mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
Update inference_gui.py
This commit is contained in:
parent
f36ca4a451
commit
bf494b6b2d
@ -1,480 +1,13 @@
|
||||
import os,re,logging
|
||||
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
||||
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
||||
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
||||
logging.getLogger("httpx").setLevel(logging.ERROR)
|
||||
logging.getLogger("asyncio").setLevel(logging.ERROR)
|
||||
|
||||
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
||||
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
||||
import pdb
|
||||
|
||||
if os.path.exists("./gweight.txt"):
|
||||
with open("./gweight.txt", 'r',encoding="utf-8") as file:
|
||||
gweight_data = file.read()
|
||||
gpt_path = os.environ.get(
|
||||
"gpt_path", gweight_data)
|
||||
else:
|
||||
gpt_path = os.environ.get(
|
||||
"gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
|
||||
|
||||
if os.path.exists("./sweight.txt"):
|
||||
with open("./sweight.txt", 'r',encoding="utf-8") as file:
|
||||
sweight_data = file.read()
|
||||
sovits_path = os.environ.get("sovits_path", sweight_data)
|
||||
else:
|
||||
sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth")
|
||||
# gpt_path = os.environ.get(
|
||||
# "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||
# )
|
||||
# sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth")
|
||||
cnhubert_base_path = os.environ.get(
|
||||
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
||||
)
|
||||
bert_path = os.environ.get(
|
||||
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
||||
)
|
||||
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
||||
infer_ttswebui = int(infer_ttswebui)
|
||||
is_share = os.environ.get("is_share", "False")
|
||||
is_share=eval(is_share)
|
||||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
is_half = eval(os.environ.get("is_half", "True"))
|
||||
import gradio as gr
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
import numpy as np
|
||||
import librosa,torch
|
||||
from feature_extractor import cnhubert
|
||||
cnhubert.cnhubert_base_path=cnhubert_base_path
|
||||
|
||||
import sys
|
||||
from PyQt5.QtCore import QEvent
|
||||
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QLineEdit, QPushButton, QTextEdit
|
||||
from PyQt5.QtWidgets import QGridLayout, QVBoxLayout, QWidget, QFileDialog, QStatusBar, QComboBox
|
||||
import soundfile as sf
|
||||
|
||||
from module.models import SynthesizerTrn
|
||||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||
from text import cleaned_text_to_sequence
|
||||
from text.cleaner import clean_text
|
||||
from time import time as ttime
|
||||
from module.mel_processing import spectrogram_torch
|
||||
from my_utils import load_audio
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
i18n = I18nAuto()
|
||||
|
||||
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
elif torch.backends.mps.is_available():
|
||||
device = "mps"
|
||||
else:
|
||||
device = "cpu"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
||||
if is_half == True:
|
||||
bert_model = bert_model.half().to(device)
|
||||
else:
|
||||
bert_model = bert_model.to(device)
|
||||
|
||||
def get_bert_feature(text, word2ph):
|
||||
with torch.no_grad():
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
for i in inputs:
|
||||
inputs[i] = inputs[i].to(device)
|
||||
res = bert_model(**inputs, output_hidden_states=True)
|
||||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||||
assert len(word2ph) == len(text)
|
||||
phone_level_feature = []
|
||||
for i in range(len(word2ph)):
|
||||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||||
phone_level_feature.append(repeat_feature)
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
return phone_level_feature.T
|
||||
|
||||
class DictToAttrRecursive(dict):
|
||||
def __init__(self, input_dict):
|
||||
super().__init__(input_dict)
|
||||
for key, value in input_dict.items():
|
||||
if isinstance(value, dict):
|
||||
value = DictToAttrRecursive(value)
|
||||
self[key] = value
|
||||
setattr(self, key, value)
|
||||
|
||||
def __getattr__(self, item):
|
||||
try:
|
||||
return self[item]
|
||||
except KeyError:
|
||||
raise AttributeError(f"Attribute {item} not found")
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
if isinstance(value, dict):
|
||||
value = DictToAttrRecursive(value)
|
||||
super(DictToAttrRecursive, self).__setitem__(key, value)
|
||||
super().__setattr__(key, value)
|
||||
|
||||
def __delattr__(self, item):
|
||||
try:
|
||||
del self[item]
|
||||
except KeyError:
|
||||
raise AttributeError(f"Attribute {item} not found")
|
||||
|
||||
|
||||
ssl_model = cnhubert.get_model()
|
||||
if is_half == True:
|
||||
ssl_model = ssl_model.half().to(device)
|
||||
