mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-07 15:19:59 +08:00
feat: add instance pool for api_v3.py
This commit is contained in:
parent
c5dc7697a8
commit
c24398df8a
@ -70,7 +70,7 @@ def set_seed(seed:int):
|
|||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
return seed
|
return seed
|
||||||
|
|
||||||
class TTS_Config:
|
class TTS_Config:
|
||||||
default_configs={
|
default_configs={
|
||||||
"device": "cpu",
|
"device": "cpu",
|
||||||
@ -82,30 +82,30 @@ class TTS_Config:
|
|||||||
}
|
}
|
||||||
configs:dict = None
|
configs:dict = None
|
||||||
def __init__(self, configs: Union[dict, str]=None):
|
def __init__(self, configs: Union[dict, str]=None):
|
||||||
|
|
||||||
# 设置默认配置文件路径
|
# 设置默认配置文件路径
|
||||||
configs_base_path:str = "GPT_SoVITS/configs/"
|
configs_base_path:str = "GPT_SoVITS/configs/"
|
||||||
os.makedirs(configs_base_path, exist_ok=True)
|
os.makedirs(configs_base_path, exist_ok=True)
|
||||||
self.configs_path:str = os.path.join(configs_base_path, "tts_infer.yaml")
|
self.configs_path:str = os.path.join(configs_base_path, "tts_infer.yaml")
|
||||||
|
|
||||||
if configs in ["", None]:
|
if configs in ["", None]:
|
||||||
if not os.path.exists(self.configs_path):
|
if not os.path.exists(self.configs_path):
|
||||||
self.save_configs()
|
self.save_configs()
|
||||||
print(f"Create default config file at {self.configs_path}")
|
print(f"Create default config file at {self.configs_path}")
|
||||||
configs:dict = {"default": deepcopy(self.default_configs)}
|
configs:dict = {"default": deepcopy(self.default_configs)}
|
||||||
|
|
||||||
if isinstance(configs, str):
|
if isinstance(configs, str):
|
||||||
self.configs_path = configs
|
self.configs_path = configs
|
||||||
configs:dict = self._load_configs(self.configs_path)
|
configs:dict = self._load_configs(self.configs_path)
|
||||||
|
|
||||||
assert isinstance(configs, dict)
|
assert isinstance(configs, dict)
|
||||||
default_configs:dict = configs.get("default", None)
|
default_configs:dict = configs.get("default", None)
|
||||||
if default_configs is not None:
|
if default_configs is not None:
|
||||||
self.default_configs = default_configs
|
self.default_configs = default_configs
|
||||||
|
|
||||||
self.configs:dict = configs.get("custom", deepcopy(self.default_configs))
|
self.configs:dict = configs.get("custom", deepcopy(self.default_configs))
|
||||||
|
|
||||||
|
|
||||||
self.device = self.configs.get("device", torch.device("cpu"))
|
self.device = self.configs.get("device", torch.device("cpu"))
|
||||||
self.is_half = self.configs.get("is_half", False)
|
self.is_half = self.configs.get("is_half", False)
|
||||||
self.t2s_weights_path = self.configs.get("t2s_weights_path", None)
|
self.t2s_weights_path = self.configs.get("t2s_weights_path", None)
|
||||||
@ -113,7 +113,7 @@ class TTS_Config:
|
|||||||
self.bert_base_path = self.configs.get("bert_base_path", None)
|
self.bert_base_path = self.configs.get("bert_base_path", None)
|
||||||
self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None)
|
self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None)
|
||||||
|
|
||||||
|
|
||||||
if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)):
|
if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)):
|
||||||
self.t2s_weights_path = self.default_configs['t2s_weights_path']
|
self.t2s_weights_path = self.default_configs['t2s_weights_path']
|
||||||
print(f"fall back to default t2s_weights_path: {self.t2s_weights_path}")
|
print(f"fall back to default t2s_weights_path: {self.t2s_weights_path}")
|
||||||
@ -127,8 +127,8 @@ class TTS_Config:
|
|||||||
self.cnhuhbert_base_path = self.default_configs['cnhuhbert_base_path']
|
self.cnhuhbert_base_path = self.default_configs['cnhuhbert_base_path']
|
||||||
print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}")
|
print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}")
|
||||||
self.update_configs()
|
self.update_configs()
|
||||||
|
|
||||||
|
|
||||||
self.max_sec = None
|
self.max_sec = None
|
||||||
self.hz:int = 50
|
self.hz:int = 50
|
||||||
self.semantic_frame_rate:str = "25hz"
|
self.semantic_frame_rate:str = "25hz"
|
||||||
@ -138,14 +138,14 @@ class TTS_Config:
|
|||||||
self.hop_length:int = 640
|
self.hop_length:int = 640
|
||||||
self.win_length:int = 2048
|
self.win_length:int = 2048
|
||||||
self.n_speakers:int = 300
|
self.n_speakers:int = 300
|
||||||
|
|
||||||
self.languages:list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
|
self.languages:list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
|
||||||
|
|
||||||
|
|
||||||
def _load_configs(self, configs_path: str)->dict:
|
def _load_configs(self, configs_path: str)->dict:
|
||||||
with open(configs_path, 'r') as f:
|
with open(configs_path, 'r') as f:
|
||||||
configs = yaml.load(f, Loader=yaml.FullLoader)
|
configs = yaml.load(f, Loader=yaml.FullLoader)
|
||||||
|
|
||||||
return configs
|
return configs
|
||||||
|
|
||||||
def save_configs(self, configs_path:str=None)->None:
|
def save_configs(self, configs_path:str=None)->None:
|
||||||
@ -154,7 +154,7 @@ class TTS_Config:
|
|||||||
}
|
}
|
||||||
if self.configs is not None:
|
if self.configs is not None:
|
||||||
configs["custom"] = self.update_configs()
|
configs["custom"] = self.update_configs()
|
||||||
|
|
||||||
if configs_path is None:
|
if configs_path is None:
|
||||||
configs_path = self.configs_path
|
configs_path = self.configs_path
|
||||||
with open(configs_path, 'w') as f:
|
with open(configs_path, 'w') as f:
|
||||||
@ -170,7 +170,7 @@ class TTS_Config:
|
|||||||
"cnhuhbert_base_path": self.cnhuhbert_base_path,
|
"cnhuhbert_base_path": self.cnhuhbert_base_path,
|
||||||
}
|
}
|
||||||
return self.config
|
return self.config
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
self.configs = self.update_configs()
|
self.configs = self.update_configs()
|
||||||
string = "TTS Config".center(100, '-') + '\n'
|
string = "TTS Config".center(100, '-') + '\n'
|
||||||
@ -178,7 +178,7 @@ class TTS_Config:
|
|||||||
string += f"{str(k).ljust(20)}: {str(v)}\n"
|
string += f"{str(k).ljust(20)}: {str(v)}\n"
|
||||||
string += "-" * 100 + '\n'
|
string += "-" * 100 + '\n'
|
||||||
return string
|
return string
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
return self.__str__()
|
return self.__str__()
|
||||||
|
|
||||||
@ -195,21 +195,21 @@ class TTS:
|
|||||||
self.configs = configs
|
self.configs = configs
|
||||||
else:
|
else:
|
||||||
self.configs:TTS_Config = TTS_Config(configs)
|
self.configs:TTS_Config = TTS_Config(configs)
|
||||||
|
|
||||||
self.t2s_model:Text2SemanticLightningModule = None
|
