
|
||||
with open(r'./srt/tts-out.txt', 'r',encoding='utf-8') as f:
|
||||
text = f.read()
|
||||
text_list = eval(text)
|
||||
|
||||
audio_samples = 0
|
||||
srtlines = []
|
||||
audio_opt = []
|
||||
try:
|
||||
num = 0
|
||||
for x in audio:
|
||||
ad = (np.concatenate([x], 0) * 32768).astype(np.int16)
|
||||
|
||||
srtline_begin=ms_to_srt_time(audio_samples*1000.0 / int(sr))
|
||||
audio_samples += ad.size
|
||||
srtline_end=ms_to_srt_time(audio_samples*1000.0 / int(sr))
|
||||
|
||||
audio_opt.append(ad)
|
||||
|
||||
srtlines.append(f"{len(audio_opt):02d}\n")
|
||||
srtlines.append(srtline_begin+' --> '+srtline_end+"\n")
|
||||
|
||||
|
||||
srtlines.append(text_list[num]+"\n\n")
|
||||
|
||||
num += 1
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
|
||||
audio = np.concatenate(audio, 0)
|
||||
audio = (audio * 32768).astype(np.int16)
|
||||
|
||||
with open('./srt/tts-out.srt', 'w', encoding='utf-8') as f:
|
||||
f.writelines(srtlines)
|
||||
|
||||
try:
|
||||
if speed_factor != 1.0:
|
||||
@ -920,6 +963,8 @@ class TTS:
|
||||
print(f"Failed to change speed of audio: \n{e}")
|
||||
|
||||
return sr, audio
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -943,4 +988,4 @@ def speed_change(input_audio:np.ndarray, speed:float, sr:int):
|
||||
# 将管道输出解码为 NumPy 数组
|
||||
processed_audio = np.frombuffer(out, np.int16)
|
||||
|
||||
return processed_audio
|
||||
return processed_audio
|
||||
|
@ -60,6 +60,8 @@ class TextPreprocessor:
|
||||
texts = self.pre_seg_text(text, lang, text_split_method)
|
||||
result = []
|
||||
print(i18n("############ 提取文本Bert特征 ############"))
|
||||
with open('./srt/tts-out.txt', 'w', encoding='utf-8') as f:
|
||||
f.write(str(texts))
|
||||
for text in tqdm(texts):
|
||||
phones, bert_features, norm_text = self.segment_and_extract_feature_for_text(text, lang)
|
||||
if phones is None:
|
||||
|
99
api_v2.py
99
api_v2.py
@ -114,6 +114,7 @@ import soundfile as sf
|
||||
from fastapi import FastAPI, Request, HTTPException, Response
|
||||
from fastapi.responses import StreamingResponse, JSONResponse
|
||||
from fastapi import FastAPI, UploadFile, File
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
import uvicorn
|
||||
from io import BytesIO
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
@ -143,6 +144,8 @@ tts_config = TTS_Config(config_path)
|
||||
tts_pipeline = TTS(tts_config)
|
||||
|
||||
APP = FastAPI()
|
||||
APP.mount("/srt", StaticFiles(directory="./srt"), name="srt")
|
||||
APP.mount("/audio", StaticFiles(directory="./audio"), name="audio")
|
||||
class TTS_Request(BaseModel):
|
||||
text: str = None
|
||||
text_lang: str = None
|
||||
@ -329,7 +332,55 @@ async def tts_handle(req:dict):
|
||||
return JSONResponse(status_code=400, content={"message": f"tts failed", "Exception": str(e)})
|
||||
|
||||
|
||||
async def tts_handle_srt(req:dict,request):
|
||||
"""
|
||||
Text to speech handler.
|
||||
|
||||
Args:
|
||||
req (dict):
|
||||
{
|
||||
"text": "", # str.(required) text to be synthesized
|
||||
"text_lang: "", # str.(required) language of the text to be synthesized
|
||||
"ref_audio_path": "", # str.(required) reference audio path
|
||||
"prompt_text": "", # str.(optional) prompt text for the reference audio
|
||||
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio
|
||||
"top_k": 5, # int. top k sampling
|
||||
"top_p": 1, # float. top p sampling
|
||||
"temperature": 1, # float. temperature for sampling
|
||||
"text_split_method": "cut5", # str. text split method, see text_segmentation_method.py for details.
|
||||
"batch_size": 1, # int. batch size for inference
|
||||
"batch_threshold": 0.75, # float. threshold for batch splitting.
