Reformat scripts

This commit is contained in:
laubonghaudoi 2025-03-19 00:24:44 -07:00
parent 165882d64f
commit c18c9a9eed
4 changed files with 145 additions and 108 deletions

1
.gitignore vendored
View File

@ -18,3 +18,4 @@ TEMP
weight.json
ffmpeg*
ffprobe*
zoengjyutgaai*

View File

@ -1,6 +1,17 @@
# -*- coding: utf-8 -*-
import os
import os.path
import shutil
import traceback
from time import time as ttime
import torch
from text.cleaner import clean_text
from transformers import AutoModelForMaskedLM, AutoTokenizer
from tqdm import tqdm
from tools.my_utils import clean_path
inp_text = os.environ.get("inp_text")
inp_wav_dir = os.environ.get("inp_wav_dir")
@ -8,20 +19,11 @@ exp_name = os.environ.get("exp_name")
i_part = os.environ.get("i_part")
all_parts = os.environ.get("all_parts")
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
opt_dir = os.environ.get("opt_dir")
bert_pretrained_dir = os.environ.get("bert_pretrained_dir")
import torch
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
version = os.environ.get('version', None)
import sys, numpy as np, traceback, pdb
import os.path
from glob import glob
from tqdm import tqdm
from text.cleaner import clean_text
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
from tools.my_utils import clean_path
# inp_text=sys.argv[1]
# inp_wav_dir=sys.argv[2]
@ -32,17 +34,14 @@ from tools.my_utils import clean_path
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
# bert_pretrained_dir="/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large"
from time import time as ttime
import shutil
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
dir=os.path.dirname(path)
name=os.path.basename(path)
def my_save(fea, path): # fix issue: torch.save doesn't support chinese path
dir = os.path.dirname(path)
name = os.path.basename(path)
# tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
tmp_path="%s%s.pth"%(ttime(),i_part)
torch.save(fea,tmp_path)
shutil.move(tmp_path,"%s/%s"%(dir,name))
tmp_path = "%s%s.pth" % (ttime(), i_part)
torch.save(fea, tmp_path)
shutil.move(tmp_path, "%s/%s" % (dir, name))
txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
@ -56,11 +55,13 @@ if os.path.exists(txt_path) == False:
# device = "mps"
else:
device = "cpu"
if os.path.exists(bert_pretrained_dir):...
else:raise FileNotFoundError(bert_pretrained_dir)
if os.path.exists(bert_pretrained_dir):
...
else:
raise FileNotFoundError(bert_pretrained_dir)
tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir)
if is_half == True:
if is_half:
bert_model = bert_model.half().to(device)
else:
bert_model = bert_model.to(device)
@ -86,7 +87,7 @@ if os.path.exists(txt_path) == False:
def process(data, res):
for name, text, lan in data:
try:
name=clean_path(name)
name = clean_path(name)
name = os.path.basename(name)
print(name)
phones, word2ph, norm_text = clean_text(
@ -126,7 +127,7 @@ if os.path.exists(txt_path) == False:
"YUE": "yue",
"Yue": "yue",
}
for line in lines[int(i_part) :: int(all_parts)]:
for line in tqdm(lines[int(i_part):: int(all_parts)]):
try:
wav_name, spk_name, language, text = line.split("|")
# todo.append([name,text,"zh"])