self.t2s_model:Text2SemanticLightningModule = None
|
||||||
self.vits_model:SynthesizerTrn = None
|
self.vits_model:SynthesizerTrn = None
|
||||||
self.bert_tokenizer:AutoTokenizer = None
|
self.bert_tokenizer:AutoTokenizer = None
|
||||||
self.bert_model:AutoModelForMaskedLM = None
|
self.bert_model:AutoModelForMaskedLM = None
|
||||||
self.cnhuhbert_model:CNHubert = None
|
self.cnhuhbert_model:CNHubert = None
|
||||||
|
|
||||||
self._init_models()
|
self._init_models()
|
||||||
|
|
||||||
self.text_preprocessor:TextPreprocessor = \
|
self.text_preprocessor:TextPreprocessor = \
|
||||||
TextPreprocessor(self.bert_model,
|
TextPreprocessor(self.bert_model,
|
||||||
self.bert_tokenizer,
|
self.bert_tokenizer,
|
||||||
self.configs.device)
|
self.configs.device)
|
||||||
|
|
||||||
|
|
||||||
self.prompt_cache:dict = {
|
self.prompt_cache:dict = {
|
||||||
"ref_audio_path" : None,
|
"ref_audio_path" : None,
|
||||||
"prompt_semantic": None,
|
"prompt_semantic": None,
|
||||||
@ -220,8 +220,8 @@ class TTS:
|
|||||||
"bert_features" : None,
|
"bert_features" : None,
|
||||||
"norm_text" : None,
|
"norm_text" : None,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
self.stop_flag:bool = False
|
self.stop_flag:bool = False
|
||||||
self.precision:torch.dtype = torch.float16 if self.configs.is_half else torch.float32
|
self.precision:torch.dtype = torch.float16 if self.configs.is_half else torch.float32
|
||||||
|
|
||||||
@ -231,9 +231,9 @@ class TTS:
|
|||||||
self.init_bert_weights(self.configs.bert_base_path)
|
self.init_bert_weights(self.configs.bert_base_path)
|
||||||
self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path)
|
self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path)
|
||||||
# self.enable_half_precision(self.configs.is_half)
|
# self.enable_half_precision(self.configs.is_half)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def init_cnhuhbert_weights(self, base_path: str):
|
def init_cnhuhbert_weights(self, base_path: str):
|
||||||
print(f"Loading CNHuBERT weights from {base_path}")
|
print(f"Loading CNHuBERT weights from {base_path}")
|
||||||
self.cnhuhbert_model = CNHubert(base_path)
|
self.cnhuhbert_model = CNHubert(base_path)
|
||||||
@ -241,9 +241,9 @@ class TTS:
|
|||||||
self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device)
|
self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device)
|
||||||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||||
self.cnhuhbert_model = self.cnhuhbert_model.half()
|
self.cnhuhbert_model = self.cnhuhbert_model.half()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def init_bert_weights(self, base_path: str):
|
def init_bert_weights(self, base_path: str):
|
||||||
print(f"Loading BERT weights from {base_path}")
|
print(f"Loading BERT weights from {base_path}")
|
||||||
self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path)
|
self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path)
|
||||||
@ -252,16 +252,17 @@ class TTS:
|
|||||||
self.bert_model = self.bert_model.to(self.configs.device)
|
self.bert_model = self.bert_model.to(self.configs.device)
|
||||||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||||
self.bert_model = self.bert_model.half()
|
self.bert_model = self.bert_model.half()
|
||||||
|
|
||||||
def init_vits_weights(self, weights_path: str):
|
def init_vits_weights(self, weights_path: str, save_configs: bool = True):
|
||||||
print(f"Loading VITS weights from {weights_path}")
|
print(f"Loading VITS weights from {weights_path}")
|
||||||
self.configs.vits_weights_path = weights_path
|
self.configs.vits_weights_path = weights_path
|
||||||
self.configs.save_configs()
|
if save_configs:
|
||||||
|
self.configs.save_configs()
|
||||||
dict_s2 = torch.load(weights_path, map_location=self.configs.device)
|
dict_s2 = torch.load(weights_path, map_location=self.configs.device)
|
||||||
hps = dict_s2["config"]
|
hps = dict_s2["config"]
|
||||||
self.configs.filter_length = hps["data"]["filter_length"]
|
self.configs.filter_length = hps["data"]["filter_length"]
|
||||||
self.configs.segment_size = hps["train"]["segment_size"]
|
self.configs.segment_size = hps["train"]["segment_size"]
|
||||||
self.configs.sampling_rate = hps["data"]["sampling_rate"]
|
self.configs.sampling_rate = hps["data"]["sampling_rate"]
|
||||||
self.configs.hop_length = hps["data"]["hop_length"]
|
self.configs.hop_length = hps["data"]["hop_length"]
|
||||||
self.configs.win_length = hps["data"]["win_length"]
|
self.configs.win_length = hps["data"]["win_length"]
|
||||||
self.configs.n_speakers = hps["data"]["n_speakers"]
|
self.configs.n_speakers = hps["data"]["n_speakers"]
|
||||||
@ -276,7 +277,7 @@ class TTS:
|
|||||||
# if ("pretrained" not in weights_path):
|
# if ("pretrained" not in weights_path):
|
||||||
if hasattr(vits_model, "enc_q"):
|
if hasattr(vits_model, "enc_q"):
|
||||||
del vits_model.enc_q
|
del vits_model.enc_q
|
||||||
|
|
||||||
vits_model = vits_model.to(self.configs.device)
|
vits_model = vits_model.to(self.configs.device)
|
||||||
vits_model = vits_model.eval()
|
vits_model = vits_model.eval()
|
||||||
vits_model.load_state_dict(dict_s2["weight"], strict=False)
|
vits_model.load_state_dict(dict_s2["weight"], strict=False)
|
||||||
@ -284,11 +285,12 @@ class TTS:
|
|||||||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||||
self.vits_model = self.vits_model.half()
|
self.vits_model = self.vits_model.half()
|
||||||
|
|
||||||
|
|
||||||
def init_t2s_weights(self, weights_path: str):
|
def init_t2s_weights(self, weights_path: str, save_configs: bool = True):
|
||||||
print(f"Loading Text2Semantic weights from {weights_path}")
|
print(f"Loading Text2Semantic weights from {weights_path}")
|
||||||
self.configs.t2s_weights_path = weights_path
|
self.configs.t2s_weights_path = weights_path
|
||||||
self.configs.save_configs()
|
if save_configs:
|
||||||
|
self.configs.save_configs()
|
||||||
self.configs.hz = 50
|
self.configs.hz = 50
|
||||||
dict_s1 = torch.load(weights_path, map_location=self.configs.device)
|
dict_s1 = torch.load(weights_path, map_location=self.configs.device)
|
||||||
config = dict_s1["config"]
|
config = dict_s1["config"]
|
||||||
@ -300,7 +302,7 @@ class TTS:
|
|||||||
self.t2s_model = t2s_model
|
self.t2s_model = t2s_model
|
||||||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||||
self.t2s_model = self.t2s_model.half()
|
self.t2s_model = self.t2s_model.half()
|
||||||
|
|
||||||
def enable_half_precision(self, enable: bool = True):
|
def enable_half_precision(self, enable: bool = True):
|
||||||
'''
|
'''
|
||||||
To enable half precision for the TTS model.
