mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-06-23 21:05:22 +08:00
support sovits v2Pro v2ProPlus
support sovits v2Pro v2ProPlus
This commit is contained in:
parent
663c3cc6fc
commit
b7c0c5ca87
2
api.py
2
api.py
@ -374,7 +374,7 @@ hz = 50
|
||||
|
||||
|
||||
def get_gpt_weights(gpt_path):
|
||||
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
||||
dict_s1 = torch.load(gpt_path, map_location="cpu", weights_only=False)
|
||||
config = dict_s1["config"]
|
||||
max_sec = config["data"]["max_sec"]
|
||||
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
||||
|
442
batch_inference.py
Normal file
442
batch_inference.py
Normal file
@ -0,0 +1,442 @@
|
||||
import argparse
|
||||
import os
|
||||
import pdb
|
||||
import signal
|
||||
import sys
|
||||
from time import time as ttime
|
||||
import torch
|
||||
import librosa
|
||||
import soundfile as sf
|
||||
from fastapi import FastAPI, Request, HTTPException
|
||||
from fastapi.responses import StreamingResponse
|
||||
import uvicorn
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
import numpy as np
|
||||
from feature_extractor import cnhubert
|
||||
from io import BytesIO
|
||||
from module.models import SynthesizerTrn
|
||||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||
from text import cleaned_text_to_sequence
|
||||
from text.cleaner import clean_text
|
||||
from module.mel_processing import spectrogram_torch
|
||||
from my_utils import load_audio
|
||||
import config as global_config
|
||||
|
||||
g_config = global_config.Config()
|
||||
|
||||
# AVAILABLE_COMPUTE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
parser = argparse.ArgumentParser(description="GPT-SoVITS api")
|
||||
|
||||
parser.add_argument("-s", "--sovits_path", type=str, default=g_config.sovits_path, help="SoVITS模型路径")
|
||||
parser.add_argument("-g", "--gpt_path", type=str, default=g_config.gpt_path, help="GPT模型路径")
|
||||
|
||||
parser.add_argument("-dr", "--default_refer_path", type=str, default="",
|
||||
help="默认参考音频路径, 请求缺少参考音频时调用")
|
||||
parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本")
|
||||
parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种")
|
||||
|
||||
parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu")
|
||||
parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880")
|
||||
parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1")
|
||||
parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度")
|
||||
parser.add_argument("-hp", "--half_precision", action="store_true", default=False, help="覆盖config.is_half为True, 使用半精度")
|
||||
# bool值的用法为 `python ./api.py -fp ...`
|
||||
# 此时 full_precision==True, half_precision==False
|
||||
|
||||
parser.add_argument("-hb", "--hubert_path", type=str, default=g_config.cnhubert_path, help="覆盖config.cnhubert_path")
|
||||
parser.add_argument("-b", "--bert_path", type=str, default=g_config.bert_path, help="覆盖config.bert_path")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
sovits_path = args.sovits_path
|
||||
gpt_path = args.gpt_path
|
||||
|
||||
default_refer_path = args.default_refer_path
|
||||
default_refer_text = args.default_refer_text
|
||||
default_refer_language = args.default_refer_language
|
||||
has_preset = False
|
||||
|
||||
device = args.device
|
||||
port = args.port
|
||||
host = args.bind_addr
|
||||
|
||||
if sovits_path == "":
|
||||
sovits_path = g_config.pretrained_sovits_path
|
||||
print(f"[WARN] 未指定SoVITS模型路径, fallback后当前值: {sovits_path}")
|
||||
if gpt_path == "":
|
||||
gpt_path = g_config.pretrained_gpt_path
|
||||
print(f"[WARN] 未指定GPT模型路径, fallback后当前值: {gpt_path}")
|
||||
|
||||
# 指定默认参考音频, 调用方 未提供/未给全 参考音频参数时使用
|
||||
if default_refer_path == "" or default_refer_text == "" or default_refer_language == "":
|
||||
default_refer_path, default_refer_text, default_refer_language = "", "", ""
|
||||
print("[INFO] 未指定默认参考音频")
|
||||
has_preset = False
|
||||
else:
|
||||
print(f"[INFO] 默认参考音频路径: {default_refer_path}")
|
||||
print(f"[INFO] 默认参考音频文本: {default_refer_text}")
|
||||
print(f"[INFO] 默认参考音频语种: {default_refer_language}")
|
||||
has_preset = True
|
||||
|
||||
is_half = g_config.is_half
|
||||
if args.full_precision:
|
||||
is_half = False
|
||||
if args.half_precision:
|
||||
is_half = True
|
||||
if args.full_precision and args.half_precision:
|
||||
is_half = g_config.is_half # 炒饭fallback
|
||||
|
||||
print(f"[INFO] 半精: {is_half}")
|
||||
|
||||
cnhubert_base_path = args.hubert_path
|
||||
bert_path = args.bert_path
|
||||
|
||||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
||||
if is_half:
|
||||
bert_model = bert_model.half().to(device)
|
||||
else:
|
||||
bert_model = bert_model.to(device)
|
||||
|
||||
|
||||
def get_bert_feature(text, word2ph):
|
||||
with torch.no_grad():
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
for i in inputs:
|
||||
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model
|
||||
res = bert_model(**inputs, output_hidden_states=True)
|
||||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||||
assert len(word2ph) == len(text)
|
||||
phone_level_feature = []
|
||||
for i in range(len(word2ph)):
|
||||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||||
phone_level_feature.append(repeat_feature)
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
