mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
支持24k音频超分48k采样率
支持24k音频超分48k采样率
This commit is contained in:
parent
b88d78d64b
commit
b7a6e43a4c
455
tools/AP_BWE_main/models/model.py
Normal file
455
tools/AP_BWE_main/models/model.py
Normal file
@ -0,0 +1,455 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.nn as nn
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||
# from utils import init_weights, get_padding
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size*dilation - dilation)/2)
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
import numpy as np
|
||||
from typing import Tuple, List
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
class ConvNeXtBlock(nn.Module):
|
||||
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal.
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
intermediate_dim (int): Dimensionality of the intermediate layer.
|
||||
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
|
||||
Defaults to None.
|
||||
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
|
||||
None means non-conditional LayerNorm. Defaults to None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
layer_scale_init_value= None,
|
||||
adanorm_num_embeddings = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
|
||||
self.adanorm = adanorm_num_embeddings is not None
|
||||
|
||||
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
||||
self.pwconv1 = nn.Linear(dim, dim*3) # pointwise/1x1 convs, implemented with linear layers
|
||||
self.act = nn.GELU()
|
||||
self.pwconv2 = nn.Linear(dim*3, dim)
|
||||
self.gamma = (
|
||||
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
|
||||
if layer_scale_init_value > 0
|
||||
else None
|
||||
)
|
||||
|
||||
def forward(self, x, cond_embedding_id = None) :
|
||||
residual = x
|
||||
x = self.dwconv(x)
|
||||
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C)
|
||||
if self.adanorm:
|
||||
assert cond_embedding_id is not None
|
||||
x = self.norm(x, cond_embedding_id)
|
||||
else:
|
||||
x = self.norm(x)
|
||||
x = self.pwconv1(x)
|
||||
x = self.act(x)
|
||||
x = self.pwconv2(x)
|
||||
if self.gamma is not None:
|
||||
x = self.gamma * x
|
||||
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T)
|
||||
|
||||
x = residual + x
|
||||
return x
|
||||
|
||||
|
||||
class APNet_BWE_Model(torch.nn.Module):
|
||||
def __init__(self, h):
|
||||
super(APNet_BWE_Model, self).__init__()
|
||||
self.h = h
|
||||
self.adanorm_num_embeddings = None
|
||||
layer_scale_init_value = 1 / h.ConvNeXt_layers
|
||||
|
||||
self.conv_pre_mag = nn.Conv1d(h.n_fft//2+1, h.ConvNeXt_channels, 7, 1, padding=get_padding(7, 1))
|
||||
self.norm_pre_mag = nn.LayerNorm(h.ConvNeXt_channels, eps=1e-6)
|
||||
self.conv_pre_pha = nn.Conv1d(h.n_fft//2+1, h.ConvNeXt_channels, 7, 1, padding=get_padding(7, 1))
|
||||
self.norm_pre_pha = nn.LayerNorm(h.ConvNeXt_channels, eps=1e-6)
|
||||
|
||||
self.convnext_mag = nn.ModuleList(
|
||||
[
|
||||
ConvNeXtBlock(
|
||||
dim=h.ConvNeXt_channels,
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
adanorm_num_embeddings=self.adanorm_num_embeddings,
|
||||
)
|
||||
for _ in range(h.ConvNeXt_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.convnext_pha = nn.ModuleList(
|
||||
[
|
||||
ConvNeXtBlock(
|
||||
dim=h.ConvNeXt_channels,
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
adanorm_num_embeddings=self.adanorm_num_embeddings,
|
||||
)
|
||||
for _ in range(h.ConvNeXt_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.norm_post_mag = nn.LayerNorm(h.ConvNeXt_channels, eps=1e-6)
|
||||
self.norm_post_pha = nn.LayerNorm(h.ConvNeXt_channels, eps=1e-6)
|
||||
self.apply(self._init_weights)
|
||||
self.linear_post_mag = nn.Linear(h.ConvNeXt_channels, h.n_fft//2+1)
|
||||
self.linear_post_pha_r = nn.Linear(h.ConvNeXt_channels, h.n_fft//2+1)
|
||||
self.linear_post_pha_i = nn.Linear(h.ConvNeXt_channels, h.n_fft//2+1)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, (nn.Conv1d, nn.Linear)):
|
||||
nn.init.trunc_normal_(m.weight, std=0.02)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, mag_nb, pha_nb):
|
||||
|
||||
x_mag = self.conv_pre_mag(mag_nb)
|
||||
x_pha = self.conv_pre_pha(pha_nb)
|
||||
x_mag = self.norm_pre_mag(x_mag.transpose(1, 2)).transpose(1, 2)
|
||||
x_pha = self.norm_pre_pha(x_pha.transpose(1, 2)).transpose(1, 2)
|
||||
|
||||
for conv_block_mag, conv_block_pha in zip(self.convnext_mag, self.convnext_pha):
|
||||
x_mag = x_mag + x_pha
|
||||
x_pha = x_pha + x_mag
|
||||
x_mag = conv_block_mag(x_mag, cond_embedding_id=None)
|
||||
x_pha = conv_block_pha(x_pha, cond_embedding_id=None)
|
||||
|
||||
x_mag = self.norm_post_mag(x_mag.transpose(1, 2))
|
||||
mag_wb = mag_nb + self.linear_post_mag(x_mag).transpose(1, 2)