|
To enable half precision for the TTS model.
|
||||||
@ -311,7 +313,7 @@ class TTS:
|
|||||||
if str(self.configs.device) == "cpu" and enable:
|
if str(self.configs.device) == "cpu" and enable:
|
||||||
print("Half precision is not supported on CPU.")
|
print("Half precision is not supported on CPU.")
|
||||||
return
|
return
|
||||||
|
|
||||||
self.configs.is_half = enable
|
self.configs.is_half = enable
|
||||||
self.precision = torch.float16 if enable else torch.float32
|
self.precision = torch.float16 if enable else torch.float32
|
||||||
self.configs.save_configs()
|
self.configs.save_configs()
|
||||||
@ -333,15 +335,16 @@ class TTS:
|
|||||||
self.bert_model = self.bert_model.float()
|
self.bert_model = self.bert_model.float()
|
||||||
if self.cnhuhbert_model is not None:
|
if self.cnhuhbert_model is not None:
|
||||||
self.cnhuhbert_model = self.cnhuhbert_model.float()
|
self.cnhuhbert_model = self.cnhuhbert_model.float()
|
||||||
|
|
||||||
def set_device(self, device: torch.device):
|
def set_device(self, device: torch.device, save_configs: bool = True):
|
||||||
'''
|
'''
|
||||||
To set the device for all models.
|
To set the device for all models.
|
||||||
Args:
|
Args:
|
||||||
device: torch.device, the device to use for all models.
|
device: torch.device, the device to use for all models.
|
||||||
'''
|
'''
|
||||||
self.configs.device = device
|
self.configs.device = device
|
||||||
self.configs.save_configs()
|
if save_configs:
|
||||||
|
self.configs.save_configs()
|
||||||
if self.t2s_model is not None:
|
if self.t2s_model is not None:
|
||||||
self.t2s_model = self.t2s_model.to(device)
|
self.t2s_model = self.t2s_model.to(device)
|
||||||
if self.vits_model is not None:
|
if self.vits_model is not None:
|
||||||
@ -350,7 +353,7 @@ class TTS:
|
|||||||
self.bert_model = self.bert_model.to(device)
|
self.bert_model = self.bert_model.to(device)
|
||||||
if self.cnhuhbert_model is not None:
|
if self.cnhuhbert_model is not None:
|
||||||
self.cnhuhbert_model = self.cnhuhbert_model.to(device)
|
self.cnhuhbert_model = self.cnhuhbert_model.to(device)
|
||||||
|
|
||||||
def set_ref_audio(self, ref_audio_path:str):
|
def set_ref_audio(self, ref_audio_path:str):
|
||||||
'''
|
'''
|
||||||
To set the reference audio for the TTS model,
|
To set the reference audio for the TTS model,
|
||||||
@ -360,7 +363,7 @@ class TTS:
|
|||||||
'''
|
'''
|
||||||
self._set_prompt_semantic(ref_audio_path)
|
self._set_prompt_semantic(ref_audio_path)
|
||||||
self._set_ref_spec(ref_audio_path)
|
self._set_ref_spec(ref_audio_path)
|
||||||
|
|
||||||
def _set_ref_spec(self, ref_audio_path):
|
def _set_ref_spec(self, ref_audio_path):
|
||||||
audio = load_audio(ref_audio_path, int(self.configs.sampling_rate))
|
audio = load_audio(ref_audio_path, int(self.configs.sampling_rate))
|
||||||
audio = torch.FloatTensor(audio)
|
audio = torch.FloatTensor(audio)
|
||||||
@ -379,8 +382,8 @@ class TTS:
|
|||||||
spec = spec.half()
|
spec = spec.half()
|
||||||
# self.refer_spec = spec
|
# self.refer_spec = spec
|
||||||
self.prompt_cache["refer_spec"] = spec
|
self.prompt_cache["refer_spec"] = spec
|
||||||
|
|
||||||
|
|
||||||
def _set_prompt_semantic(self, ref_wav_path:str):
|
def _set_prompt_semantic(self, ref_wav_path:str):
|
||||||
zero_wav = np.zeros(
|
zero_wav = np.zeros(
|
||||||
int(self.configs.sampling_rate * 0.3),
|
int(self.configs.sampling_rate * 0.3),
|
||||||
@ -405,10 +408,10 @@ class TTS:
|
|||||||
1, 2
|
1, 2
|
||||||
) # .float()
|
) # .float()
|
||||||
codes = self.vits_model.extract_latent(hubert_feature)
|
codes = self.vits_model.extract_latent(hubert_feature)
|
||||||
|
|
||||||
prompt_semantic = codes[0, 0].to(self.configs.device)
|
prompt_semantic = codes[0, 0].to(self.configs.device)
|
||||||
self.prompt_cache["prompt_semantic"] = prompt_semantic
|
self.prompt_cache["prompt_semantic"] = prompt_semantic
|
||||||
|
|
||||||
def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length:int=None):
|
def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length:int=None):
|
||||||
seq = sequences[0]
|
seq = sequences[0]
|
||||||
ndim = seq.dim()
|
ndim = seq.dim()
|
||||||
@ -429,12 +432,12 @@ class TTS:
|
|||||||
padded_sequences.append(padded_seq)
|
padded_sequences.append(padded_seq)
|
||||||
batch = torch.stack(padded_sequences)
|
batch = torch.stack(padded_sequences)
|
||||||
return batch
|
return batch
|
||||||
|
|
||||||
def to_batch(self, data:list,
|
def to_batch(self, data:list,
|
||||||
prompt_data:dict=None,
|
prompt_data:dict=None,
|
||||||
batch_size:int=5,
|
batch_size:int=5,
|
||||||
threshold:float=0.75,
|
threshold:float=0.75,
|
||||||
split_bucket:bool=True,
|
split_bucket:bool=True,
|
||||||
device:torch.device=torch.device("cpu"),
|
device:torch.device=torch.device("cpu"),
|
||||||
precision:torch.dtype=torch.float32,
|
precision:torch.dtype=torch.float32,
|
||||||
):
|
):
|
||||||
@ -447,8 +450,8 @@ class TTS:
|
|||||||
batch_index_list = []
|
batch_index_list = []
|
||||||
if split_bucket:
|
if split_bucket:
|
||||||
index_and_len_list.sort(key=lambda x: x[1])
|
index_and_len_list.sort(key=lambda x: x[1])
|
||||||
index_and_len_list = np.array(index_and_len_list, dtype=np.int64)
|
index_and_len_list = np.array(index_and_len_list, dtype=np.int64)
