mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 12:38:35 +08:00
支持24k音频超分48k采样率
支持24k音频超分48k采样率
This commit is contained in:
parent
7c56946d95
commit
c242346280
92
tools/AP_BWE_main/datasets1/dataset.py
Normal file
92
tools/AP_BWE_main/datasets1/dataset.py
Normal file
@ -0,0 +1,92 @@
|
||||
import os
|
||||
import random
|
||||
import torch
|
||||
import torchaudio
|
||||
import torch.utils.data
|
||||
import torchaudio.functional as aF
|
||||
|
||||
def amp_pha_stft(audio, n_fft, hop_size, win_size, center=True):
|
||||
|
||||
hann_window = torch.hann_window(win_size).to(audio.device)
|
||||
stft_spec = torch.stft(audio, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window,
|
||||
center=center, pad_mode='reflect', normalized=False, return_complex=True)
|
||||
log_amp = torch.log(torch.abs(stft_spec)+1e-4)
|
||||
pha = torch.angle(stft_spec)
|
||||
|
||||
com = torch.stack((torch.exp(log_amp)*torch.cos(pha),
|
||||
torch.exp(log_amp)*torch.sin(pha)), dim=-1)
|
||||
|
||||
return log_amp, pha, com
|
||||
|
||||
|
||||
def amp_pha_istft(log_amp, pha, n_fft, hop_size, win_size, center=True):
|
||||
|
||||
amp = torch.exp(log_amp)
|
||||
com = torch.complex(amp*torch.cos(pha), amp*torch.sin(pha))
|
||||
hann_window = torch.hann_window(win_size).to(com.device)
|
||||
audio = torch.istft(com, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window, center=center)
|
||||
|
||||
return audio
|
||||
|
||||
|
||||
def get_dataset_filelist(a):
|
||||
with open(a.input_training_file, 'r', encoding='utf-8') as fi:
|
||||
training_indexes = [x.split('|')[0] for x in fi.read().split('\n') if len(x) > 0]
|
||||
|
||||
with open(a.input_validation_file, 'r', encoding='utf-8') as fi:
|
||||
validation_indexes = [x.split('|')[0] for x in fi.read().split('\n') if len(x) > 0]
|
||||
|
||||
return training_indexes, validation_indexes
|
||||
|
||||
|
||||
class Dataset(torch.utils.data.Dataset):
|
||||
def __init__(self, training_indexes, wavs_dir, segment_size, hr_sampling_rate, lr_sampling_rate,
|
||||
split=True, shuffle=True, n_cache_reuse=1, device=None):
|
||||
self.audio_indexes = training_indexes
|
||||
random.seed(1234)
|
||||
if shuffle:
|
||||
random.shuffle(self.audio_indexes)
|
||||
self.wavs_dir = wavs_dir
|
||||
self.segment_size = segment_size
|
||||
self.hr_sampling_rate = hr_sampling_rate
|
||||
self.lr_sampling_rate = lr_sampling_rate
|
||||
self.split = split
|
||||
self.cached_wav = None
|
||||
self.n_cache_reuse = n_cache_reuse
|
||||
self._cache_ref_count = 0
|
||||
self.device = device
|
||||
|
||||
def __getitem__(self, index):
|
||||
filename = self.audio_indexes[index]
|
||||
if self._cache_ref_count == 0:
|
||||
audio, orig_sampling_rate = torchaudio.load(os.path.join(self.wavs_dir, filename + '.wav'))
|
||||
self.cached_wav = audio
|
||||
self._cache_ref_count = self.n_cache_reuse
|
||||
else:
|
||||
audio = self.cached_wav
|
||||
self._cache_ref_count -= 1
|
||||
|
||||
if orig_sampling_rate == self.hr_sampling_rate:
|
||||
audio_hr = audio
|
||||
else:
|
||||
audio_hr = aF.resample(audio, orig_freq=orig_sampling_rate, new_freq=self.hr_sampling_rate)
|
||||
|
||||
audio_lr = aF.resample(audio, orig_freq=orig_sampling_rate, new_freq=self.lr_sampling_rate)
|
||||
audio_lr = aF.resample(audio_lr, orig_freq=self.lr_sampling_rate, new_freq=self.hr_sampling_rate)
|
||||
audio_lr = audio_lr[:, : audio_hr.size(1)]
|
||||
|
||||
if self.split:
|
||||
if audio_hr.size(1) >= self.segment_size:
|
||||
max_audio_start = audio_hr.size(1) - self.segment_size
|
||||
audio_start = random.randint(0, max_audio_start)
|
||||
audio_hr = audio_hr[:, audio_start: audio_start+self.segment_size]
|
||||
audio_lr = audio_lr[:, audio_start: audio_start+self.segment_size]
|
||||
else:
|
||||
audio_hr = torch.nn.functional.pad(audio_hr, (0, self.segment_size - audio_hr.size(1)), 'constant')
|
||||
audio_lr = torch.nn.functional.pad(audio_lr, (0, self.segment_size - audio_lr.size(1)), 'constant')
|
||||
|
||||
return (audio_hr.squeeze(), audio_lr.squeeze())
|
||||
|
||||
def __len__(self):
|
||||
|
||||
return len(self.audio_indexes)
|
Loading…
x
Reference in New Issue
Block a user