Update onnx export script

This commit is contained in:
Kazuki Kyakuno 2024-03-18 18:31:44 +09:00
parent 939971afe3
commit b9f2400e82

View File

@ -4,7 +4,14 @@ import torch
import torchaudio
from torch import nn
from feature_extractor import cnhubert
cnhubert_base_path = "pretrained_models/chinese-hubert-base"
#cnhubert_base_path = "pretrained_models/chinese-hubert-base"
import os
cnhubert_base_path = os.environ.get(
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
)
cnhubert.cnhubert_base_path=cnhubert_base_path
ssl_model = cnhubert.get_model()
from text import cleaned_text_to_sequence
@ -103,20 +110,48 @@ class T2SModel(nn.Module):
self.stage_decoder = self.t2s_model.stage_decoder
#self.t2s_model = torch.jit.script(self.t2s_model)
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content):
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, debug=False):
early_stop_num = self.t2s_model.early_stop_num
if debug:
import onnxruntime
sess_encoder = onnxruntime.InferenceSession(f"onnx/nahida/nahida_t2s_encoder.onnx", providers=["CPU"])
sess_fsdec = onnxruntime.InferenceSession(f"onnx/nahida/nahida_t2s_fsdec.onnx", providers=["CPU"])
sess_sdec = onnxruntime.InferenceSession(f"onnx/nahida/nahida_t2s_sdec.onnx", providers=["CPU"])
#[1,N] [1,N] [N, 1024] [N, 1024] [1, 768, N]
if debug:
x, prompts = sess_encoder.run(None, {"ref_seq":ref_seq.detach().numpy(), "text_seq":text_seq.detach().numpy(), "ref_bert":ref_bert.detach().numpy(), "text_bert":text_bert.detach().numpy(), "ssl_content":ssl_content.detach().numpy()})
x = torch.from_numpy(x)
prompts = torch.from_numpy(prompts)
else:
x, prompts = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
prefix_len = prompts.shape[1]
#[1,N,512] [1,N]
if debug:
y, k, v, y_emb, x_example = sess_fsdec.run(None, {"x":x.detach().numpy(), "prompts":prompts.detach().numpy()})
y = torch.from_numpy(y)
k = torch.from_numpy(k)
v = torch.from_numpy(v)
y_emb = torch.from_numpy(y_emb)
x_example = torch.from_numpy(x_example)
else:
y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
stop = False
for idx in range(1, 1500):
#[1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N]
if debug:
y, k, v, y_emb, logits, samples = sess_sdec.run(None, {"iy":y.detach().numpy(), "ik":k.detach().numpy(), "iv":v.detach().numpy(), "iy_emb":y_emb.detach().numpy(), "ix_example":x_example.detach().numpy()})
y = torch.from_numpy(y)
k = torch.from_numpy(k)
v = torch.from_numpy(v)
y_emb = torch.from_numpy(y_emb)
logits = torch.from_numpy(logits)
samples = torch.from_numpy(samples)
else:
enco = self.stage_decoder(y, k, v, y_emb, x_example)
y, k, v, y_emb, logits, samples = enco
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
@ -226,11 +261,11 @@ class GptSoVits(nn.Module):
self.t2s = t2s
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content, debug=False):
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content, debug)
audio = self.vits(text_seq, pred_semantic, ref_audio)
if debug:
import onnxruntime
sess = onnxruntime.InferenceSession("onnx/koharu/koharu_vits.onnx", providers=["CPU"])
sess = onnxruntime.InferenceSession("onnx/nahida/nahida_vits.onnx", providers=["CPU"])
audio1 = sess.run(None, {
"text_seq" : text_seq.detach().cpu().numpy(),
"pred_semantic" : pred_semantic.detach().cpu().numpy(),
@ -263,21 +298,47 @@ class SSLModel(nn.Module):
super().__init__()