# if(is_half==True):phone_level_feature=phone_level_feature.half()
|
||||
return phone_level_feature.T
|
||||
|
||||
|
||||
n_semantic = 1024
|
||||
dict_s2 = torch.load(sovits_path, map_location="cpu", weights_only=False)
|
||||
hps = dict_s2["config"]
|
||||
print(hps)
|
||||
|
||||
class DictToAttrRecursive(dict):
|
||||
def __init__(self, input_dict):
|
||||
super().__init__(input_dict)
|
||||
for key, value in input_dict.items():
|
||||
if isinstance(value, dict):
|
||||
value = DictToAttrRecursive(value)
|
||||
self[key] = value
|
||||
setattr(self, key, value)
|
||||
|
||||
def __getattr__(self, item):
|
||||
try:
|
||||
return self[item]
|
||||
except KeyError:
|
||||
raise AttributeError(f"Attribute {item} not found")
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
if isinstance(value, dict):
|
||||
value = DictToAttrRecursive(value)
|
||||
super(DictToAttrRecursive, self).__setitem__(key, value)
|
||||
super().__setattr__(key, value)
|
||||
|
||||
def __delattr__(self, item):
|
||||
try:
|
||||
del self[item]
|
||||
except KeyError:
|
||||
raise AttributeError(f"Attribute {item} not found")
|
||||
|
||||
|
||||
hps = DictToAttrRecursive(hps)
|
||||
hps.model.semantic_frame_rate = "25hz"
|
||||
dict_s1 = torch.load(gpt_path, map_location="cpu", weights_only=False)
|
||||
config = dict_s1["config"]
|
||||
ssl_model = cnhubert.get_model()
|
||||
if is_half:
|
||||
ssl_model = ssl_model.half().to(device)
|
||||
else:
|
||||
ssl_model = ssl_model.to(device)
|
||||
|
||||
vq_model = SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model)
|
||||
if is_half:
|
||||
vq_model = vq_model.half().to(device)
|
||||
else:
|
||||
vq_model = vq_model.to(device)
|
||||
vq_model.eval()
|
||||
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
||||
hz = 50
|
||||
max_sec = config['data']['max_sec']
|
||||
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False)
|
||||
t2s_model.load_state_dict(dict_s1["weight"])
|
||||
if is_half:
|
||||
t2s_model = t2s_model.half()
|
||||
t2s_model = t2s_model.to(device)
|
||||
t2s_model.eval()
|
||||
total = sum([param.nelement() for param in t2s_model.parameters()])
|
||||
print("Number of parameter: %.2fM" % (total / 1e6))
|
||||
|
||||
|
||||
def get_spepc(hps, filename):
|
||||
audio = load_audio(filename, int(hps.data.sampling_rate))
|
||||
audio = torch.FloatTensor(audio)
|
||||
audio_norm = audio
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length,
|
||||
hps.data.win_length, center=False)
|
||||
return spec
|
||||
|
||||
|
||||
dict_language = {
|
||||
"中文": "zh",
|
||||
"英文": "en",
|
||||
"日文": "ja",
|
||||
"ZH": "zh",
|
||||
"EN": "en",
|
||||
"JA": "ja",
|
||||
"zh": "zh",
|
||||
"en": "en",
|
||||
"ja": "ja"
|
||||
}
|
||||
|
||||
|
||||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language):
|
||||
t0 = ttime()
|
||||
prompt_text = prompt_text.strip("\n")
|
||||
prompt_language, text = prompt_language, text.strip("\n")
|
||||
zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32)
|
||||
with torch.no_grad():
|
||||
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||||
wav16k = torch.from_numpy(wav16k)
|
||||
zero_wav_torch = torch.from_numpy(zero_wav)
|
||||
if (is_half == True):
|
||||
wav16k = wav16k.half().to(device)
|
||||
zero_wav_torch = zero_wav_torch.half().to(device)
|
||||
else:
|
||||
wav16k = wav16k.to(device)
|
||||
zero_wav_torch = zero_wav_torch.to(device)
|
||||
wav16k=torch.cat([wav16k,zero_wav_torch])
|
||||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float()
|
||||
codes = vq_model.extract_latent(ssl_content)
|
||||
prompt_semantic = codes[0, 0]
|
||||
t1 = ttime()
|
||||
prompt_language = dict_language[prompt_language]
|
||||
text_language = dict_language[text_language]
|
||||
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
|
||||
phones1 = cleaned_text_to_sequence(phones1)
|
||||
texts = text.split("\n")
|
||||
audio_opt = []
|
||||
|
||||
for text in texts:
|
||||
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
|
||||
phones2 = cleaned_text_to_sequence(phones2)
|
||||
if (prompt_language == "zh"):
|
||||
bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
|
||||
else:
|
||||
bert1 = torch.zeros((1024, len(phones1)), dtype=torch.float16 if is_half == True else torch.float32).to(
|
||||
device)
|
||||
if (text_language == "zh"):
|
||||
bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
|
||||
else:
|
||||
bert2 = torch.zeros((1024, len(phones2))).to(bert1)
|
||||
bert = torch.cat([bert1, bert2], 1)
|
||||
|
||||
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
||||
bert = bert.to(device).unsqueeze(0)
|
||||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||||
t2 = ttime()
|
||||
with torch.no_grad():
|
||||
# pred_semantic = t2s_model.model.infer(
|
||||
pred_semantic, idx = t2s_model.model.infer_panel(
|
||||
all_phoneme_ids,
|
||||
all_phoneme_len,
|
||||
prompt,
|
||||
bert,
|
||||
# prompt_phone_len=ph_offset,
|
||||
top_k=config['inference']['top_k'],
|
||||
early_stop_num=hz * max_sec)
|
||||
t3 = ttime()
|
||||
# print(pred_semantic.shape,idx)
|
||||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
||||
if (is_half == True):
|
||||
refer = refer.half().to(device)
|
||||
else:
|
||||
refer = refer.to(device)
|
||||
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
||||
audio = \
|
||||
vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0),
|
||||
refer).detach().cpu().numpy()[
|
||||
0, 0] ###试试重建不带上prompt部分
|
||||
audio_opt.append(audio)
|
||||
audio_opt.append(zero_wav)
|
||||
t4 = ttime()
|
||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
||||
# yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16)
|
||||
return hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16)
|
||||
def get_tts_wavs(ref_wav_path, prompt_text, prompt_language, textss, text_language):
|
||||
t0 = ttime()
|
||||
prompt_text = prompt_text.strip("\n")
|
||||
zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32)
|
||||
with torch.no_grad():
|
||||
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||||
wav16k = torch.from_numpy(wav16k)
|
||||
zero_wav_torch = torch.from_numpy(zero_wav)
|
||||
if (is_half == True):
|
||||
wav16k = wav16k.half().to(device)
|
||||
zero_wav_torch = zero_wav_torch.half().to(device)
|
||||
else:
|
||||
wav16k = wav16k.to(device)
|
||||
zero_wav_torch = zero_wav_torch.to(device)
|
||||
wav16k=torch.cat([wav16k,zero_wav_torch])
|
||||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float()
|
||||
codes = vq_model.extract_latent(ssl_content)
|
||||
prompt_semantic = codes[0, 0]
|
||||
t1 = ttime()
|
||||
prompt_language = dict_language[prompt_language]
|
||||
text_language = dict_language[text_language]
|
||||
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
|
||||
phones1 = cleaned_text_to_sequence(phones1)
|
||||
audios_opt=[]
|
||||
for text0 in textss:
|
||||
texts = text0.strip("\n").split("\n")
|
||||
audio_opt = []
|
||||
for text in texts:
|
||||
text=text.strip("。")+"。"
|
||||
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
|
||||
phones2 = cleaned_text_to_sequence(phones2)
|
||||
if (prompt_language == "zh"):
|
||||
bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
|
||||
else:
|
||||
bert1 = torch.zeros((1024, len(phones1)), dtype=torch.float16 if is_half == True else torch.float32).to(
|
||||
device)
|
||||
if (text_language == "zh"):
|
||||
bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
|
||||
else:
|
||||
bert2 = torch.zeros((1024, len(phones2))).to(bert1)
|
||||
bert = torch.cat([bert1, bert2], 1)
|
||||
|
||||
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
||||
bert = bert.to(device).unsqueeze(0)
|
||||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||||
t2 = ttime()
|
||||
with torch.no_grad():
|
||||
# pred_semantic = t2s_model.model.infer(
|
||||
pred_semantic, idx = t2s_model.model.infer_panel(
|
||||
all_phoneme_ids,
|
||||
all_phoneme_len,
|
||||
prompt,
|
||||
bert,
|
||||
# prompt_phone_len=ph_offset,
|
||||
top_k=config['inference']['top_k'],
|
||||
early_stop_num=hz * max_sec)
|
||||
t3 = ttime()
|
||||
# print(pred_semantic.shape,idx)
|
||||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
||||
if (is_half == True):
|
||||
refer = refer.half().to(device)
|
||||
else:
|
||||
refer = refer.to(device)
|
||||
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
||||
audio = \
|
||||
vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0),
|
||||
refer).detach().cpu().numpy()[
|
||||
0, 0] ###试试重建不带上prompt部分
|
||||
audio_opt.append(audio)
|
||||
audio_opt.append(zero_wav)
|
||||
t4 = ttime()
|
||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
||||
audios_opt.append([text0,(np.concatenate(audio_opt, 0) * 32768).astype(np.int16)])
|
||||
return audios_opt
|
||||
|
||||
|
||||
# get_tts_wav(r"D:\BaiduNetdiskDownload\gsv\speech\萧逸声音-你得先从滑雪的基本技巧学起.wav", "你得先从滑雪的基本技巧学起。", "中文", "我觉得还是该给喜欢的女孩子一场认真的告白。", "中文")
|
||||
# with open(r"D:\BaiduNetdiskDownload\gsv\烟嗓-todo1.txt","r",encoding="utf8")as f:
|
||||
# with open(r"D:\BaiduNetdiskDownload\gsv\年下-todo1.txt","r",encoding="utf8")as f:
|
||||
# with open(r"D:\BaiduNetdiskDownload\gsv\萧逸3b.txt","r",encoding="utf8")as f:
|
||||
with open(r"D:\BaiduNetdiskDownload\gsv\萧逸4.txt","r",encoding="utf8")as f:
|
||||
textss=f.read().split("\n")
|
||||
for idx,(text,audio)in enumerate(get_tts_wavs(r"D:\BaiduNetdiskDownload\gsv\speech\萧逸声音-你得先从滑雪的基本技巧学起.wav", "你得先从滑雪的基本技巧学起。", "中文", textss, "中文")):
|
||||
|
||||
# for idx,(text,audio)in enumerate(get_tts_wavs(r"D:\BaiduNetdiskDownload\gsv\足够的能力,去制定好自己的生活规划。低沉烟嗓.MP3_1940480_2095360.wav", "足够的能力,去制定好自己的生活规划。", "中文", textss, "中文")):
|
||||
# for idx,(text,audio)in enumerate(get_tts_wavs(r"D:\BaiduNetdiskDownload\gsv\不会呀!你前几天才吃过你还说好吃来着。年下少年音.MP3_537600_711040.wav", "不会呀!你前几天才吃过你还说好吃来着。", "中文", textss, "中文")):
|
||||
print(idx,text)
|
||||
# sf.write(r"D:\BaiduNetdiskDownload\gsv\output\烟嗓第一批\%04d-%s.wav"%(idx,text),audio,32000)
|
||||
# sf.write(r"D:\BaiduNetdiskDownload\gsv\output\年下\%04d-%s.wav"%(idx,text),audio,32000)
|
||||
sf.write(r"D:\BaiduNetdiskDownload\gsv\output\萧逸第4批\%04d-%s.wav"%(idx,text),audio,32000)
|
||||
|
||||
|
||||
# def handle(command, refer_wav_path, prompt_text, prompt_language, text, text_language):
|
||||
# if command == "/restart":
|
||||
# os.execl(g_config.python_exec, g_config.python_exec, *sys.argv)
|
||||
# elif command == "/exit":
|
||||
# os.kill(os.getpid(), signal.SIGTERM)
|
||||
# exit(0)
|
||||
#
|
||||
# if (
|
||||
# refer_wav_path == "" or refer_wav_path is None
|
||||
# or prompt_text == "" or prompt_text is None
|
||||
# or prompt_language == "" or prompt_language is None
|
||||
# ):
|