|
||||
|
||||
x_pha = self.norm_post_pha(x_pha.transpose(1, 2))
|
||||
x_pha_r = self.linear_post_pha_r(x_pha)
|
||||
x_pha_i = self.linear_post_pha_i(x_pha)
|
||||
pha_wb = torch.atan2(x_pha_i, x_pha_r).transpose(1, 2)
|
||||
|
||||
com_wb = torch.stack((torch.exp(mag_wb)*torch.cos(pha_wb),
|
||||
torch.exp(mag_wb)*torch.sin(pha_wb)), dim=-1)
|
||||
|
||||
return mag_wb, pha_wb, com_wb
|
||||
|
||||
|
||||
|
||||
class DiscriminatorP(torch.nn.Module):
|
||||
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
||||
super(DiscriminatorP, self).__init__()
|
||||
self.period = period
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
self.convs = nn.ModuleList([
|
||||
norm_f(nn.Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(nn.Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(nn.Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(nn.Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(nn.Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
||||
])
|
||||
self.conv_post = norm_f(nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
||||
|
||||
def forward(self, x):
|
||||
fmap = []
|
||||
|
||||
# 1d to 2d
|
||||
b, c, t = x.shape
|
||||
if t % self.period != 0: # pad first
|
||||
n_pad = self.period - (t % self.period)
|
||||
x = F.pad(x, (0, n_pad), "reflect")
|
||||
t = t + n_pad
|
||||
x = x.view(b, c, t // self.period, self.period)
|
||||
|
||||
for i,l in enumerate(self.convs):
|
||||
x = l(x)
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
if i > 0:
|
||||
fmap.append(x)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super(MultiPeriodDiscriminator, self).__init__()
|
||||
self.discriminators = nn.ModuleList([
|
||||
DiscriminatorP(2),
|
||||
DiscriminatorP(3),
|
||||
DiscriminatorP(5),
|
||||
DiscriminatorP(7),
|
||||
DiscriminatorP(11),
|
||||
])
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
for i, d in enumerate(self.discriminators):
|
||||
y_d_r, fmap_r = d(y)
|
||||
y_d_g, fmap_g = d(y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class MultiResolutionAmplitudeDiscriminator(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
resolutions: Tuple[Tuple[int, int, int]] = ((512, 128, 512), (1024, 256, 1024), (2048, 512, 2048)),
|
||||
num_embeddings: int = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.discriminators = nn.ModuleList(
|
||||
[DiscriminatorAR(resolution=r, num_embeddings=num_embeddings) for r in resolutions]
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
|
||||
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
|
||||
for d in self.discriminators:
|
||||
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
|
||||
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorAR(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
resolution: Tuple[int, int, int],
|
||||
channels: int = 64,
|
||||
in_channels: int = 1,
|
||||
num_embeddings: int = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
weight_norm(nn.Conv2d(in_channels, channels, kernel_size=(7, 5), stride=(2, 2), padding=(3, 2))),
|
||||
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 1), padding=(2, 1))),
|
||||
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 2), padding=(2, 1))),
|
||||
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 1), padding=1)),
|
||||
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 2), padding=1)),
|
||||
]
|
||||
)
|
||||
if num_embeddings is not None:
|
||||
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
|
||||
torch.nn.init.zeros_(self.emb.weight)
|
||||
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), padding=(1, 1)))
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None
|
||||
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
||||
fmap = []
|
||||
x=x.squeeze(1)
|
||||
|
||||
x = self.spectrogram(x)
|
||||
x = x.unsqueeze(1)
|
||||
for l in self.convs:
|
||||
x = l(x)
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
fmap.append(x)
|
||||
if cond_embedding_id is not None:
|
||||
emb = self.emb(cond_embedding_id)
|
||||
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
|
||||
else:
|
||||
h = 0
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x += h
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
def spectrogram(self, x: torch.Tensor) -> torch.Tensor:
|
||||
n_fft, hop_length, win_length = self.resolution
|
||||
amplitude_spectrogram = torch.stft(
|
||||
x,
|
||||
n_fft=n_fft,
|
||||
hop_length=hop_length,
|
||||
win_length=win_length,
|
||||
window=None, # interestingly rectangular window kind of works here
|
||||
center=True,
|
||||
return_complex=True,
|
||||
).abs()
|
||||
|
||||
return amplitude_spectrogram
|
||||
|
||||
|
||||