self.ssl = ssl_model
def forward(self, ref_audio_16k):
def forward(self, ref_audio_16k, debug = False):
if debug:
import onnxruntime
sess = onnxruntime.InferenceSession("onnx/nahida/nahida_cnhubert.onnx", providers=["CPU"])
last_hidden_state = sess.run(None, {
"ref_audio_16k" : ref_audio_16k.detach().cpu().numpy()
})
return torch.from_numpy(last_hidden_state[0])
return self.ssl.model(ref_audio_16k)["last_hidden_state"].transpose(1, 2)
def export(self, ref_audio_16k, project_name):
torch.onnx.export(
self,
(ref_audio_16k),
f"onnx/{project_name}/{project_name}_cnhubert.onnx",
input_names=["ref_audio_16k"],
output_names=["last_hidden_state"],
dynamic_axes={
"ref_audio_16k": {1 : "text_length"},
"last_hidden_state": {2 : "pred_length"}
},
opset_version=17,
verbose=False
)
def export(vits_path, gpt_path, project_name):
vits = VitsModel(vits_path)
gpt = T2SModel(gpt_path, vits)
gpt_sovits = GptSoVits(vits, gpt)
ssl = SSLModel()
ref_seq = torch.LongTensor([cleaned_text_to_sequence(["n", "i2", "h", "ao3", ",", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])])
text_seq = torch.LongTensor([cleaned_text_to_sequence(["w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])])
#ref_seq = torch.LongTensor([cleaned_text_to_sequence(["n", "i2", "h", "ao3", ",", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])])
#text_seq = torch.LongTensor([cleaned_text_to_sequence(["w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])])
ref_seq = torch.LongTensor([cleaned_text_to_sequence(['m', 'i', 'z', 'u', 'o', 'm', 'a', 'r', 'e', 'e', 'sh', 'i', 'a', 'k', 'a', 'r', 'a', 'k', 'a', 'w', 'a', 'n', 'a', 'k', 'U', 't', 'e', 'w', 'a', 'n', 'a', 'r', 'a', 'n', 'a', 'i', '.'])])
text_seq = torch.LongTensor([cleaned_text_to_sequence(['m', 'i', 'z', 'u', 'w', 'a', ',', 'i', 'r', 'i', 'm', 'a', 's', 'e', 'N', 'k', 'a', '?'])])
ref_bert = torch.randn((ref_seq.shape[1], 1024)).float()
text_bert = torch.randn((text_seq.shape[1], 1024)).float()
ref_audio = torch.randn((1, 48000 * 5)).float()
# ref_audio = torch.tensor([load_audio("rec.wav", 48000)]).float()
ref_audio = torch.tensor([load_audio("/Users/kyakuno/Desktop/大阪万博/voices/JSUT.wav", 48000)]).float()
ref_audio_16k = torchaudio.functional.resample(ref_audio,48000,16000).float()
ref_audio_sr = torchaudio.functional.resample(ref_audio,48000,vits.hps.data.sampling_rate).float()
@ -286,9 +347,8 @@ def export(vits_path, gpt_path, project_name):
except:
pass
ssl_content = ssl(ref_audio_16k).float()
debug = False
debug = True
ssl_content = ssl(ref_audio_16k, debug=debug).float()
if debug:
a, b = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, debug=debug)
@ -296,6 +356,8 @@ def export(vits_path, gpt_path, project_name):
soundfile.write("out2.wav", b[0], vits.hps.data.sampling_rate)
return
ssl.export(ref_audio_16k, project_name)
a = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content).detach().cpu().numpy()
soundfile.write("out.wav", a, vits.hps.data.sampling_rate)
@ -326,8 +388,8 @@ if __name__ == "__main__":
except:
pass
gpt_path = "GPT_weights/nahida-e25.ckpt"
vits_path = "SoVITS_weights/nahida_e30_s3930.pth"
gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"#"GPT_weights/nahida-e25.ckpt"
vits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth"#"SoVITS_weights/nahida_e30_s3930.pth"
exp_path = "nahida"
export(vits_path, gpt_path, exp_path)