||||
# refer_wav_path, prompt_text, prompt_language = (
|
||||
# default_refer_path,
|
||||
# default_refer_text,
|
||||
# default_refer_language,
|
||||
# )
|
||||
# if not has_preset:
|
||||
# raise HTTPException(status_code=400, detail="未指定参考音频且接口无预设")
|
||||
#
|
||||
# with torch.no_grad():
|
||||
# gen = get_tts_wav(
|
||||
# refer_wav_path, prompt_text, prompt_language, text, text_language
|
||||
# )
|
||||
# sampling_rate, audio_data = next(gen)
|
||||
#
|
||||
# wav = BytesIO()
|
||||
# sf.write(wav, audio_data, sampling_rate, format="wav")
|
||||
# wav.seek(0)
|
||||
#
|
||||
# torch.cuda.empty_cache()
|
||||
# return StreamingResponse(wav, media_type="audio/wav")
|
||||
|
||||
|
||||
# app = FastAPI()
|
||||
#
|
||||
#
|
||||
# @app.post("/")
|
||||
# async def tts_endpoint(request: Request):
|
||||
# json_post_raw = await request.json()
|
||||
# return handle(
|
||||
# json_post_raw.get("command"),
|
||||
# json_post_raw.get("refer_wav_path"),
|
||||
# json_post_raw.get("prompt_text"),
|
||||
# json_post_raw.get("prompt_language"),
|
||||
# json_post_raw.get("text"),
|
||||
# json_post_raw.get("text_language"),
|
||||
# )
|
||||
#
|
||||
#
|
||||
# @app.get("/")
|
||||
# async def tts_endpoint(
|
||||
# command: str = None,
|
||||
# refer_wav_path: str = None,
|
||||
# prompt_text: str = None,
|
||||
# prompt_language: str = None,
|
||||
# text: str = None,
|
||||
# text_language: str = None,
|
||||
# ):
|
||||
# return handle(command, refer_wav_path, prompt_text, prompt_language, text, text_language)
|
||||
#
|
||||
#
|
||||
# if __name__ == "__main__":
|
||||
# uvicorn.run(app, host=host, port=port, workers=1)
|
88
config.py
88
config.py
@ -1,7 +1,93 @@
|
||||
import sys
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch,re
|
||||
|
||||
from tools.i18n.i18n import I18nAuto, scan_language_list
|
||||
i18n = I18nAuto(language=os.environ["language"])
|
||||
|
||||
|
||||
pretrained_sovits_name = {
|
||||
"v1":"GPT_SoVITS/pretrained_models/s2G488k.pth",
|
||||
"v2":"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
|
||||
"v3":"GPT_SoVITS/pretrained_models/s2Gv3.pth",###v3v4还要检查vocoder,算了。。。
|
||||
"v4":"GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
||||
"v2Pro":"GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro_pre1.pth",
|
||||
"v2ProPlus":"GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus_pre1.pth",
|
||||
}
|
||||
|
||||
pretrained_gpt_name = {
|
||||
"v1":"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||||
"v2":"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
||||
"v3":"GPT_SoVITS/pretrained_models/s1v3.ckpt",
|
||||
"v4":"GPT_SoVITS/pretrained_models/s1v3.ckpt",
|
||||
"v2Pro":"GPT_SoVITS/pretrained_models/s1v3.ckpt",
|
||||
"v2ProPlus":"GPT_SoVITS/pretrained_models/s1v3.ckpt",
|
||||
}
|
||||
name2sovits_path={
|
||||
# i18n("不训练直接推v1底模!"): "GPT_SoVITS/pretrained_models/s2G488k.pth",
|
||||
i18n("不训练直接推v2底模!"): "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
|
||||
# i18n("不训练直接推v3底模!"): "GPT_SoVITS/pretrained_models/s2Gv3.pth",
|
||||
# i18n("不训练直接推v4底模!"): "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
||||
i18n("不训练直接推v2Pro底模!"): "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro_pre1.pth",
|
||||
i18n("不训练直接推v2ProPlus底模!"): "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus_pre1.pth",
|
||||
}
|
||||
name2gpt_path={
|
||||
# i18n("不训练直接推v1底模!"):"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||||
i18n("不训练直接推v2底模!"):"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
||||
i18n("不训练直接推v3底模!"):"GPT_SoVITS/pretrained_models/s1v3.ckpt",
|
||||
}
|
||||
SoVITS_weight_root = ["SoVITS_weights", "SoVITS_weights_v2", "SoVITS_weights_v3", "SoVITS_weights_v4", "SoVITS_weights_v2Pro", "SoVITS_weights_v2ProPlus"]
|
||||
GPT_weight_root = ["GPT_weights", "GPT_weights_v2", "GPT_weights_v3", "GPT_weights_v4", "GPT_weights_v2Pro", "GPT_weights_v2ProPlus"]
|
||||
SoVITS_weight_version2root={
|
||||
"v1":"SoVITS_weights",
|
||||
"v2":"SoVITS_weights_v2",
|
||||
"v3":"SoVITS_weights_v3",
|
||||
"v4":"SoVITS_weights_v4",
|
||||
"v2Pro":"SoVITS_weights_v2Pro",
|
||||
"v2ProPlus":"SoVITS_weights_v2ProPlus",
|
||||
}
|
||||
GPT_weight_version2root={
|
||||
"v1":"GPT_weights",
|
||||
"v2":"GPT_weights_v2",
|
||||
"v3":"GPT_weights_v3",
|
||||
"v4":"GPT_weights_v4",
|
||||
"v2Pro":"GPT_weights_v2Pro",
|
||||
"v2ProPlus":"GPT_weights_v2ProPlus",
|
||||
}
|
||||
def custom_sort_key(s):
|
||||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||||
parts = re.split("(\d+)", s)
|
||||
# 将数字部分转换为整数,非数字部分保持不变
|
||||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||||
return parts
|
||||
|
||||
def get_weights_names():
|
||||
SoVITS_names = []
|
||||
for key in name2sovits_path:
|
||||
if os.path.exists(name2sovits_path[key]):SoVITS_names.append(key)
|
||||
for path in SoVITS_weight_root:
|
||||
for name in os.listdir(path):
|
||||
if name.endswith(".pth"):
|
||||
SoVITS_names.append("%s/%s" % (path, name))
|
||||
GPT_names = []
|
||||
for key in name2gpt_path:
|
||||
if os.path.exists(name2gpt_path[key]):GPT_names.append(key)
|
||||
for path in GPT_weight_root:
|
||||
for name in os.listdir(path):
|
||||
if name.endswith(".ckpt"):
|
||||
GPT_names.append("%s/%s" % (path, name))
|
||||
SoVITS_names=sorted(SoVITS_names, key=custom_sort_key)