else:
|
||||
ssl_model = ssl_model.to(device)
|
||||
|
||||
def change_sovits_weights(sovits_path):
|
||||
global vq_model,hps
|
||||
dict_s2=torch.load(sovits_path,map_location="cpu")
|
||||
hps=dict_s2["config"]
|
||||
hps = DictToAttrRecursive(hps)
|
||||
hps.model.semantic_frame_rate = "25hz"
|
||||
vq_model = SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model
|
||||
)
|
||||
if("pretrained"not in sovits_path):
|
||||
del vq_model.enc_q
|
||||
if is_half == True:
|
||||
vq_model = vq_model.half().to(device)
|
||||
else:
|
||||
vq_model = vq_model.to(device)
|
||||
vq_model.eval()
|
||||
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
||||
with open("./sweight.txt","w",encoding="utf-8")as f:f.write(sovits_path)
|
||||
change_sovits_weights(sovits_path)
|
||||
|
||||
def change_gpt_weights(gpt_path):
|
||||
global hz,max_sec,t2s_model,config
|
||||
hz = 50
|
||||
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
||||
config = dict_s1["config"]
|
||||
max_sec = config["data"]["max_sec"]
|
||||
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
||||
t2s_model.load_state_dict(dict_s1["weight"])
|
||||
if is_half == True:
|
||||
t2s_model = t2s_model.half()
|
||||
t2s_model = t2s_model.to(device)
|
||||
t2s_model.eval()
|
||||
total = sum([param.nelement() for param in t2s_model.parameters()])
|
||||
print("Number of parameter: %.2fM" % (total / 1e6))
|
||||
with open("./gweight.txt","w",encoding="utf-8")as f:f.write(gpt_path)
|
||||
change_gpt_weights(gpt_path)
|
||||
|
||||
def get_spepc(hps, filename):
|
||||
audio = load_audio(filename, int(hps.data.sampling_rate))
|
||||
audio = torch.FloatTensor(audio)
|
||||
audio_norm = audio
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
hps.data.filter_length,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.hop_length,
|
||||
hps.data.win_length,
|
||||
center=False,
|
||||
)
|
||||
return spec
|
||||
|
||||
|
||||
dict_language={
|
||||
i18n("中文"):"zh",
|
||||
i18n("英文"):"en",
|
||||
i18n("日文"):"ja"
|
||||
}
|
||||
|
||||
|
||||
def splite_en_inf(sentence, language):
|
||||
pattern = re.compile(r'[a-zA-Z. ]+')
|
||||
textlist = []
|
||||
langlist = []
|
||||
pos = 0
|
||||
for match in pattern.finditer(sentence):
|
||||
start, end = match.span()
|
||||
if start > pos:
|
||||
textlist.append(sentence[pos:start])
|
||||
langlist.append(language)
|
||||
textlist.append(sentence[start:end])
|
||||
langlist.append("en")
|
||||
pos = end
|
||||
if pos < len(sentence):
|
||||
textlist.append(sentence[pos:])
|
||||
langlist.append(language)
|
||||
|
||||
return textlist, langlist
|
||||
|
||||
|
||||
def clean_text_inf(text, language):
|
||||
phones, word2ph, norm_text = clean_text(text, language)
|
||||
phones = cleaned_text_to_sequence(phones)
|
||||
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
|
||||
def get_bert_inf(phones, word2ph, norm_text, language):
|
||||
if language == "zh":
|
||||
bert = get_bert_feature(norm_text, word2ph).to(device)
|
||||
else:
|
||||
bert = torch.zeros(
|
||||
(1024, len(phones)),
|
||||
dtype=torch.float16 if is_half == True else torch.float32,
|
||||
).to(device)
|
||||
|
||||
return bert
|
||||
|
||||
|
||||
def nonen_clean_text_inf(text, language):
|
||||
textlist, langlist = splite_en_inf(text, language)
|
||||
phones_list = []
|
||||
word2ph_list = []
|
||||
norm_text_list = []
|
||||
for i in range(len(textlist)):
|
||||
lang = langlist[i]
|
||||
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
||||
phones_list.append(phones)
|
||||
if lang == "en" or "ja":
|
||||
pass
|
||||
else:
|
||||
word2ph_list.append(word2ph)
|
||||
norm_text_list.append(norm_text)
|
||||
print(word2ph_list)
|
||||
phones = sum(phones_list, [])
|
||||
word2ph = sum(word2ph_list, [])
|
||||
norm_text = ' '.join(norm_text_list)
|
||||
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
|
||||
def nonen_get_bert_inf(text, language):
|
||||
textlist, langlist = splite_en_inf(text, language)
|
||||
print(textlist)
|
||||
print(langlist)
|
||||
bert_list = []
|
||||
for i in range(len(textlist)):
|
||||
text = textlist[i]
|
||||
lang = langlist[i]
|
||||
phones, word2ph, norm_text = clean_text_inf(text, lang)
|
||||
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
||||
bert_list.append(bert)
|
||||
bert = torch.cat(bert_list, dim=1)
|
||||
|
||||
return bert
|
||||
|
||||
splits = {",","。","?","!",",",".","?","!","~",":",":","—","…",}
|
||||
def get_first(text):
|
||||
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
||||
text = re.split(pattern, text)[0].strip()
|
||||
return text
|
||||
|
||||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,how_to_cut=i18n("不切")):
|
||||
t0 = ttime()
|
||||
prompt_text = prompt_text.strip("\n")
|
||||
if(prompt_text[-1]not in splits):prompt_text+="。"if prompt_text!="en"else "."