|
||||||
|
|
||||||
batch_index_list_len = 0
|
batch_index_list_len = 0
|
||||||
pos = 0
|
pos = 0
|
||||||
while pos <index_and_len_list.shape[0]:
|
while pos <index_and_len_list.shape[0]:
|
||||||
@ -464,16 +467,16 @@ class TTS:
|
|||||||
pos = pos_end
|
pos = pos_end
|
||||||
break
|
break
|
||||||
pos_end=pos_end-1
|
pos_end=pos_end-1
|
||||||
|
|
||||||
assert batch_index_list_len == len(data)
|
assert batch_index_list_len == len(data)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
for i in range(len(data)):
|
for i in range(len(data)):
|
||||||
if i%batch_size == 0:
|
if i%batch_size == 0:
|
||||||
batch_index_list.append([])
|
batch_index_list.append([])
|
||||||
batch_index_list[-1].append(i)
|
batch_index_list[-1].append(i)
|
||||||
|
|
||||||
|
|
||||||
for batch_idx, index_list in enumerate(batch_index_list):
|
for batch_idx, index_list in enumerate(batch_index_list):
|
||||||
item_list = [data[idx] for idx in index_list]
|
item_list = [data[idx] for idx in index_list]
|
||||||
phones_list = []
|
phones_list = []
|
||||||
@ -501,19 +504,19 @@ class TTS:
|
|||||||
|
|
||||||
bert_max_len = max(bert_max_len, all_bert_features.shape[-1])
|
bert_max_len = max(bert_max_len, all_bert_features.shape[-1])
|
||||||
phones_max_len = max(phones_max_len, phones.shape[-1])
|
phones_max_len = max(phones_max_len, phones.shape[-1])
|
||||||
|
|
||||||
phones_list.append(phones)
|
phones_list.append(phones)
|
||||||
phones_len_list.append(phones.shape[-1])
|
phones_len_list.append(phones.shape[-1])
|
||||||
all_phones_list.append(all_phones)
|
all_phones_list.append(all_phones)
|
||||||
all_phones_len_list.append(all_phones.shape[-1])
|
all_phones_len_list.append(all_phones.shape[-1])
|
||||||
all_bert_features_list.append(all_bert_features)
|
all_bert_features_list.append(all_bert_features)
|
||||||
norm_text_batch.append(item["norm_text"])
|
norm_text_batch.append(item["norm_text"])
|
||||||
|
|
||||||
phones_batch = phones_list
|
phones_batch = phones_list
|
||||||
all_phones_batch = all_phones_list
|
all_phones_batch = all_phones_list
|
||||||
all_bert_features_batch = all_bert_features_list
|
all_bert_features_batch = all_bert_features_list
|
||||||
|
|
||||||
|
|
||||||
max_len = max(bert_max_len, phones_max_len)
|
max_len = max(bert_max_len, phones_max_len)
|
||||||
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
|
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
|
||||||
#### 直接对phones和bert_features进行pad。(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略)
|
#### 直接对phones和bert_features进行pad。(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略)
|
||||||
@ -522,16 +525,16 @@ class TTS:
|
|||||||
# all_bert_features_batch = torch.zeros((len(all_bert_features_list), 1024, max_len), dtype=precision, device=device)
|
# all_bert_features_batch = torch.zeros((len(all_bert_features_list), 1024, max_len), dtype=precision, device=device)
|
||||||
# for idx, item in enumerate(all_bert_features_list):
|
# for idx, item in enumerate(all_bert_features_list):
|
||||||
# all_bert_features_batch[idx, :, : item.shape[-1]] = item
|
# all_bert_features_batch[idx, :, : item.shape[-1]] = item
|
||||||
|
|
||||||
# #### 先对phones进行embedding、对bert_features进行project,再pad到相同长度,(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略)
|
# #### 先对phones进行embedding、对bert_features进行project,再pad到相同长度,(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略)
|
||||||
# all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list]
|
# all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list]
|
||||||
# all_phones_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) for item in all_phones_list]
|
# all_phones_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) for item in all_phones_list]
|
||||||
# all_phones_batch = torch.stack(all_phones_list, dim=0)
|
# all_phones_batch = torch.stack(all_phones_list, dim=0)
|
||||||
|
|
||||||
# all_bert_features_list = [self.t2s_model.model.bert_proj(item.to(self.t2s_model.device).transpose(0, 1)) for item in all_bert_features_list]
|
# all_bert_features_list = [self.t2s_model.model.bert_proj(item.to(self.t2s_model.device).transpose(0, 1)) for item in all_bert_features_list]
|
||||||
# all_bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) for item in all_bert_features_list]
|
# all_bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) for item in all_bert_features_list]
|
||||||
# all_bert_features_batch = torch.stack(all_bert_features_list, dim=0)
|
# all_bert_features_batch = torch.stack(all_bert_features_list, dim=0)
|
||||||
|
|
||||||
batch = {
|
batch = {
|
||||||
"phones": phones_batch,
|
"phones": phones_batch,
|
||||||
"phones_len": torch.LongTensor(phones_len_list).to(device),
|
"phones_len": torch.LongTensor(phones_len_list).to(device),
|
||||||
@ -542,9 +545,9 @@ class TTS:
|
|||||||
"max_len": max_len,
|
"max_len": max_len,
|
||||||
}
|
}
|
||||||
_data.append(batch)
|
_data.append(batch)
|
||||||
|
|
||||||
return _data, batch_index_list
|
return _data, batch_index_list
|
||||||
|
|
||||||
def recovery_order(self, data:list, batch_index_list:list)->list:
|
def recovery_order(self, data:list, batch_index_list:list)->list:
|
||||||
'''
|
'''
|
||||||
Recovery the order of the audio according to the batch_index_list.