|
||||
GPT_names=sorted(GPT_names, key=custom_sort_key)
|
||||
return SoVITS_names, GPT_names
|
||||
|
||||
def change_choices():
|
||||
SoVITS_names, GPT_names = get_weights_names()
|
||||
return {"choices": SoVITS_names, "__type__": "update"}, {
|
||||
"choices": GPT_names,
|
||||
"__type__": "update",
|
||||
}
|
||||
|
||||
|
||||
# 推理用的指定模型
|
||||
sovits_path = ""
|
||||
|
241
webui.py
241
webui.py
@ -1,10 +1,6 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
if len(sys.argv) == 1:
|
||||
sys.argv.append("v2")
|
||||
version = "v1" if sys.argv[1] == "v1" else "v2"
|
||||
os.environ["version"] = version
|
||||
os.environ["version"] = version="v2Pro"
|
||||
now_dir = os.getcwd()
|
||||
sys.path.insert(0, now_dir)
|
||||
import warnings
|
||||
@ -63,7 +59,11 @@ for site_packages_root in site_packages_roots:
|
||||
import shutil
|
||||
import subprocess
|
||||
from subprocess import Popen
|
||||
from tools.i18n.i18n import I18nAuto, scan_language_list
|
||||
|
||||
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else "Auto"
|
||||
os.environ["language"] = language
|
||||
i18n = I18nAuto(language=language)
|
||||
from config import (
|
||||
exp_root,
|
||||
infer_device,
|
||||
@ -76,11 +76,6 @@ from config import (
|
||||
webui_port_uvr5,
|
||||
)
|
||||
from tools import my_utils
|
||||
from tools.i18n.i18n import I18nAuto, scan_language_list
|
||||
|
||||
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else "Auto"
|
||||
os.environ["language"] = language
|
||||
i18n = I18nAuto(language=language)
|
||||
from multiprocessing import cpu_count
|
||||
|
||||
from tools.my_utils import check_details, check_for_existance
|
||||
@ -232,86 +227,32 @@ def fix_gpu_numbers(inputs):
|
||||
return inputs
|
||||
|
||||
|
||||
pretrained_sovits_name = [
|
||||
"GPT_SoVITS/pretrained_models/s2G488k.pth",
|
||||
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
|
||||
"GPT_SoVITS/pretrained_models/s2Gv3.pth",
|
||||
"GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
||||
]
|
||||
pretrained_gpt_name = [
|
||||
"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||||
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
||||
"GPT_SoVITS/pretrained_models/s1v3.ckpt",
|
||||
"GPT_SoVITS/pretrained_models/s1v3.ckpt",
|
||||
]
|
||||
from config import pretrained_sovits_name,pretrained_gpt_name
|
||||
|
||||
pretrained_model_list = (
|
||||
pretrained_sovits_name[int(version[-1]) - 1],
|
||||
pretrained_sovits_name[int(version[-1]) - 1].replace("s2G", "s2D"),
|
||||
pretrained_gpt_name[int(version[-1]) - 1],
|
||||
"GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
||||
"GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
||||
)
|
||||
def check_pretrained_is_exist(version):
|
||||
pretrained_model_list = (
|
||||
pretrained_sovits_name[version],
|
||||
pretrained_sovits_name[version].replace("s2G", "s2D"),
|
||||
pretrained_gpt_name[version],
|
||||
"GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
||||
"GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
||||
)
|
||||
_ = ""
|
||||
for i in pretrained_model_list:
|
||||
if "s2Dv3" not in i and "s2Dv4" not in i and os.path.exists(i) == False:
|
||||
_ += f"\n {i}"
|
||||
if _:
|
||||
print("warning: ", i18n("以下模型不存在:") + _)
|
||||
check_pretrained_is_exist(version)
|
||||
for key in pretrained_sovits_name.keys():
|
||||
if os.path.exists(pretrained_sovits_name[key])==False:pretrained_sovits_name[key]=""
|
||||
for key in pretrained_gpt_name.keys():
|
||||
if os.path.exists(pretrained_gpt_name[key])==False:pretrained_gpt_name[key]=""
|
||||
|
||||
_ = ""
|
||||
for i in pretrained_model_list:
|
||||
if "s2Dv3" not in i and os.path.exists(i) == False:
|
||||
_ += f"\n {i}"
|
||||
if _:
|
||||
print("warning: ", i18n("以下模型不存在:") + _)
|
||||
|
||||
_ = [[], []]
|
||||
for i in range(4):
|
||||
if os.path.exists(pretrained_gpt_name[i]):
|
||||
_[0].append(pretrained_gpt_name[i])
|
||||
else:
|
||||
_[0].append("") ##没有下pretrained模型的,说不定他们是想自己从零训底模呢
|
||||
if os.path.exists(pretrained_sovits_name[i]):
|
||||
_[-1].append(pretrained_sovits_name[i])
|
||||
else:
|
||||
_[-1].append("")
|
||||
pretrained_gpt_name, pretrained_sovits_name = _
|
||||
|
||||
SoVITS_weight_root = ["SoVITS_weights", "SoVITS_weights_v2", "SoVITS_weights_v3", "SoVITS_weights_v4"]
|
||||
GPT_weight_root = ["GPT_weights", "GPT_weights_v2", "GPT_weights_v3", "GPT_weights_v4"]
|
||||
from config import SoVITS_weight_root,GPT_weight_root,get_weights_names,change_choices,SoVITS_weight_version2root,GPT_weight_version2root
|
||||
for root in SoVITS_weight_root + GPT_weight_root:
|
||||
os.makedirs(root, exist_ok=True)
|
||||
|
||||
|
||||
def get_weights_names():
|
||||
SoVITS_names = [name for name in pretrained_sovits_name if name != ""]
|
||||
for path in SoVITS_weight_root:
|
||||
for name in os.listdir(path):
|
||||
if name.endswith(".pth"):
|
||||
SoVITS_names.append("%s/%s" % (path, name))
|
||||
GPT_names = [name for name in pretrained_gpt_name if name != ""]
|
||||
for path in GPT_weight_root:
|
||||
for name in os.listdir(path):
|
||||
if name.endswith(".ckpt"):
|
||||
GPT_names.append("%s/%s" % (path, name))
|
||||
return SoVITS_names, GPT_names
|
||||
|
||||
|
||||
SoVITS_names, GPT_names = get_weights_names()
|
||||
for path in SoVITS_weight_root + GPT_weight_root:
|
||||
os.makedirs(path, exist_ok=True)
|
||||
|
||||
|
||||
def custom_sort_key(s):
|
||||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||||
parts = re.split("(\d+)", s)
|
||||
# 将数字部分转换为整数,非数字部分保持不变
|
||||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||||
return parts
|
||||
|
||||
|
||||
def change_choices():
|
||||
SoVITS_names, GPT_names = get_weights_names()
|
||||
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {
|
||||
"choices": sorted(GPT_names, key=custom_sort_key),
|
||||
"__type__": "update",
|
||||
}
|
||||
|
||||
|
||||
p_label = None
|
||||
p_uvr5 = None
|
||||
@ -450,8 +391,8 @@ def change_tts_inference(bert_path, cnhubert_base_path, gpu_number, gpt_path, so
|
||||
# if version=="v3":
|
||||
# cmd = '"%s" GPT_SoVITS/inference_webui.py "%s"'%(python_exec, language)
|
||||
if p_tts_inference is None:
|
||||
os.environ["gpt_path"] = gpt_path if "/" in gpt_path else "%s/%s" % (GPT_weight_root, gpt_path)
|
||||
os.environ["sovits_path"] = sovits_path if "/" in sovits_path else "%s/%s" % (SoVITS_weight_root, sovits_path)
|
||||
os.environ["gpt_path"] = gpt_path
|
||||
os.environ["sovits_path"] = sovits_path
|
||||
os.environ["cnhubert_base_path"] = cnhubert_base_path
|
||||
os.environ["bert_path"] = bert_path
|
||||
os.environ["_CUDA_VISIBLE_DEVICES"] = fix_gpu_number(gpu_number)
|
||||
@ -599,6 +540,7 @@ process_name_sovits = i18n("SoVITS训练")
|
||||
|
||||
|
||||
def open1Ba(
|
||||
version,
|
||||
batch_size,
|
||||
total_epoch,
|
||||
exp_name,
|
||||
@ -614,7 +556,8 @@ def open1Ba(
|
||||
):
|
||||
global p_train_SoVITS
|
||||
if p_train_SoVITS == None:
|
||||
with open("GPT_SoVITS/configs/s2.json") as f:
|
||||
config_file="GPT_SoVITS/configs/s2.json" if version not in {"v2Pro","v2ProPlus"}else f"GPT_SoVITS/configs/s2{version}.json"
|
||||
with open(config_file) as f:
|
||||
data = f.read()
|
||||
data = json.loads(data)
|
||||
s2_dir = "%s/%s" % (exp_root, exp_name)
|
||||
@ -637,13 +580,13 @@ def open1Ba(
|
||||
data["train"]["lora_rank"] = lora_rank
|
||||
data["model"]["version"] = version
|
||||
data["data"]["exp_dir"] = data["s2_ckpt_dir"] = s2_dir
|
||||
data["save_weight_dir"] = SoVITS_weight_root[int(version[-1]) - 1]
|
||||
data["save_weight_dir"] = SoVITS_weight_version2root[version]
|
||||
data["name"] = exp_name
|
||||
data["version"] = version
|
||||
tmp_config_path = "%s/tmp_s2.json" % tmp
|
||||
with open(tmp_config_path, "w") as f:
|
||||
f.write(json.dumps(data))
|
||||
if version in ["v1", "v2"]:
|
||||
if version in ["v1", "v2","v2Pro","v2ProPlus"]:
|
||||
cmd = '"%s" -s GPT_SoVITS/s2_train.py --config "%s"' % (python_exec, tmp_config_path)
|
||||
else:
|
||||
cmd = '"%s" -s GPT_SoVITS/s2_train_v3_lora.py --config "%s"' % (python_exec, tmp_config_path)
|
||||
@ -724,7 +667,7 @@ def open1Bb(
|
||||
data["train"]["if_save_every_weights"] = if_save_every_weights
|
||||
data["train"]["if_save_latest"] = if_save_latest
|
||||
data["train"]["if_dpo"] = if_dpo
|
||||
data["train"]["half_weights_save_dir"] = GPT_weight_root[int(version[-1]) - 1]
|
||||
data["train"]["half_weights_save_dir"] = GPT_weight_version2root[version]
|
||||
data["train"]["exp_name"] = exp_name
|
||||
data["train_semantic_path"] = "%s/6-name2semantic.tsv" % s1_dir
|
||||
data["train_phoneme_path"] = "%s/2-name2text.txt" % s1_dir
|
||||
@ -964,12 +907,10 @@ def close1a():
|
||||
{"__type__": "update", "visible": False},
|
||||
)
|
||||
|
||||
|
||||
sv_path="GPT_SoVITS\pretrained_models\sv\pretrained_eres2netv2w24s4ep4.ckpt"
|
||||
ps1b = []
|
||||
process_name_1b = i18n("语音自监督特征提取")
|
||||
|
||||
|
||||
def open1b(inp_text, inp_wav_dir, exp_name, gpu_numbers, ssl_pretrained_dir):
|
||||
def open1b(version,inp_text, inp_wav_dir, exp_name, gpu_numbers, ssl_pretrained_dir):
|
||||
global ps1b
|
||||
inp_text = my_utils.clean_path(inp_text)
|
||||
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
|
||||
@ -982,6 +923,7 @@ def open1b(inp_text, inp_wav_dir, exp_name, gpu_numbers, ssl_pretrained_dir):
|
||||
"exp_name": exp_name,
|
||||
"opt_dir": "%s/%s" % (exp_root, exp_name),
|
||||
"cnhubert_base_dir": ssl_pretrained_dir,
|
||||
"sv_path": sv_path,
|
||||
"is_half": str(is_half),
|
||||
}
|
||||
gpu_names = gpu_numbers.split("-")
|
||||
@ -1007,6 +949,23 @@ def open1b(inp_text, inp_wav_dir, exp_name, gpu_numbers, ssl_pretrained_dir):
|
||||
for p in ps1b:
|
||||
p.wait()
|
||||
ps1b = []
|
||||
if "Pro"in version:
|
||||
for i_part in range(all_parts):
|
||||
config.update(
|
||||
{
|
||||
"i_part": str(i_part),
|
||||
"all_parts": str(all_parts),
|
||||
"_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]),
|
||||
}
|
||||
)
|
||||
os.environ.update(config)
|
||||
cmd = '"%s" -s GPT_SoVITS/prepare_datasets/2-get-sv.py' % python_exec
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps1b.append(p)
|
||||
for p in ps1b:
|
||||
p.wait()
|
||||
ps1b = []
|
||||
yield (
|
||||
process_info(process_name_1b, "finish"),
|
||||
{"__type__": "update", "visible": True},
|
||||
@ -1040,19 +999,20 @@ ps1c = []
|
||||
process_name_1c = i18n("语义Token提取")
|
||||
|
||||
|
||||
def open1c(inp_text, exp_name, gpu_numbers, pretrained_s2G_path):
|
||||
def open1c(version,inp_text,inp_wav_dir, exp_name, gpu_numbers, pretrained_s2G_path):
|
||||
global ps1c
|
||||
inp_text = my_utils.clean_path(inp_text)