class MultiResolutionPhaseDiscriminator(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
resolutions: Tuple[Tuple[int, int, int]] = ((512, 128, 512), (1024, 256, 1024), (2048, 512, 2048)),
|
||||
num_embeddings: int = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.discriminators = nn.ModuleList(
|
||||
[DiscriminatorPR(resolution=r, num_embeddings=num_embeddings) for r in resolutions]
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
|
||||
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
|
||||
for d in self.discriminators:
|
||||
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
|
||||
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorPR(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
resolution: Tuple[int, int, int],
|
||||
channels: int = 64,
|
||||
in_channels: int = 1,
|
||||
num_embeddings: int = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
weight_norm(nn.Conv2d(in_channels, channels, kernel_size=(7, 5), stride=(2, 2), padding=(3, 2))),
|
||||
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 1), padding=(2, 1))),
|
||||
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 2), padding=(2, 1))),
|
||||
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 1), padding=1)),
|
||||
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 2), padding=1)),
|
||||
]
|
||||
)
|
||||
if num_embeddings is not None:
|
||||
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
|
||||
torch.nn.init.zeros_(self.emb.weight)
|
||||
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), padding=(1, 1)))
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None
|
||||
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
||||
fmap = []
|
||||
x=x.squeeze(1)
|
||||
|
||||
x = self.spectrogram(x)
|
||||
x = x.unsqueeze(1)
|
||||
for l in self.convs:
|
||||
x = l(x)
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
fmap.append(x)
|
||||
if cond_embedding_id is not None:
|
||||
emb = self.emb(cond_embedding_id)
|
||||
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
|
||||
else:
|
||||
h = 0
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x += h
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
def spectrogram(self, x: torch.Tensor) -> torch.Tensor:
|
||||
n_fft, hop_length, win_length = self.resolution
|
||||
phase_spectrogram = torch.stft(
|
||||
x,
|
||||
n_fft=n_fft,
|
||||
hop_length=hop_length,
|
||||
win_length=win_length,
|
||||
window=None, # interestingly rectangular window kind of works here
|
||||
center=True,
|
||||
return_complex=True,
|
||||
).angle()
|
||||
|
||||
return phase_spectrogram
|
||||
|
||||
|
||||
def feature_loss(fmap_r, fmap_g):
|
||||
loss = 0
|
||||
for dr, dg in zip(fmap_r, fmap_g):
|
||||
for rl, gl in zip(dr, dg):
|
||||
loss += torch.mean(torch.abs(rl - gl))
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
||||
loss = 0
|
||||
r_losses = []
|
||||
g_losses = []
|
||||
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||
r_loss = torch.mean(torch.clamp(1 - dr, min=0))
|
||||
g_loss = torch.mean(torch.clamp(1 + dg, min=0))
|
||||
loss += r_loss + g_loss
|
||||
r_losses.append(r_loss.item())
|
||||
g_losses.append(g_loss.item())
|
||||
|
||||
return loss, r_losses, g_losses
|
||||
|
||||
|
||||
def generator_loss(disc_outputs):
|
||||
loss = 0
|
||||
gen_losses = []
|
||||
for dg in disc_outputs:
|
||||
l = torch.mean(torch.clamp(1 - dg, min=0))
|
||||
gen_losses.append(l)
|
||||
loss += l
|
||||
|
||||
return loss, gen_losses
|
||||
|
||||
|
||||
def phase_losses(phase_r, phase_g):
|
||||
|
||||
ip_loss = torch.mean(anti_wrapping_function(phase_r - phase_g))
|
||||
gd_loss = torch.mean(anti_wrapping_function(torch.diff(phase_r, dim=1) - torch.diff(phase_g, dim=1)))
|
||||
iaf_loss = torch.mean(anti_wrapping_function(torch.diff(phase_r, dim=2) - torch.diff(phase_g, dim=2)))
|
||||
|
||||
return ip_loss, gd_loss, iaf_loss
|
||||
|
||||
def anti_wrapping_function(x):
|
||||
|
||||
return torch.abs(x - torch.round(x / (2 * np.pi)) * 2 * np.pi)
|
||||
|
||||
def stft_mag(audio, n_fft=2048, hop_length=512):
|
||||
hann_window = torch.hann_window(n_fft).to(audio.device)
|
||||
stft_spec = torch.stft(audio, n_fft, hop_length, window=hann_window, return_complex=True)
|
||||
stft_mag = torch.abs(stft_spec)
|
||||
return(stft_mag)
|
||||
|
||||
def cal_snr(pred, target):
|
||||
snr = (20 * torch.log10(torch.norm(target, dim=-1) / torch.norm(pred - target, dim=-1).clamp(min=1e-8))).mean()
|
||||
return snr
|
||||
|
||||
def cal_lsd(pred, target):
|
||||
sp = torch.log10(stft_mag(pred).square().clamp(1e-8))
|
||||
st = torch.log10(stft_mag(target).square().clamp(1e-8))
|
||||
return (sp - st).square().mean(dim=1).sqrt().mean()
|
Loading…
x
Reference in New Issue
Block a user