|
Recovery the order of the audio according to the batch_index_list.
|
||||||
@ -568,7 +571,7 @@ class TTS:
|
|||||||
Stop the inference process.
|
Stop the inference process.
|
||||||
'''
|
'''
|
||||||
self.stop_flag = True
|
self.stop_flag = True
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def run(self, inputs:dict):
|
def run(self, inputs:dict):
|
||||||
"""
|
"""
|
||||||
@ -668,7 +671,7 @@ class TTS:
|
|||||||
self.prompt_cache["prompt_lang"] = prompt_lang
|
self.prompt_cache["prompt_lang"] = prompt_lang
|
||||||
phones, bert_features, norm_text = \
|
phones, bert_features, norm_text = \
|
||||||
self.text_preprocessor.segment_and_extract_feature_for_text(
|
self.text_preprocessor.segment_and_extract_feature_for_text(
|
||||||
prompt_text,
|
prompt_text,
|
||||||
prompt_lang)
|
prompt_lang)
|
||||||
self.prompt_cache["phones"] = phones
|
self.prompt_cache["phones"] = phones
|
||||||
self.prompt_cache["bert_features"] = bert_features
|
self.prompt_cache["bert_features"] = bert_features
|
||||||
@ -685,9 +688,9 @@ class TTS:
|
|||||||
return
|
return
|
||||||
|
|
||||||
batch_index_list:list = None
|
batch_index_list:list = None
|
||||||
data, batch_index_list = self.to_batch(data,
|
data, batch_index_list = self.to_batch(data,
|
||||||
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
threshold=batch_threshold,
|
threshold=batch_threshold,
|
||||||
split_bucket=split_bucket,
|
split_bucket=split_bucket,
|
||||||
device=self.configs.device,
|
device=self.configs.device,
|
||||||
@ -701,7 +704,7 @@ class TTS:
|
|||||||
if i%batch_size == 0:
|
if i%batch_size == 0:
|
||||||
data.append([])
|
data.append([])
|
||||||
data[-1].append(texts[i])
|
data[-1].append(texts[i])
|
||||||
|
|
||||||
def make_batch(batch_texts):
|
def make_batch(batch_texts):
|
||||||
batch_data = []
|
batch_data = []
|
||||||
print(i18n("############ 提取文本Bert特征 ############"))
|
print(i18n("############ 提取文本Bert特征 ############"))
|
||||||
@ -717,9 +720,9 @@ class TTS:
|
|||||||
batch_data.append(res)
|
batch_data.append(res)
|
||||||
if len(batch_data) == 0:
|
if len(batch_data) == 0:
|
||||||
return None
|
return None
|
||||||
batch, _ = self.to_batch(batch_data,
|
batch, _ = self.to_batch(batch_data,
|
||||||
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
threshold=batch_threshold,
|
threshold=batch_threshold,
|
||||||
split_bucket=False,
|
split_bucket=False,
|
||||||
device=self.configs.device,
|
device=self.configs.device,
|
||||||
@ -781,7 +784,7 @@ class TTS:
|
|||||||
|
|
||||||
# 这里要记得加 torch.no_grad() 不然速度慢一大截
|
# 这里要记得加 torch.no_grad() 不然速度慢一大截
|
||||||
# with torch.no_grad():
|
# with torch.no_grad():
|
||||||
|
|
||||||
# ## vits并行推理 method 1
|
# ## vits并行推理 method 1
|
||||||
# pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
# pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
||||||
# pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device)
|
# pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device)
|
||||||
@ -823,10 +826,10 @@ class TTS:
|
|||||||
t_45 += t5 - t4
|
t_45 += t5 - t4
|
||||||
if return_fragment:
|
if return_fragment:
|
||||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4))
|
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4))
|
||||||
yield self.audio_postprocess([batch_audio_fragment],
|
yield self.audio_postprocess([batch_audio_fragment],
|
||||||
self.configs.sampling_rate,
|
self.configs.sampling_rate,
|
||||||
None,
|
None,
|
||||||
speed_factor,
|
speed_factor,
|
||||||
False,
|
False,
|
||||||
fragment_interval
|
fragment_interval
|
||||||
)
|
)
|
||||||
@ -840,10 +843,10 @@ class TTS:
|
|||||||
|
|
||||||
if not return_fragment:
|
if not return_fragment:
|
||||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45))
|
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45))
|
||||||
yield self.audio_postprocess(audio,
|
yield self.audio_postprocess(audio,
|
||||||
self.configs.sampling_rate,
|
self.configs.sampling_rate,
|
||||||
batch_index_list,
|
batch_index_list,
|
||||||
speed_factor,
|
speed_factor,
|
||||||
split_bucket,
|
split_bucket,
|
||||||
fragment_interval
|
fragment_interval
|
||||||
)
|
)
|
||||||
@ -863,21 +866,21 @@ class TTS:
|
|||||||
raise e
|
raise e
|
||||||
finally:
|
finally:
|
||||||
self.empty_cache()
|
self.empty_cache()
|
||||||
|
|
||||||
def empty_cache(self):
|
def empty_cache(self):
|
||||||
try:
|
try:
|
||||||
if "cuda" in str(self.configs.device):
|
if "cuda" in str(self.configs.device):
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
elif str(self.configs.device) == "mps":
|
elif str(self.configs.device) == "mps":
|
||||||
torch.mps.empty_cache()
|
torch.mps.empty_cache()
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def audio_postprocess(self,
|
def audio_postprocess(self,
|
||||||
audio:List[torch.Tensor],
|
audio:List[torch.Tensor],
|
||||||
sr:int,
|
sr:int,
|
||||||
batch_index_list:list=None,
|
batch_index_list:list=None,
|
||||||
speed_factor:float=1.0,
|
speed_factor:float=1.0,
|
||||||
split_bucket:bool=True,
|
split_bucket:bool=True,
|
||||||
fragment_interval:float=0.3
|
fragment_interval:float=0.3
|
||||||
)->Tuple[int, np.ndarray]:
|
)->Tuple[int, np.ndarray]:
|
||||||
@ -886,36 +889,36 @@ class TTS:
|
|||||||
dtype=self.precision,
|
dtype=self.precision,
|
||||||
device=self.configs.device
|
device=self.configs.device
|
||||||
)
|
)
|
||||||
|
|
||||||
for i, batch in enumerate(audio):
|
for i, batch in enumerate(audio):
|
||||||
for j, audio_fragment in enumerate(batch):
|
for j, audio_fragment in enumerate(batch):
|
||||||