|
||||
if check_for_existance([inp_text, ""], is_dataset_processing=True):
|
||||
check_details([inp_text, ""], is_dataset_processing=True)
|
||||
if check_for_existance([inp_text, inp_wav_dir], is_dataset_processing=True):
|
||||
check_details([inp_text, inp_wav_dir], is_dataset_processing=True)
|
||||
if ps1c == []:
|
||||
opt_dir = "%s/%s" % (exp_root, exp_name)
|
||||
config_file="GPT_SoVITS/configs/s2.json" if version not in {"v2Pro","v2ProPlus"}else f"GPT_SoVITS/configs/s2{version}.json"
|
||||
config = {
|
||||
"inp_text": inp_text,
|
||||
"exp_name": exp_name,
|
||||
"opt_dir": opt_dir,
|
||||
"pretrained_s2G": pretrained_s2G_path,
|
||||
"s2config_path": "GPT_SoVITS/configs/s2.json",
|
||||
"s2config_path": config_file,
|
||||
"is_half": str(is_half),
|
||||
}
|
||||
gpu_names = gpu_numbers.split("-")
|
||||
@ -1121,6 +1081,7 @@ process_name_1abc = i18n("训练集格式化一键三连")
|
||||
|
||||
|
||||
def open1abc(
|
||||
version,
|
||||
inp_text,
|
||||
inp_wav_dir,
|
||||
exp_name,
|
||||
@ -1198,6 +1159,7 @@ def open1abc(
|
||||
"exp_name": exp_name,
|
||||
"opt_dir": opt_dir,
|
||||
"cnhubert_base_dir": ssl_pretrained_dir,
|
||||
"sv_path": sv_path,
|
||||
}
|
||||
gpu_names = gpu_numbers1Ba.split("-")
|
||||
all_parts = len(gpu_names)
|
||||
@ -1221,23 +1183,41 @@ def open1abc(
|
||||
)
|
||||
for p in ps1abc:
|
||||
p.wait()
|
||||
ps1abc=[]
|
||||
if "Pro" in version:
|
||||
for i_part in range(all_parts):
|
||||
config.update(
|
||||
{
|
||||
"i_part": str(i_part),
|
||||
"all_parts": str(all_parts),
|
||||
"_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]),
|
||||
}
|
||||
)
|
||||
os.environ.update(config)
|
||||
cmd = '"%s" -s GPT_SoVITS/prepare_datasets/2-get-sv.py' % python_exec
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps1abc.append(p)
|
||||
for p in ps1abc:
|
||||
p.wait()
|
||||
ps1abc = []
|
||||
yield (
|
||||
i18n("进度") + ": 1A-Done, 1B-Done",
|
||||
{"__type__": "update", "visible": False},
|
||||
{"__type__": "update", "visible": True},
|
||||
)
|
||||
ps1abc = []
|
||||
#############################1c
|
||||
path_semantic = "%s/6-name2semantic.tsv" % opt_dir
|
||||
if os.path.exists(path_semantic) == False or (
|
||||
os.path.exists(path_semantic) == True and os.path.getsize(path_semantic) < 31
|
||||
):
|
||||
config_file = "GPT_SoVITS/configs/s2.json" if version not in {"v2Pro", "v2ProPlus"} else f"GPT_SoVITS/configs/s2{version}.json"
|
||||
config = {
|
||||
"inp_text": inp_text,
|
||||
"exp_name": exp_name,
|
||||
"opt_dir": opt_dir,
|
||||
"pretrained_s2G": pretrained_s2G_path,
|
||||
"s2config_path": "GPT_SoVITS/configs/s2.json",
|
||||
"s2config_path": config_file,
|
||||
}
|
||||
gpu_names = gpu_numbers1c.split("-")
|
||||
all_parts = len(gpu_names)
|
||||
@ -1317,17 +1297,17 @@ def switch_version(version_):
|
||||
os.environ["version"] = version_
|
||||
global version
|
||||
version = version_
|
||||
if pretrained_sovits_name[int(version[-1]) - 1] != "" and pretrained_gpt_name[int(version[-1]) - 1] != "":
|
||||
if pretrained_sovits_name[version] != "" and pretrained_gpt_name[version] != "":
|
||||
...
|
||||
else:
|
||||
gr.Warning(i18n("未下载模型") + ": " + version.upper())
|
||||
set_default()
|
||||
return (
|
||||
{"__type__": "update", "value": pretrained_sovits_name[int(version[-1]) - 1]},
|
||||
{"__type__": "update", "value": pretrained_sovits_name[int(version[-1]) - 1].replace("s2G", "s2D")},
|
||||
{"__type__": "update", "value": pretrained_gpt_name[int(version[-1]) - 1]},
|
||||
{"__type__": "update", "value": pretrained_gpt_name[int(version[-1]) - 1]},
|
||||
{"__type__": "update", "value": pretrained_sovits_name[int(version[-1]) - 1]},
|
||||
{"__type__": "update", "value": pretrained_sovits_name[version]},
|
||||
{"__type__": "update", "value": pretrained_sovits_name[version].replace("s2G", "s2D")},
|
||||
{"__type__": "update", "value": pretrained_gpt_name[version]},
|
||||
{"__type__": "update", "value": pretrained_gpt_name[version]},
|
||||
{"__type__": "update", "value": pretrained_sovits_name[version]},
|
||||
{"__type__": "update", "value": default_batch_size, "maximum": default_max_batch_size},
|
||||
{"__type__": "update", "value": default_sovits_epoch, "maximum": max_sovits_epoch},
|
||||
{"__type__": "update", "value": default_sovits_save_every_epoch, "maximum": max_sovits_save_every_epoch},
|
||||
@ -1357,10 +1337,7 @@ def sync(text):
|
||||
with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
|
||||
gr.Markdown(
|
||||
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.")
|
||||
+ "<br>"
|
||||
+ i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
|
||||
)
|
||||
gr.Markdown(value=i18n("中文教程文档") + ": " + "https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e")
|
||||
+ i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")+ "<br>"+i18n("中文教程文档") + ": " + "https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e")
|
||||
|
||||
with gr.Tabs():
|
||||
with gr.TabItem("0-" + i18n("前置数据集获取工具")): # 提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标
|
||||
@ -1419,8 +1396,8 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
|
||||
value=process_info(process_name_slice, "close"), variant="primary", visible=False
|
||||
)
|
||||
|
||||
gr.Markdown(value="0bb-" + i18n("语音降噪工具")+i18n("(不稳定,先别用,可能劣化模型效果!)"))
