支持24k音频超分48k采样率

支持24k音频超分48k采样率
This commit is contained in:
RVC-Boss 2025-02-27 16:07:44 +08:00 committed by GitHub
parent b88d78d64b
commit b7a6e43a4c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -0,0 +1,455 @@
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
# from utils import init_weights, get_padding
def get_padding(kernel_size, dilation=1):
return int((kernel_size*dilation - dilation)/2)
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
import numpy as np
from typing import Tuple, List
LRELU_SLOPE = 0.1
class ConvNeXtBlock(nn.Module):
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal.
Args:
dim (int): Number of input channels.
intermediate_dim (int): Dimensionality of the intermediate layer.
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
Defaults to None.
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
None means non-conditional LayerNorm. Defaults to None.
"""
def __init__(
self,
dim: int,
layer_scale_init_value= None,
adanorm_num_embeddings = None,
):
super().__init__()
self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
self.adanorm = adanorm_num_embeddings is not None
self.norm = nn.LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, dim*3) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(dim*3, dim)
self.gamma = (
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
if layer_scale_init_value > 0
else None
)
def forward(self, x, cond_embedding_id = None) :
residual = x
x = self.dwconv(x)
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C)
if self.adanorm:
assert cond_embedding_id is not None
x = self.norm(x, cond_embedding_id)
else:
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T)
x = residual + x
return x
class APNet_BWE_Model(torch.nn.Module):
def __init__(self, h):
super(APNet_BWE_Model, self).__init__()
self.h = h
self.adanorm_num_embeddings = None
layer_scale_init_value = 1 / h.ConvNeXt_layers
self.conv_pre_mag = nn.Conv1d(h.n_fft//2+1, h.ConvNeXt_channels, 7, 1, padding=get_padding(7, 1))
self.norm_pre_mag = nn.LayerNorm(h.ConvNeXt_channels, eps=1e-6)
self.conv_pre_pha = nn.Conv1d(h.n_fft//2+1, h.ConvNeXt_channels, 7, 1, padding=get_padding(7, 1))
self.norm_pre_pha = nn.LayerNorm(h.ConvNeXt_channels, eps=1e-6)
self.convnext_mag = nn.ModuleList(
[
ConvNeXtBlock(
dim=h.ConvNeXt_channels,
layer_scale_init_value=layer_scale_init_value,
adanorm_num_embeddings=self.adanorm_num_embeddings,
)
for _ in range(h.ConvNeXt_layers)
]
)
self.convnext_pha = nn.ModuleList(
[
ConvNeXtBlock(
dim=h.ConvNeXt_channels,
layer_scale_init_value=layer_scale_init_value,
adanorm_num_embeddings=self.adanorm_num_embeddings,
)
for _ in range(h.ConvNeXt_layers)
]
)
self.norm_post_mag = nn.LayerNorm(h.ConvNeXt_channels, eps=1e-6)
self.norm_post_pha = nn.LayerNorm(h.ConvNeXt_channels, eps=1e-6)
self.apply(self._init_weights)
self.linear_post_mag = nn.Linear(h.ConvNeXt_channels, h.n_fft//2+1)
self.linear_post_pha_r = nn.Linear(h.ConvNeXt_channels, h.n_fft//2+1)
self.linear_post_pha_i = nn.Linear(h.ConvNeXt_channels, h.n_fft//2+1)
def _init_weights(self, m):
if isinstance(m, (nn.Conv1d, nn.Linear)):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
def forward(self, mag_nb, pha_nb):
x_mag = self.conv_pre_mag(mag_nb)
x_pha = self.conv_pre_pha(pha_nb)
x_mag = self.norm_pre_mag(x_mag.transpose(1, 2)).transpose(1, 2)
x_pha = self.norm_pre_pha(x_pha.transpose(1, 2)).transpose(1, 2)
for conv_block_mag, conv_block_pha in zip(self.convnext_mag, self.convnext_pha):
x_mag = x_mag + x_pha
x_pha = x_pha + x_mag
x_mag = conv_block_mag(x_mag, cond_embedding_id=None)
x_pha = conv_block_pha(x_pha, cond_embedding_id=None)
x_mag = self.norm_post_mag(x_mag.transpose(1, 2))
mag_wb = mag_nb + self.linear_post_mag(x_mag).transpose(1, 2)
x_pha = self.norm_post_pha(x_pha.transpose(1, 2))
x_pha_r = self.linear_post_pha_r(x_pha)
x_pha_i = self.linear_post_pha_i(x_pha)
pha_wb = torch.atan2(x_pha_i, x_pha_r).transpose(1, 2)
com_wb = torch.stack((torch.exp(mag_wb)*torch.cos(pha_wb),
torch.exp(mag_wb)*torch.sin(pha_wb)), dim=-1)
return mag_wb, pha_wb, com_wb
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(nn.Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(nn.Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(nn.Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(nn.Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(nn.Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
])
self.conv_post = norm_f(nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for i,l in enumerate(self.convs):
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
if i > 0:
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self):
super(MultiPeriodDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([
DiscriminatorP(2),
DiscriminatorP(3),
DiscriminatorP(5),
DiscriminatorP(7),
DiscriminatorP(11),
])
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class MultiResolutionAmplitudeDiscriminator(nn.Module):
def __init__(
self,
resolutions: Tuple[Tuple[int, int, int]] = ((512, 128, 512), (1024, 256, 1024), (2048, 512, 2048)),
num_embeddings: int = None,
):
super().__init__()
self.discriminators = nn.ModuleList(
[DiscriminatorAR(resolution=r, num_embeddings=num_embeddings) for r in resolutions]
)
def forward(
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for d in self.discriminators:
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorAR(nn.Module):
def __init__(
self,
resolution: Tuple[int, int, int],
channels: int = 64,
in_channels: int = 1,
num_embeddings: int = None,
):
super().__init__()
self.resolution = resolution
self.in_channels = in_channels
self.convs = nn.ModuleList(
[
weight_norm(nn.Conv2d(in_channels, channels, kernel_size=(7, 5), stride=(2, 2), padding=(3, 2))),
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 1), padding=(2, 1))),
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 2), padding=(2, 1))),
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 1), padding=1)),
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 2), padding=1)),
]
)
if num_embeddings is not None:
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
torch.nn.init.zeros_(self.emb.weight)
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), padding=(1, 1)))
def forward(
self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
fmap = []
x=x.squeeze(1)
x = self.spectrogram(x)
x = x.unsqueeze(1)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
if cond_embedding_id is not None:
emb = self.emb(cond_embedding_id)
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
else:
h = 0
x = self.conv_post(x)
fmap.append(x)
x += h
x = torch.flatten(x, 1, -1)
return x, fmap
def spectrogram(self, x: torch.Tensor) -> torch.Tensor:
n_fft, hop_length, win_length = self.resolution
amplitude_spectrogram = torch.stft(
x,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=None, # interestingly rectangular window kind of works here
center=True,
return_complex=True,
).abs()
return amplitude_spectrogram
class MultiResolutionPhaseDiscriminator(nn.Module):
def __init__(
self,
resolutions: Tuple[Tuple[int, int, int]] = ((512, 128, 512), (1024, 256, 1024), (2048, 512, 2048)),
num_embeddings: int = None,
):
super().__init__()
self.discriminators = nn.ModuleList(
[DiscriminatorPR(resolution=r, num_embeddings=num_embeddings) for r in resolutions]
)
def forward(
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for d in self.discriminators:
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorPR(nn.Module):
def __init__(
self,
resolution: Tuple[int, int, int],
channels: int = 64,
in_channels: int = 1,
num_embeddings: int = None,
):
super().__init__()
self.resolution = resolution
self.in_channels = in_channels
self.convs = nn.ModuleList(
[
weight_norm(nn.Conv2d(in_channels, channels, kernel_size=(7, 5), stride=(2, 2), padding=(3, 2))),
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 1), padding=(2, 1))),
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 2), padding=(2, 1))),
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 1), padding=1)),
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 2), padding=1)),
]
)
if num_embeddings is not None:
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
torch.nn.init.zeros_(self.emb.weight)
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), padding=(1, 1)))
def forward(
self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
fmap = []
x=x.squeeze(1)
x = self.spectrogram(x)
x = x.unsqueeze(1)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
if cond_embedding_id is not None:
emb = self.emb(cond_embedding_id)
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
else:
h = 0
x = self.conv_post(x)
fmap.append(x)
x += h
x = torch.flatten(x, 1, -1)
return x, fmap
def spectrogram(self, x: torch.Tensor) -> torch.Tensor:
n_fft, hop_length, win_length = self.resolution
phase_spectrogram = torch.stft(
x,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=None, # interestingly rectangular window kind of works here
center=True,
return_complex=True,
).angle()
return phase_spectrogram
def feature_loss(fmap_r, fmap_g):
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += torch.mean(torch.abs(rl - gl))
return loss
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean(torch.clamp(1 - dr, min=0))
g_loss = torch.mean(torch.clamp(1 + dg, min=0))
loss += r_loss + g_loss
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
return loss, r_losses, g_losses
def generator_loss(disc_outputs):
loss = 0
gen_losses = []
for dg in disc_outputs:
l = torch.mean(torch.clamp(1 - dg, min=0))
gen_losses.append(l)
loss += l
return loss, gen_losses
def phase_losses(phase_r, phase_g):
ip_loss = torch.mean(anti_wrapping_function(phase_r - phase_g))
gd_loss = torch.mean(anti_wrapping_function(torch.diff(phase_r, dim=1) - torch.diff(phase_g, dim=1)))
iaf_loss = torch.mean(anti_wrapping_function(torch.diff(phase_r, dim=2) - torch.diff(phase_g, dim=2)))
return ip_loss, gd_loss, iaf_loss
def anti_wrapping_function(x):
return torch.abs(x - torch.round(x / (2 * np.pi)) * 2 * np.pi)
def stft_mag(audio, n_fft=2048, hop_length=512):
hann_window = torch.hann_window(n_fft).to(audio.device)
stft_spec = torch.stft(audio, n_fft, hop_length, window=hann_window, return_complex=True)
stft_mag = torch.abs(stft_spec)
return(stft_mag)
def cal_snr(pred, target):
snr = (20 * torch.log10(torch.norm(target, dim=-1) / torch.norm(pred - target, dim=-1).clamp(min=1e-8))).mean()
return snr
def cal_lsd(pred, target):
sp = torch.log10(stft_mag(pred).square().clamp(1e-8))
st = torch.log10(stft_mag(target).square().clamp(1e-8))
return (sp - st).square().mean(dim=1).sqrt().mean()