|
||||
text = text.strip("\n")
|
||||
if(len(get_first(text))<4):text+="。"if text!="en"else "."
|
||||
zero_wav = np.zeros(
|
||||
int(hps.data.sampling_rate * 0.3),
|
||||
dtype=np.float16 if is_half == True else np.float32,
|
||||
)
|
||||
with torch.no_grad():
|
||||
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||||
if(wav16k.shape[0]>160000 or wav16k.shape[0]<48000):
|
||||
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
||||
wav16k = torch.from_numpy(wav16k)
|
||||
zero_wav_torch = torch.from_numpy(zero_wav)
|
||||
if is_half == True:
|
||||
wav16k = wav16k.half().to(device)
|
||||
zero_wav_torch = zero_wav_torch.half().to(device)
|
||||
else:
|
||||
wav16k = wav16k.to(device)
|
||||
zero_wav_torch = zero_wav_torch.to(device)
|
||||
wav16k=torch.cat([wav16k,zero_wav_torch])
|
||||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
||||
"last_hidden_state"
|
||||
].transpose(
|
||||
1, 2
|
||||
) # .float()
|
||||
codes = vq_model.extract_latent(ssl_content)
|
||||
prompt_semantic = codes[0, 0]
|
||||
t1 = ttime()
|
||||
prompt_language = dict_language[prompt_language]
|
||||
text_language = dict_language[text_language]
|
||||
|
||||
if prompt_language == "en":
|
||||
phones1, word2ph1, norm_text1 = clean_text_inf(prompt_text, prompt_language)
|
||||
else:
|
||||
phones1, word2ph1, norm_text1 = nonen_clean_text_inf(prompt_text, prompt_language)
|
||||
if(how_to_cut==i18n("凑四句一切")):text=cut1(text)
|
||||
elif(how_to_cut==i18n("凑50字一切")):text=cut2(text)
|
||||
elif(how_to_cut==i18n("按中文句号。切")):text=cut3(text)
|
||||
elif(how_to_cut==i18n("按英文句号.切")):text=cut4(text)
|
||||
text = text.replace("\n\n","\n").replace("\n\n","\n").replace("\n\n","\n")
|
||||
if(text[-1]not in splits):text+="。"if text_language!="en"else "."
|
||||
texts=text.split("\n")
|
||||
audio_opt = []
|
||||
if prompt_language == "en":
|
||||
bert1 = get_bert_inf(phones1, word2ph1, norm_text1, prompt_language)
|
||||
else:
|
||||
bert1 = nonen_get_bert_inf(prompt_text, prompt_language)
|
||||
|
||||
for text in texts:
|
||||
# 解决输入目标文本的空行导致报错的问题
|
||||
if (len(text.strip()) == 0):
|
||||
continue
|
||||
if text_language == "en":
|
||||
phones2, word2ph2, norm_text2 = clean_text_inf(text, text_language)
|
||||
else:
|
||||
phones2, word2ph2, norm_text2 = nonen_clean_text_inf(text, text_language)
|
||||
|
||||
if text_language == "en":
|
||||
bert2 = get_bert_inf(phones2, word2ph2, norm_text2, text_language)
|
||||
else:
|
||||
bert2 = nonen_get_bert_inf(text, text_language)
|
||||
|
||||
bert = torch.cat([bert1, bert2], 1)
|
||||
|
||||
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
||||
bert = bert.to(device).unsqueeze(0)
|
||||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||||
t2 = ttime()
|
||||
with torch.no_grad():
|
||||
# pred_semantic = t2s_model.model.infer(
|
||||
pred_semantic, idx = t2s_model.model.infer_panel(
|
||||
all_phoneme_ids,
|
||||
all_phoneme_len,
|
||||
prompt,
|
||||
bert,
|
||||
# prompt_phone_len=ph_offset,
|
||||
top_k=config["inference"]["top_k"],
|
||||
early_stop_num=hz * max_sec,
|
||||
)
|
||||
t3 = ttime()
|
||||
# print(pred_semantic.shape,idx)
|
||||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
|
||||
0
|
||||
) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
||||
if is_half == True:
|
||||
refer = refer.half().to(device)
|
||||
else:
|
||||
refer = refer.to(device)
|
||||
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
||||
audio = (
|
||||
vq_model.decode(
|
||||
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
|
||||
)
|
||||
.detach()