max_audio=torch.abs(audio_fragment).max()#简单防止16bit爆音
|
max_audio=torch.abs(audio_fragment).max()#简单防止16bit爆音
|
||||||
if max_audio>1: audio_fragment/=max_audio
|
if max_audio>1: audio_fragment/=max_audio
|
||||||
audio_fragment:torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
|
audio_fragment:torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
|
||||||
audio[i][j] = audio_fragment.cpu().numpy()
|
audio[i][j] = audio_fragment.cpu().numpy()
|
||||||
|
|
||||||
|
|
||||||
if split_bucket:
|
if split_bucket:
|
||||||
audio = self.recovery_order(audio, batch_index_list)
|
audio = self.recovery_order(audio, batch_index_list)
|
||||||
else:
|
else:
|
||||||
# audio = [item for batch in audio for item in batch]
|
# audio = [item for batch in audio for item in batch]
|
||||||
audio = sum(audio, [])
|
audio = sum(audio, [])
|
||||||
|
|
||||||
|
|
||||||
audio = np.concatenate(audio, 0)
|
audio = np.concatenate(audio, 0)
|
||||||
audio = (audio * 32768).astype(np.int16)
|
audio = (audio * 32768).astype(np.int16)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
if speed_factor != 1.0:
|
if speed_factor != 1.0:
|
||||||
audio = speed_change(audio, speed=speed_factor, sr=int(sr))
|
audio = speed_change(audio, speed=speed_factor, sr=int(sr))
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Failed to change speed of audio: \n{e}")
|
print(f"Failed to change speed of audio: \n{e}")
|
||||||
|
|
||||||
return sr, audio
|
return sr, audio
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def speed_change(input_audio:np.ndarray, speed:float, sr:int):
|
def speed_change(input_audio:np.ndarray, speed:float, sr:int):
|
||||||
# 将 NumPy 数组转换为原始 PCM 流
|
# 将 NumPy 数组转换为原始 PCM 流
|
||||||
raw_audio = input_audio.astype(np.int16).tobytes()
|
raw_audio = input_audio.astype(np.int16).tobytes()
|
||||||
|
133
GPT_SoVITS/TTS_infer_pack/tts_instance_pool.py
Normal file
133
GPT_SoVITS/TTS_infer_pack/tts_instance_pool.py
Normal file
@ -0,0 +1,133 @@
|
|||||||
|
import threading
|
||||||
|
from time import perf_counter
|
||||||
|
import traceback
|
||||||
|
from typing import Dict, Union
|
||||||
|
|
||||||
|
from GPT_SoVITS.TTS_infer_pack.TTS import TTS, TTS_Config
|
||||||
|
|
||||||
|
|
||||||
|
class TTSWrapper(TTS):
|
||||||
|
heat: float = 0
|
||||||
|
usage_count: int = 0
|
||||||
|
usage_counter: int = 0
|
||||||
|
usage_time: float = 0.0
|
||||||
|
first_used_time: float = 0.0
|
||||||
|
|
||||||
|
def __init__(self, configs: Union[dict, str, TTS_Config]):
|
||||||
|
super(TTSWrapper, self).__init__(configs)
|
||||||
|
self.first_used_time = perf_counter()
|
||||||
|
|
||||||
|
def __hash__(self) -> int:
|
||||||
|
return hash(self.first_used_time)
|
||||||
|
|
||||||
|
def run(self, *args, **kwargs):
|
||||||
|
self.usage_counter += 1
|
||||||
|
t0 = perf_counter()
|
||||||
|
for result in super(TTSWrapper, self).run(*args, **kwargs):
|
||||||
|
yield result
|
||||||
|
t1 = perf_counter()
|
||||||
|
self.usage_time += t1 - t0
|
||||||
|
idle_time = self.usage_time - self.first_used_time
|
||||||
|
self.heat = self.usage_counter / idle_time
|
||||||
|
|
||||||
|
def reset_heat(self):
|
||||||
|
self.heat: int = 0
|
||||||
|
self.usage_count: int = 0
|
||||||
|
self.usage_time: float = 0.0
|
||||||
|
self.first_used_time: float = perf_counter()
|
||||||
|
|
||||||
|
|
||||||
|
class TTSInstancePool:
|
||||||
|
def __init__(self, max_size):
|
||||||
|
self.max_size: int = max_size
|
||||||
|
self.semaphore: threading.Semaphore = threading.Semaphore(max_size)
|
||||||
|
self.pool_lock: threading.Lock = threading.Lock()
|
||||||
|
self.pool: Dict[int, TTSWrapper] = dict()
|
||||||
|
self.current_index: int = 0
|
||||||
|
self.size: int = 0
|
||||||
|
|
||||||
|
def acquire(self, configs: TTS_Config):
|
||||||
|
|
||||||
|
self.semaphore.acquire()
|
||||||
|
try:
|
||||||
|
with self.pool_lock:
|
||||||
|
# 查询最匹配的实例
|
||||||
|
indexed_key = None
|
||||||
|
rank = []
|
||||||
|
for key, tts_instance in self.pool.items():
|
||||||
|
if tts_instance.configs.vits_weights_path == configs.vits_weights_path \
|
||||||
|
and tts_instance.configs.t2s_weights_path == configs.t2s_weights_path:
|
||||||
|
indexed_key = key
|
||||||
|
rank.append((tts_instance.heat, key))
|
||||||
|
rank.sort(key=lambda x: x[0])
|
||||||
|
matched_key = None if len(rank) == 0 else rank[0][1]
|
||||||
|
|
||||||
|
# 如果已有实例匹配,则直接复用
|
||||||
|
if indexed_key is not None:
|
||||||
|
tts_instance = self._reuse_instance(indexed_key, configs)
|
||||||
|
print(f"如果已有实例匹配,则直接复用: {configs.vits_weights_path} {configs.t2s_weights_path}")
|
||||||
|
return tts_instance
|
||||||
|
|
||||||
|
# 如果pool未满,则创建一个新实例
|
||||||
|
if self.size < self.max_size:
|
||||||
|
tts_instance = TTSWrapper(configs)
|
||||||
|
self.size += 1
|
||||||
|
print(f"如果pool未满,则创建一个新实例: {configs.vits_weights_path} {configs.t2s_weights_path}")
|
||||||
|
return tts_instance
|
||||||
|
else:
|
||||||
|
# 否则用最合适的实例进行复用
|
||||||
|
tts_instance = self._reuse_instance(matched_key, configs)
|
||||||
|
print(f"否则用最合适的实例进行复用: {configs.vits_weights_path} {configs.t2s_weights_path}")
|
||||||
|
return tts_instance
|
||||||
|
except Exception as e:
|
||||||
|
self.semaphore.release()
|
||||||
|
traceback.print_exc()
|
||||||
|
raise e
|
||||||
|
|
||||||
|
def release(self, tts_instance: TTSWrapper):
|
||||||
|
assert tts_instance is not None
|
||||||
|
with self.pool_lock:
|
||||||
|
key = hash(tts_instance)
|
||||||
|
if key in self.pool.keys():
|
||||||
|
return
|
||||||
|
self.pool[key] = tts_instance
|
||||||
|
self.semaphore.release()