View File

@ -1,25 +1,40 @@
# -*- coding: utf-8 -*-
"""
Step 2 of data preparation: Extract HuBERT features from the audio files,
and resample the audio to 32kHz and saving it.
"""
import sys,os
inp_text= os.environ.get("inp_text")
inp_wav_dir= os.environ.get("inp_wav_dir")
exp_name= os.environ.get("exp_name")
i_part= os.environ.get("i_part")
all_parts= os.environ.get("all_parts")
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
from feature_extractor import cnhubert
opt_dir= os.environ.get("opt_dir")
cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir")
import os
import shutil
import sys
import traceback
from time import time as ttime
import librosa
import numpy as np
import torch
from feature_extractor import cnhubert
from scipy.io import wavfile
from tqdm import tqdm
from tools.my_utils import clean_path, load_audio
inp_text = os.environ.get("inp_text")
inp_wav_dir = os.environ.get("inp_wav_dir")
exp_name = os.environ.get("exp_name")
i_part = os.environ.get("i_part")
all_parts = os.environ.get("all_parts")
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
opt_dir = os.environ.get("opt_dir")
cnhubert.cnhubert_base_path = os.environ.get("cnhubert_base_dir")
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
import pdb,traceback,numpy as np,logging
from scipy.io import wavfile
import librosa
now_dir = os.getcwd()
sys.path.append(now_dir)
from tools.my_utils import load_audio,clean_path
# from config import cnhubert_base_path
# cnhubert.cnhubert_base_path=cnhubert_base_path
@ -32,92 +47,112 @@ from tools.my_utils import load_audio,clean_path
# cnhubert.cnhubert_base_path=sys.argv[7]
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
from time import time as ttime
import shutil
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
dir=os.path.dirname(path)
name=os.path.basename(path)
def my_save(fea, path): # fix issue: torch.save doesn't support chinese path
dir = os.path.dirname(path)
name = os.path.basename(path)
# tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
tmp_path="%s%s.pth"%(ttime(),i_part)
torch.save(fea,tmp_path)
shutil.move(tmp_path,"%s/%s"%(dir,name))
tmp_path = f"{ttime()}{i_part}.pth"
torch.save(fea, tmp_path)
shutil.move(tmp_path, f"{dir}/{name}")
hubert_dir="%s/4-cnhubert"%(opt_dir)
wav32dir="%s/5-wav32k"%(opt_dir)
os.makedirs(opt_dir,exist_ok=True)
os.makedirs(hubert_dir,exist_ok=True)
os.makedirs(wav32dir,exist_ok=True)
maxx=0.95
alpha=0.5
hubert_dir = "%s/4-cnhubert" % (opt_dir)
wav32dir = "%s/5-wav32k" % (opt_dir)
os.makedirs(opt_dir, exist_ok=True)
os.makedirs(hubert_dir, exist_ok=True)
os.makedirs(wav32dir, exist_ok=True)
maxx = 0.95
alpha = 0.5
if torch.cuda.is_available():
device = "cuda:0"
# elif torch.backends.mps.is_available():
# device = "mps"
else:
device = "cpu"
model=cnhubert.get_model()
model = cnhubert.get_model()
# is_half=False
if(is_half==True):
model=model.half().to(device)
if (is_half == True):
model = model.half().to(device)
else:
model = model.to(device)
nan_fails=[]
def name2go(wav_name,wav_path):
hubert_path="%s/%s.pt"%(hubert_dir,wav_name)
if(os.path.exists(hubert_path)):return
tmp_audio = load_audio(wav_path, 32000)
tmp_max = np.abs(tmp_audio).max()
if tmp_max > 2.2:
print("%s-filtered,%s" % (wav_name, tmp_max))
nan_fails = []
def name2go(wav_name, wav_path):
"""
Extract HuBERT features from the audio files, and resample the audio to 32kHz and saving it.
"""
# Skip if the file already exists
hubert_path = "%s/%s.pt" % (hubert_dir, wav_name)
if (os.path.exists(hubert_path)):
return
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * tmp_audio
tmp_audio32b = (tmp_audio / tmp_max * (maxx * alpha*1145.14)) + ((1 - alpha)*1145.14) * tmp_audio
# Load the audio file in 32kHz sampling rate
tmp_audio = load_audio(wav_path, 32000)
# Check the maximum amplitude of the audio file
tmp_max = np.abs(tmp_audio).max()
# Skip if the maximum amplitude is too high (volume is too loud)
if tmp_max > 2.2:
print(f"{wav_name}-filtered,{tmp_max}")
return
# Normalize the audio
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha * 32768)) + ((1 - alpha) * 32768) * tmp_audio
tmp_audio32b = (tmp_audio / tmp_max * (maxx * alpha * 1145.14)) + ((1 - alpha) * 1145.14) * tmp_audio
tmp_audio = librosa.resample(
tmp_audio32b, orig_sr=32000, target_sr=16000
)#不是重采样问题
) # 不是重采样问题
tensor_wav16 = torch.from_numpy(tmp_audio)
if (is_half == True):
tensor_wav16=tensor_wav16.half().to(device)
# if half-precision is enabled, convert the tensor to half-precision
if is_half:
tensor_wav16 = tensor_wav16.half().to(device)
else:
tensor_wav16 = tensor_wav16.to(device)
ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215])
if np.isnan(ssl.detach().numpy()).sum()!= 0:
nan_fails.append((wav_name,wav_path))
print("nan filtered:%s"%wav_name)
# Extract HuBERT features from the audio file
ssl = model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1, 2).cpu() # torch.Size([1, 768, 215])
if np.isnan(ssl.detach().numpy()).sum() != 0:
nan_fails.append((wav_name, wav_path))
print(f"nan filtered:{wav_name}")
return
wavfile.write(
"%s/%s"%(wav32dir,wav_name),
f"{wav32dir}/{wav_name}",
32000,
tmp_audio32.astype("int16"),
)
my_save(ssl,hubert_path)
my_save(ssl, hubert_path)
with open(inp_text,"r",encoding="utf8")as f:
lines=f.read().strip("\n").split("\n")
for line in lines[int(i_part)::int(all_parts)]:
with open(inp_text, "r", encoding="utf8")as f:
lines = f.read().strip("\n").split("\n")
for line in tqdm(lines[int(i_part)::int(all_parts)]):
try:
# wav_name,text=line.split("\t")
wav_name, spk_name, language, text = line.split("|")
wav_name=clean_path(wav_name)
if (inp_wav_dir != "" and inp_wav_dir != None):
wav_name = clean_path(wav_name)
if (inp_wav_dir != "" and inp_wav_dir is not None):
wav_name = os.path.basename(wav_name)
wav_path = "%s/%s"%(inp_wav_dir, wav_name)
wav_path = f"{inp_wav_dir}/{wav_name}"
else:
wav_path=wav_name
wav_path = wav_name
wav_name = os.path.basename(wav_name)
name2go(wav_name,wav_path)
name2go(wav_name, wav_path)
except:
print(line,traceback.format_exc())
print(line, traceback.format_exc())
if(len(nan_fails)>0 and is_half==True):
is_half=False
model=model.float()
if (len(nan_fails) > 0 and is_half):
is_half = False
model = model.float()
for wav in nan_fails:
try:
name2go(wav[0],wav[1])
name2go(wav[0], wav[1])
except:
print(wav_name,traceback.format_exc())
print(wav_name, traceback.format_exc())