|
||||
"split_bucket: True, # bool. whether to split the batch into multiple buckets.
|
||||
"speed_factor":1.0, # float. control the speed of the synthesized audio.
|
||||
"fragment_interval":0.3, # float. to control the interval of the audio fragment.
|
||||
"seed": -1, # int. random seed for reproducibility.
|
||||
"media_type": "wav", # str. media type of the output audio, support "wav", "raw", "ogg", "aac".
|
||||
"streaming_mode": False, # bool. whether to return a streaming response.
|
||||
"parallel_infer": True, # bool.(optional) whether to use parallel inference.
|
||||
"repetition_penalty": 1.35 # float.(optional) repetition penalty for T2S model.
|
||||
}
|
||||
returns:
|
||||
StreamingResponse: audio stream response.
|
||||
"""
|
||||
|
||||
streaming_mode = req.get("streaming_mode", False)
|
||||
media_type = req.get("media_type", "wav")
|
||||
|
||||
check_res = check_params(req)
|
||||
if check_res is not None:
|
||||
return check_res
|
||||
|
||||
|
||||
try:
|
||||
tts_generator=tts_pipeline.run(req)
|
||||
|
||||
sr, audio_data = next(tts_generator)
|
||||
print(audio_data)
|
||||
#audio_data = pack_audio(BytesIO(), audio_data, sr, media_type).getvalue()
|
||||
#return Response(audio_data, media_type=f"audio/{media_type}")
|
||||
return JSONResponse({"code":"200", "srt":f"http://{request.url.hostname}:{request.url.port}/srt/tts-out.srt","audio":f"http://{request.url.hostname}:{request.url.port}/audio/audio.wav"})
|
||||
except Exception as e:
|
||||
return JSONResponse(status_code=400, content={"message": f"tts failed", "Exception": str(e)})
|
||||
|
||||
|
||||
|
||||
@ -339,7 +390,55 @@ async def control(command: str = None):
|
||||
return JSONResponse(status_code=400, content={"message": "command is required"})
|
||||
handle_control(command)
|
||||
|
||||
@APP.get("/srt")
|
||||
async def tts_get_endpoint_srt(request: Request,
|
||||
text: str = None,
|
||||
text_lang: str = None,
|
||||
ref_audio_path: str = None,
|
||||
prompt_lang: str = None,
|
||||
prompt_text: str = "",
|
||||
top_k:int = 5,
|
||||
top_p:float = 1,
|
||||
temperature:float = 1,
|
||||
text_split_method:str = "cut5",
|
||||
batch_size:int = 10,
|
||||
batch_threshold:float = 0.75,
|
||||
split_bucket:bool = True,
|
||||
speed_factor:float = 1.0,
|
||||
fragment_interval:float = 0.3,
|
||||
seed:int = -1,
|
||||
media_type:str = "wav",
|
||||
streaming_mode:bool = False,
|
||||
parallel_infer:bool = True,
|
||||
repetition_penalty:float = 1.35
|
||||
):
|
||||
req = {
|
||||
"text": text,
|
||||
"text_lang": text_lang.lower(),
|
||||
"ref_audio_path": ref_audio_path,
|
||||
"prompt_text": prompt_text,
|
||||
"prompt_lang": prompt_lang.lower(),
|
||||
"top_k": top_k,
|
||||
"top_p": top_p,
|
||||
"temperature": temperature,
|
||||
"text_split_method": text_split_method,
|
||||
"batch_size":int(batch_size),
|
||||
"batch_threshold":float(batch_threshold),
|
||||
"speed_factor":float(speed_factor),
|
||||
"split_bucket":split_bucket,
|
||||
"fragment_interval":fragment_interval,
|
||||
"seed":seed,
|
||||
"media_type":media_type,
|
||||
"streaming_mode":streaming_mode,
|
||||
"parallel_infer":parallel_infer,
|
||||
"repetition_penalty":float(repetition_penalty)
|
||||
}
|
||||
return await tts_handle_srt(req,request)
|
||||
|
||||
@APP.post("/srt")
|
||||
async def tts_post_endpoint_srt(request: TTS_Request,req1: Request):
|
||||
req = request.dict()
|
||||
return await tts_handle_srt(req,req1)
|
||||
|
||||
@APP.get("/tts")
|
||||
async def tts_get_endpoint(
|
||||
|
Loading…
x
Reference in New Issue
Block a user