|
||||
.cpu()
|
||||
.numpy()[0, 0]
|
||||
) ###试试重建不带上prompt部分
|
||||
audio_opt.append(audio)
|
||||
audio_opt.append(zero_wav)
|
||||
t4 = ttime()
|
||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
||||
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
||||
np.int16
|
||||
)
|
||||
|
||||
def split(todo_text):
|
||||
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||||
if todo_text[-1] not in splits:
|
||||
todo_text += "。"
|
||||
i_split_head = i_split_tail = 0
|
||||
len_text = len(todo_text)
|
||||
todo_texts = []
|
||||
while 1:
|
||||
if i_split_head >= len_text:
|
||||
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
||||
if todo_text[i_split_head] in splits:
|
||||
i_split_head += 1
|
||||
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
||||
i_split_tail = i_split_head
|
||||
else:
|
||||
i_split_head += 1
|
||||
return todo_texts
|
||||
|
||||
|
||||
def cut1(inp):
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
split_idx = list(range(0, len(inps), 4))
|
||||
split_idx[-1] = None
|
||||
if len(split_idx) > 1:
|
||||
opts = []
|
||||
for idx in range(len(split_idx) - 1):
|
||||
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
|
||||
else:
|
||||
opts = [inp]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
def cut2(inp):
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
if len(inps) < 2:
|
||||
return inp
|
||||
opts = []
|
||||
summ = 0
|
||||
tmp_str = ""
|
||||
for i in range(len(inps)):
|
||||
summ += len(inps[i])
|
||||
tmp_str += inps[i]
|
||||
if summ > 50:
|
||||
summ = 0
|
||||
opts.append(tmp_str)
|
||||
tmp_str = ""
|
||||
if tmp_str != "":
|
||||
opts.append(tmp_str)
|
||||
# print(opts)
|
||||
if len(opts)>1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
||||
opts[-2] = opts[-2] + opts[-1]
|
||||
opts = opts[:-1]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
def cut3(inp):
|
||||
inp = inp.strip("\n")
|
||||
return "\n".join(["%s。" % item for item in inp.strip("。").split("。")])
|
||||
def cut4(inp):
|
||||
inp = inp.strip("\n")
|
||||
return "\n".join(["%s." % item for item in inp.strip(".").split(".")])
|
||||
|
||||
def custom_sort_key(s):
|
||||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||||
parts = re.split('(\d+)', s)
|
||||
# 将数字部分转换为整数,非数字部分保持不变
|
||||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||||
return parts
|
||||
|
||||
def change_choices():
|
||||
SoVITS_names, GPT_names = get_weights_names()
|
||||
return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"}
|
||||
|
||||
pretrained_sovits_name="GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||||
pretrained_gpt_name="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||
SoVITS_weight_root="SoVITS_weights"
|
||||
GPT_weight_root="GPT_weights"
|
||||
os.makedirs(SoVITS_weight_root,exist_ok=True)
|
||||
os.makedirs(GPT_weight_root,exist_ok=True)
|
||||
|
||||
def get_weights_names():
|
||||
SoVITS_names = [pretrained_sovits_name]
|
||||
for name in os.listdir(SoVITS_weight_root):
|
||||
if name.endswith(".pth"):SoVITS_names.append("%s/%s"%(SoVITS_weight_root,name))
|
||||
GPT_names = [pretrained_gpt_name]
|
||||
for name in os.listdir(GPT_weight_root):
|
||||
if name.endswith(".ckpt"): GPT_names.append("%s/%s"%(GPT_weight_root,name))
|
||||
return SoVITS_names,GPT_names
|
||||
SoVITS_names,GPT_names = get_weights_names()
|
||||
from GPT_SoVITS.inference_webui import change_gpt_weights, change_sovits_weights, get_tts_wav
|
||||
|
||||
|
||||
class GPTSoVITSGUI(QMainWindow):
|
||||
|
Loading…
x
Reference in New Issue
Block a user