mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
tqdm progress bar
This commit is contained in:
parent
fc2161b484
commit
be200d182a
@ -84,11 +84,10 @@ if os.path.exists(txt_path) == False:
|
||||
return phone_level_feature.T
|
||||
|
||||
def process(data, res):
|
||||
for name, text, lan in data:
|
||||
for name, text, lan in tqdm(data,position=int(i_part),delay=0.5):
|
||||
try:
|
||||
name=clean_path(name)
|
||||
name = os.path.basename(name)
|
||||
print(name)
|
||||
phones, word2ph, norm_text = clean_text(
|
||||
text.replace("%", "-").replace("¥", ","), lan, version
|
||||
)
|
||||
@ -102,7 +101,7 @@ if os.path.exists(txt_path) == False:
|
||||
# res.append([name,phones])
|
||||
res.append([name, phones, word2ph, norm_text])
|
||||
except:
|
||||
print(name, text, traceback.format_exc())
|
||||
tqdm.write(name, text, traceback.format_exc())
|
||||
|
||||
todo = []
|
||||
res = []
|
||||
@ -135,9 +134,9 @@ if os.path.exists(txt_path) == False:
|
||||
[wav_name, text, language_v1_to_language_v2.get(language, language)]
|
||||
)
|
||||
else:
|
||||
print(f"\033[33m[Waring] The {language = } of {wav_name} is not supported for training.\033[0m")
|
||||
tqdm.write(f"\033[33m[Waring] The {language = } of {wav_name} is not supported for training.\033[0m")
|
||||
except:
|
||||
print(line, traceback.format_exc())
|
||||
tqdm.write(line, traceback.format_exc())
|
||||
|
||||
process(todo, res)
|
||||
opt = []
|
||||
|
@ -20,6 +20,7 @@ import librosa
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from tools.my_utils import load_audio,clean_path
|
||||
from tqdm import tqdm
|
||||
|
||||
# from config import cnhubert_base_path
|
||||
# cnhubert.cnhubert_base_path=cnhubert_base_path
|
||||
@ -70,7 +71,7 @@ def name2go(wav_name,wav_path):
|
||||
tmp_audio = load_audio(wav_path, 32000)
|
||||
tmp_max = np.abs(tmp_audio).max()
|
||||
if tmp_max > 2.2:
|
||||
print("%s-filtered,%s" % (wav_name, tmp_max))
|
||||
tqdm.write("%s-filtered,%s" % (wav_name, tmp_max))
|
||||
return
|
||||
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * tmp_audio
|
||||
tmp_audio32b = (tmp_audio / tmp_max * (maxx * alpha*1145.14)) + ((1 - alpha)*1145.14) * tmp_audio
|
||||
@ -85,7 +86,7 @@ def name2go(wav_name,wav_path):
|
||||
ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215])
|
||||
if np.isnan(ssl.detach().numpy()).sum()!= 0:
|
||||
nan_fails.append((wav_name,wav_path))
|
||||
print("nan filtered:%s"%wav_name)
|
||||
tqdm.write("nan filtered:%s"%wav_name)
|
||||
return
|
||||
wavfile.write(
|
||||
"%s/%s"%(wav32dir,wav_name),
|
||||
@ -97,7 +98,7 @@ def name2go(wav_name,wav_path):
|
||||
with open(inp_text,"r",encoding="utf8")as f:
|
||||
lines=f.read().strip("\n").split("\n")
|
||||
|
||||
for line in lines[int(i_part)::int(all_parts)]:
|
||||
for line in tqdm(lines[int(i_part)::int(all_parts)],position=int(i_part)):
|
||||
try:
|
||||
# wav_name,text=line.split("\t")
|
||||
wav_name, spk_name, language, text = line.split("|")
|
||||
@ -111,13 +112,13 @@ for line in lines[int(i_part)::int(all_parts)]:
|
||||
wav_name = os.path.basename(wav_name)
|
||||
name2go(wav_name,wav_path)
|
||||
except:
|
||||
print(line,traceback.format_exc())
|
||||
tqdm.write(line,traceback.format_exc())
|
||||
|
||||
if(len(nan_fails)>0 and is_half==True):
|
||||
is_half=False
|
||||
model=model.float()
|
||||
for wav in nan_fails:
|
||||
for wav in tqdm(nan_fails,position=int(i_part)):
|
||||
try:
|
||||
name2go(wav[0],wav[1])
|
||||
except:
|
||||
print(wav_name,traceback.format_exc())
|
||||
tqdm.write(wav_name,traceback.format_exc())
|
||||
|
@ -25,6 +25,7 @@ from tqdm import tqdm
|
||||
import logging, librosa, utils
|
||||
from module.models import SynthesizerTrn
|
||||
from tools.my_utils import clean_path
|
||||
from tqdm import tqdm
|
||||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||||
# from config import pretrained_s2G
|
||||
|
||||
@ -87,8 +88,8 @@ if os.path.exists(semantic_path) == False:
|
||||
lines = f.read().strip("\n").split("\n")
|
||||
|
||||
lines1 = []
|
||||
for line in lines[int(i_part) :: int(all_parts)]:
|
||||
# print(line)
|
||||
for line in tqdm(lines[int(i_part) :: int(all_parts)],position=int(i_part)):
|
||||
# tqdm.write(line)
|
||||
try:
|
||||
# wav_name,text=line.split("\t")
|
||||
wav_name, spk_name, language, text = line.split("|")
|
||||
@ -97,6 +98,6 @@ if os.path.exists(semantic_path) == False:
|
||||
# name2go(name,lines1)
|
||||
name2go(wav_name, lines1)
|
||||
except:
|
||||
print(line, traceback.format_exc())
|
||||
tqdm.write(line, traceback.format_exc())
|
||||
with open(semantic_path, "w", encoding="utf8") as f:
|
||||
f.write("\n".join(lines1))
|
||||
|
@ -306,7 +306,7 @@ def train_and_evaluate(
|
||||
y_lengths,
|
||||
text,
|
||||
text_lengths,
|
||||
) in enumerate(tqdm(train_loader)):
|
||||
) in enumerate(tqdm(train_loader,position=rank+1,leave=(epoch==hps.train.epochs),postfix=f'epoch:{epoch}')):
|
||||
if torch.cuda.is_available():
|
||||
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
|
Loading…
x
Reference in New Issue
Block a user