View File

@ -1,17 +1,27 @@
import logging
import os
import sys
import traceback
import torch
import utils
from tools.my_utils import clean_path
inp_text = os.environ.get("inp_text")
exp_name = os.environ.get("exp_name")
i_part = os.environ.get("i_part")
all_parts = os.environ.get("all_parts")
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
opt_dir = os.environ.get("opt_dir")
pretrained_s2G = os.environ.get("pretrained_s2G")
s2config_path = os.environ.get("s2config_path")
if os.path.exists(pretrained_s2G):...
else:raise FileNotFoundError(pretrained_s2G)
if os.path.exists(pretrained_s2G):
...
else:
raise FileNotFoundError(pretrained_s2G)
# version=os.environ.get("version","v2")
size = os.path.getsize(pretrained_s2G)
if size < 82978 * 1024:
@ -24,24 +34,14 @@ elif size < 700 * 1024 * 1024:
version = "v2"
else:
version = "v3"
import torch
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
import math, traceback
import multiprocessing
import sys, pdb
now_dir = os.getcwd()
sys.path.append(now_dir)
from random import shuffle
import torch.multiprocessing as mp
from glob import glob
from tqdm import tqdm
import logging, librosa, utils
if version!="v3":
if version != "v3":
from module.models import SynthesizerTrn
else:
from module.models import SynthesizerTrnV3 as SynthesizerTrn
from tools.my_utils import clean_path
logging.getLogger("numba").setLevel(logging.WARNING)
# from config import pretrained_s2G
@ -102,12 +102,12 @@ if os.path.exists(semantic_path) == False:
lines = f.read().strip("\n").split("\n")
lines1 = []
for line in lines[int(i_part) :: int(all_parts)]:
for line in lines[int(i_part):: int(all_parts)]:
# print(line)
try:
# wav_name,text=line.split("\t")
wav_name, spk_name, language, text = line.split("|")
wav_name=clean_path(wav_name)
wav_name = clean_path(wav_name)
wav_name = os.path.basename(wav_name)
# name2go(name,lines1)
name2go(wav_name, lines1)