|
||||
with gr.Row():
|
||||
# gr.Markdown(value="0bb-" + i18n("语音降噪工具")+i18n("(不稳定,先别用,可能劣化模型效果!)"))
|
||||
with gr.Row(visible=False):
|
||||
with gr.Column(scale=3):
|
||||
with gr.Row():
|
||||
denoise_input_dir = gr.Textbox(label=i18n("输入文件夹路径"), value="")
|
||||
@ -1512,33 +1489,33 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
|
||||
with gr.TabItem(i18n("1-GPT-SoVITS-TTS")):
|
||||
with gr.Row():
|
||||
with gr.Row():
|
||||
exp_name = gr.Textbox(label=i18n("*实验/模型名"), value="xxx", interactive=True)
|
||||
gpu_info = gr.Textbox(label=i18n("显卡信息"), value=gpu_info, visible=True, interactive=False)
|
||||
version_checkbox = gr.Radio(label=i18n("版本"), value=version, choices=["v1", "v2", "v4"]) # , "v3"
|
||||
with gr.Row():
|
||||
exp_name = gr.Textbox(label=i18n("*实验/模型名"), value="xxx", interactive=True,scale=3,)
|
||||
gpu_info = gr.Textbox(label=i18n("显卡信息"), value=gpu_info, visible=True, interactive=False,scale=5,)
|
||||
version_checkbox = gr.Radio(label=i18n("训练模型的版本"), value=version, choices=["v1","v2", "v4", "v2Pro", "v2ProPlus"],scale=5,)
|
||||
# version_checkbox = gr.Radio(label=i18n("训练模型的版本"), value=version, choices=["v2", "v4", "v2Pro", "v2ProPlus", "v2ProMax"],scale=5,)
|
||||
pretrained_s2G = gr.Textbox(
|
||||
label=i18n("预训练SoVITS-G模型路径"),
|
||||
value=pretrained_sovits_name[int(version[-1]) - 1],
|
||||
value=pretrained_sovits_name[version],
|
||||
interactive=True,
|
||||
lines=2,
|
||||
max_lines=3,
|
||||
scale=9,
|
||||
scale=5,
|
||||
)
|
||||
pretrained_s2D = gr.Textbox(
|
||||
label=i18n("预训练SoVITS-D模型路径"),
|
||||
value=pretrained_sovits_name[int(version[-1]) - 1].replace("s2G", "s2D"),
|
||||
value=pretrained_sovits_name[version].replace("s2G", "s2D"),
|
||||
interactive=True,
|
||||
lines=2,
|
||||
max_lines=3,
|
||||
scale=9,
|
||||
scale=5,
|
||||
)
|
||||
pretrained_s1 = gr.Textbox(
|
||||
label=i18n("预训练GPT模型路径"),
|
||||
value=pretrained_gpt_name[int(version[-1]) - 1],
|
||||
value=pretrained_gpt_name[version],
|
||||
interactive=True,
|
||||
lines=2,
|
||||
max_lines=3,
|
||||
scale=10,
|
||||
scale=5,
|
||||
)
|
||||
|
||||
with gr.TabItem("1A-" + i18n("训练集格式化工具")):
|
||||
@ -1623,7 +1600,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
|
||||
with gr.Row():
|
||||
pretrained_s2G_ = gr.Textbox(
|
||||
label=i18n("预训练SoVITS-G模型路径"),
|
||||
value=pretrained_sovits_name[int(version[-1]) - 1],
|
||||
value=pretrained_sovits_name[version],
|
||||
interactive=False,
|
||||
lines=2,
|
||||
)
|
||||
@ -1688,17 +1665,18 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
|
||||
button1a_close.click(close1a, [], [info1a, button1a_open, button1a_close])
|
||||
button1b_open.click(
|
||||
open1b,
|
||||
[inp_text, inp_wav_dir, exp_name, gpu_numbers1Ba, cnhubert_base_dir],
|
||||
[version_checkbox,inp_text, inp_wav_dir, exp_name, gpu_numbers1Ba, cnhubert_base_dir],
|
||||
[info1b, button1b_open, button1b_close],
|
||||
)
|
||||
button1b_close.click(close1b, [], [info1b, button1b_open, button1b_close])
|
||||
button1c_open.click(
|
||||
open1c, [inp_text, exp_name, gpu_numbers1c, pretrained_s2G], [info1c, button1c_open, button1c_close]
|
||||
open1c, [version_checkbox,inp_text, inp_wav_dir,exp_name, gpu_numbers1c, pretrained_s2G], [info1c, button1c_open, button1c_close]
|
||||
)
|
||||
button1c_close.click(close1c, [], [info1c, button1c_open, button1c_close])
|
||||
button1abc_open.click(
|
||||
open1abc,
|
||||
[
|
||||
version_checkbox,
|
||||
inp_text,
|
||||
inp_wav_dir,
|
||||
exp_name,
|
||||
@ -1862,21 +1840,21 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
|
||||
with gr.TabItem("1C-" + i18n("推理")):
|
||||
gr.Markdown(
|
||||
value=i18n(
|
||||
"选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模,体验5秒Zero Shot TTS用。"
|
||||
"选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的几个是底模,体验5秒Zero Shot TTS不训练推理用。"
|
||||
)
|
||||
)
|
||||
with gr.Row():
|
||||
with gr.Row():
|
||||
GPT_dropdown = gr.Dropdown(
|
||||
label=i18n("GPT模型列表"),
|
||||
choices=sorted(GPT_names, key=custom_sort_key),
|
||||
value=pretrained_gpt_name[0],
|
||||
choices=GPT_names,
|
||||
value=GPT_names[-1],
|
||||
interactive=True,
|
||||
)
|
||||
SoVITS_dropdown = gr.Dropdown(
|
||||
label=i18n("SoVITS模型列表"),
|
||||
choices=sorted(SoVITS_names, key=custom_sort_key),
|
||||
value=pretrained_sovits_name[0],
|
||||
choices=SoVITS_names,
|
||||
value=SoVITS_names[0],
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Row():
|
||||
@ -1924,6 +1902,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
|
||||
button1Ba_open.click(
|
||||
open1Ba,
|
||||
[
|
||||
version_checkbox,
|
||||
batch_size,
|
||||
total_epoch,
|
||||
exp_name,
|
||||
|
Loading…
x
Reference in New Issue
Block a user