|
||||||
|
|
||||||
|
def clear_pool(self):
|
||||||
|
for i in range(self.max_size):
|
||||||
|
self.semaphore.acquire()
|
||||||
|
with self.pool_lock:
|
||||||
|
self.pool.clear()
|
||||||
|
# for i in range(self.max_size):
|
||||||
|
self.semaphore.release(self.max_size)
|
||||||
|
|
||||||
|
def _reuse_instance(self, instance_key: int, configs: TTS_Config) -> TTSWrapper:
|
||||||
|
"""
|
||||||
|
复用已有实例
|
||||||
|
args:
|
||||||
|
instance_key: int, 已有实例的Key
|
||||||
|
config: TTS_Config
|
||||||
|
return:
|
||||||
|
TTS_Wrapper: 返回复用的TTS实例
|
||||||
|
"""
|
||||||
|
|
||||||
|
# 复用已有实例
|
||||||
|
tts_instance = self.pool.pop(instance_key, None)
|
||||||
|
if tts_instance is None:
|
||||||
|
raise ValueError("Instance not found")
|
||||||
|
|
||||||
|
tts_instance.configs.device = configs.device
|
||||||
|
if tts_instance.configs.vits_weights_path != configs.vits_weights_path \
|
||||||
|
or tts_instance.configs.t2s_weights_path != configs.t2s_weights_path:
|
||||||
|
tts_instance.reset_heat()
|
||||||
|
|
||||||
|
if tts_instance.configs.vits_weights_path != configs.vits_weights_path:
|
||||||
|
tts_instance.init_vits_weights(configs.vits_weights_path, False)
|
||||||
|
tts_instance.configs.vits_weights_path = configs.vits_weights_path
|
||||||
|
|
||||||
|
if tts_instance.configs.t2s_weights_path != configs.t2s_weights_path:
|
||||||
|
tts_instance.init_t2s_weights(configs.t2s_weights_path, False)
|
||||||
|
tts_instance.configs.t2s_weights_path = configs.t2s_weights_path
|
||||||
|
|
||||||
|
tts_instance.set_device(configs.device, False)
|
||||||
|
return tts_instance
|
14
GPT_SoVITS/configs/voices/voice1.yaml
Normal file
14
GPT_SoVITS/configs/voices/voice1.yaml
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
custom:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
t2s_weights_path: GPT_weights/liyunlong-e15.ckpt
|
||||||
|
vits_weights_path: SoVITS_weights/liyunlong_e8_s176.pth
|
||||||
|
default:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||||
|
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
14
GPT_SoVITS/configs/voices/voice2.yaml
Normal file
14
GPT_SoVITS/configs/voices/voice2.yaml
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
custom:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
t2s_weights_path: GPT_weights/jackma-e10.ckpt
|
||||||
|
vits_weights_path: SoVITS_weights/jackma_e8_s192.pth
|
||||||
|
default:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||||
|
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
14
GPT_SoVITS/configs/voices/voice3.yaml
Normal file
14
GPT_SoVITS/configs/voices/voice3.yaml
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
custom:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
t2s_weights_path: GPT_weights/stephenchow-e15.ckpt
|
||||||
|
vits_weights_path: SoVITS_weights/stephenchow_e8_s112.pth
|
||||||
|
default:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||||
|
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
35
api_v3.py
35
api_v3.py
@ -104,6 +104,8 @@ from typing import Generator
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
from TTS_infer_pack.tts_instance_pool import TTSInstancePool, TTSWrapper
|
||||||
|
|
||||||
now_dir = os.getcwd()
|
now_dir = os.getcwd()
|
||||||
sys.path.append(now_dir)
|
sys.path.append(now_dir)
|
||||||
sys.path.append("%s/GPT_SoVITS" % (now_dir))
|
sys.path.append("%s/GPT_SoVITS" % (now_dir))
|
||||||
@ -119,11 +121,10 @@ from fastapi.responses import JSONResponse
|
|||||||
from fastapi import FastAPI
|
from fastapi import FastAPI
|
||||||
import uvicorn
|
import uvicorn
|
||||||
from io import BytesIO
|
from io import BytesIO
|
||||||
from GPT_SoVITS.TTS_infer_pack.TTS import TTS, TTS_Config
|
from GPT_SoVITS.TTS_infer_pack.TTS import TTS_Config
|
||||||
from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import get_method_names as get_cut_method_names
|
from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import get_method_names as get_cut_method_names
|
||||||
from fastapi.responses import StreamingResponse
|
from fastapi.responses import StreamingResponse
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
from functools import lru_cache
|
|
||||||
|
|
||||||
cut_method_names = get_cut_method_names()
|
cut_method_names = get_cut_method_names()
|
||||||
|
|
||||||
@ -137,6 +138,9 @@ argv = sys.argv
|
|||||||
|
|
||||||
APP = FastAPI()
|
APP = FastAPI()
|
||||||
|
|
||||||
|
max_size = 10
|
||||||
|
tts_instance_pool = TTSInstancePool(max_size)
|
||||||
|
|
||||||
|
|
||||||
class TTS_Request(BaseModel):
|
class TTS_Request(BaseModel):
|
||||||
text: str = None
|
text: str = None
|
||||||
@ -162,12 +166,6 @@ class TTS_Request(BaseModel):
|
|||||||
"""推理时需要加载的声音模型的yaml配置文件路径,如:GPT_SoVITS/configs/tts_infer.yaml"""
|
"""推理时需要加载的声音模型的yaml配置文件路径,如:GPT_SoVITS/configs/tts_infer.yaml"""
|
||||||
|
|
||||||
|
|
||||||
@lru_cache(maxsize=10)
|
|
||||||
def get_tts_instance(tts_config: TTS_Config) -> TTS:
|
|
||||||
print(f"load tts config from {tts_config.configs_path}")
|
|
||||||
return TTS(tts_config)
|
|
||||||
|
|
||||||
|
|
||||||
def pack_ogg(io_buffer: BytesIO, data: np.ndarray, rate: int):
|
def pack_ogg(io_buffer: BytesIO, data: np.ndarray, rate: int):
|
||||||
"""modify from https://github.com/RVC-Boss/GPT-SoVITS/pull/894/files"""
|
"""modify from https://github.com/RVC-Boss/GPT-SoVITS/pull/894/files"""
|
||||||
with sf.SoundFile(io_buffer, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file:
|
with sf.SoundFile(io_buffer, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file:
|
||||||
@ -318,7 +316,7 @@ async def tts_handle(req: dict):
|
|||||||
req["return_fragment"] = True
|
req["return_fragment"] = True
|
||||||
|
|
||||||
try:
|
try:
|
||||||
tts_instance = get_tts_instance(tts_config)
|
tts_instance = tts_instance_pool.acquire(tts_config)
|
||||||
|
|
||||||
move_to_gpu(tts_instance, tts_config)
|
move_to_gpu(tts_instance, tts_config)
|
||||||
|
|
||||||
@ -332,27 +330,30 @@ async def tts_handle(req: dict):
|
|||||||
for sr, chunk in tts_generator:
|
for sr, chunk in tts_generator:
|
||||||
yield pack_audio(BytesIO(), chunk, sr, media_type).getvalue()
|
yield pack_audio(BytesIO(), chunk, sr, media_type).getvalue()
|
||||||
move_to_cpu(tts_instance)
|
move_to_cpu(tts_instance)
|
||||||
|
tts_instance_pool.release(tts_instance)
|
||||||
|
|
||||||
# _media_type = f"audio/{media_type}" if not (streaming_mode and media_type in ["wav", "raw"]) else f"audio/x-{media_type}"
|
# _media_type = f"audio/{media_type}" if not (streaming_mode and media_type in ["wav", "raw"]) else
|
||||||
|
# f"audio/x-{media_type}"
|
||||||
return StreamingResponse(streaming_generator(tts_generator, media_type, ), media_type=f"audio/{media_type}")
|
return StreamingResponse(streaming_generator(tts_generator, media_type, ), media_type=f"audio/{media_type}")
|
||||||
|
|
||||||
else:
|
else:
|
||||||
sr, audio_data = next(tts_generator)
|
sr, audio_data = next(tts_generator)
|
||||||
audio_data = pack_audio(BytesIO(), audio_data, sr, media_type).getvalue()
|
audio_data = pack_audio(BytesIO(), audio_data, sr, media_type).getvalue()
|
||||||
move_to_cpu(tts_instance)
|
move_to_cpu(tts_instance)
|
||||||
|
tts_instance_pool.release(tts_instance)
|
||||||
return Response(audio_data, media_type=f"audio/{media_type}")
|
return Response(audio_data, media_type=f"audio/{media_type}")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return JSONResponse(status_code=400, content={"message": f"tts failed", "Exception": str(e)})
|
return JSONResponse(status_code=400, content={"message": f"tts failed", "Exception": str(e)})
|
||||||
|
|
||||||
|
|
||||||
def move_to_cpu(tts):
|
def move_to_cpu(tts: TTSWrapper):
|
||||||
cpu_device = torch.device('cpu')
|
cpu_device = torch.device('cpu')
|
||||||
tts.set_device(cpu_device)
|
tts.set_device(cpu_device, False)
|
||||||
print("Moved TTS models to CPU to save GPU memory.")
|
print("Moved TTS models to CPU to save GPU memory.")
|
||||||
|
|
||||||
|
|
||||||
def move_to_gpu(tts: TTS, tts_config: TTS_Config):
|
def move_to_gpu(tts: TTSWrapper, tts_config: TTS_Config):
|
||||||
tts.set_device(tts_config.device)
|
tts.set_device(tts_config.device, False)
|
||||||
print("Moved TTS models back to GPU for performance.")
|
print("Moved TTS models back to GPU for performance.")
|
||||||
|
|
||||||
|
|
||||||
@ -422,7 +423,7 @@ async def tts_post_endpoint(request: TTS_Request):
|
|||||||
async def set_refer_audio(refer_audio_path: str = None, tts_infer_yaml_path: str = "GPT_SoVITS/configs/tts_infer.yaml"):
|
async def set_refer_audio(refer_audio_path: str = None, tts_infer_yaml_path: str = "GPT_SoVITS/configs/tts_infer.yaml"):
|
||||||
try:
|
try:
|
||||||
tts_config = TTS_Config(tts_infer_yaml_path)
|
tts_config = TTS_Config(tts_infer_yaml_path)
|
||||||
tts_instance = get_tts_instance(tts_config)
|
tts_instance = tts_instance_pool.acquire(tts_config)
|
||||||
tts_instance.set_ref_audio(refer_audio_path)
|
tts_instance.set_ref_audio(refer_audio_path)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return JSONResponse(status_code=400, content={"message": f"set refer audio failed", "Exception": str(e)})
|
return JSONResponse(status_code=400, content={"message": f"set refer audio failed", "Exception": str(e)})
|
||||||
@ -436,7 +437,7 @@ async def set_gpt_weights(weights_path: str = None, tts_infer_yaml_path: str = "
|
|||||||
return JSONResponse(status_code=400, content={"message": "gpt weight path is required"})
|
return JSONResponse(status_code=400, content={"message": "gpt weight path is required"})
|
||||||
|
|
||||||
tts_config = TTS_Config(tts_infer_yaml_path)
|
tts_config = TTS_Config(tts_infer_yaml_path)
|
||||||
tts_instance = get_tts_instance(tts_config)
|
tts_instance = tts_instance_pool.acquire(tts_config)
|
||||||
tts_instance.init_t2s_weights(weights_path)
|
tts_instance.init_t2s_weights(weights_path)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return JSONResponse(status_code=400, content={"message": f"change gpt weight failed", "Exception": str(e)})
|
return JSONResponse(status_code=400, content={"message": f"change gpt weight failed", "Exception": str(e)})
|
||||||
@ -451,7 +452,7 @@ async def set_sovits_weights(weights_path: str = None, tts_infer_yaml_path: str
|
|||||||
return JSONResponse(status_code=400, content={"message": "sovits weight path is required"})
|
return JSONResponse(status_code=400, content={"message": "sovits weight path is required"})
|
||||||
|
|
||||||
tts_config = TTS_Config(tts_infer_yaml_path)
|
tts_config = TTS_Config(tts_infer_yaml_path)
|
||||||
tts_instance = get_tts_instance(tts_config)
|
tts_instance = tts_instance_pool.acquire(tts_config)
|
||||||
tts_instance.init_vits_weights(weights_path)
|
tts_instance.init_vits_weights(weights_path)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return JSONResponse(status_code=400, content={"message": f"change sovits weight failed", "Exception": str(e)})
|
return JSONResponse(status_code=400, content={"message": f"change sovits weight failed", "Exception": str(e)})
|
||||||
|
Loading…
x
Reference in New Issue
Block a user