diff --git a/api_v4.py b/api_v4.py new file mode 100644 index 00000000..be5e0931 --- /dev/null +++ b/api_v4.py @@ -0,0 +1,1211 @@ +""" +按中英混合识别 +按日英混合识别 +多语种启动切分识别语种 +全部按中文识别 +全部按英文识别 +全部按日文识别 +""" + +import logging +import traceback +import warnings + +import torchaudio + +logging.getLogger("markdown_it").setLevel(logging.ERROR) +logging.getLogger("urllib3").setLevel(logging.ERROR) +logging.getLogger("httpcore").setLevel(logging.ERROR) +logging.getLogger("httpx").setLevel(logging.ERROR) +logging.getLogger("asyncio").setLevel(logging.ERROR) +logging.getLogger("charset_normalizer").setLevel(logging.ERROR) +logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) +logging.getLogger("multipart.multipart").setLevel(logging.ERROR) +warnings.simplefilter(action="ignore", category=FutureWarning) + +import json +import os +import re +import sys +import io + +import torch +from text.LangSegmenter import LangSegmenter + +try: + import gradio.analytics as analytics + + analytics.version_check = lambda: None +except: + ... +version = model_version = os.environ.get("version", "v2") +path_sovits_v3 = "GPT_SoVITS/pretrained_models/s2Gv3.pth" +path_sovits_v4 = "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth" +is_exist_s2gv3 = os.path.exists(path_sovits_v3) +is_exist_s2gv4 = os.path.exists(path_sovits_v4) +pretrained_sovits_name = [ + "GPT_SoVITS/pretrained_models/s2G488k.pth", + "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", + "GPT_SoVITS/pretrained_models/s2Gv3.pth", + "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth", +] +pretrained_gpt_name = [ + "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", + "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", + "GPT_SoVITS/pretrained_models/s1v3.ckpt", + "GPT_SoVITS/pretrained_models/s1v3.ckpt", +] + + +_ = [[], []] +for i in range(4): + if os.path.exists(pretrained_gpt_name[i]): + _[0].append(pretrained_gpt_name[i]) + if os.path.exists(pretrained_sovits_name[i]): + _[-1].append(pretrained_sovits_name[i]) +pretrained_gpt_name, pretrained_sovits_name = _ + + +if os.path.exists("./weight.json"): + pass +else: + with open("./weight.json", "w", encoding="utf-8") as file: + json.dump({"GPT": {}, "SoVITS": {}}, file) + +with open("./weight.json", "r", encoding="utf-8") as file: + weight_data = file.read() + weight_data = json.loads(weight_data) + gpt_path = os.environ.get("gpt_path", weight_data.get("GPT", {}).get(version, pretrained_gpt_name)) + sovits_path = os.environ.get("sovits_path", weight_data.get("SoVITS", {}).get(version, pretrained_sovits_name)) + if isinstance(gpt_path, list): + gpt_path = gpt_path[0] + if isinstance(sovits_path, list): + sovits_path = sovits_path[0] + +# gpt_path = os.environ.get( +# "gpt_path", pretrained_gpt_name +# ) +# sovits_path = os.environ.get("sovits_path", pretrained_sovits_name) +cnhubert_base_path = os.environ.get("cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base") +bert_path = os.environ.get("bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large") +infer_ttswebui = os.environ.get("infer_ttswebui", 9872) +infer_ttswebui = int(infer_ttswebui) +is_share = os.environ.get("is_share", "False") +is_share = eval(is_share) +if "_CUDA_VISIBLE_DEVICES" in os.environ: + os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] +is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() +# is_half=False +punctuation = set(["!", "?", "…", ",", ".", "-", " "]) +import librosa +import numpy as np +from feature_extractor import cnhubert +from transformers import AutoModelForMaskedLM, AutoTokenizer + +cnhubert.cnhubert_base_path = cnhubert_base_path + +import random + +from GPT_SoVITS.module.models import SynthesizerTrn, SynthesizerTrnV3,Generator + + +def set_seed(seed): + if seed == -1: + seed = random.randint(0, 1000000) + seed = int(seed) + random.seed(seed) + os.environ["PYTHONHASHSEED"] = str(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + + +# set_seed(42) + +from time import time as ttime + +from AR.models.t2s_lightning_module import Text2SemanticLightningModule +from peft import LoraConfig, get_peft_model +from text import cleaned_text_to_sequence +from text.cleaner import clean_text + +from tools.i18n.i18n import I18nAuto, scan_language_list + +language = os.environ.get("language", "Auto") +language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language +i18n = I18nAuto(language=language) + +# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。 + +if torch.cuda.is_available(): + device = "cuda" +else: + device = "cpu" + +dict_language_v1 = { + i18n("中文"): "all_zh", # 全部按中文识别 + i18n("英文"): "en", # 全部按英文识别#######不变 + i18n("日文"): "all_ja", # 全部按日文识别 + i18n("中英混合"): "zh", # 按中英混合识别####不变 + i18n("日英混合"): "ja", # 按日英混合识别####不变 + i18n("多语种混合"): "auto", # 多语种启动切分识别语种 +} +dict_language_v2 = { + i18n("中文"): "all_zh", # 全部按中文识别 + i18n("英文"): "en", # 全部按英文识别#######不变 + i18n("日文"): "all_ja", # 全部按日文识别 + i18n("粤语"): "all_yue", # 全部按中文识别 + i18n("韩文"): "all_ko", # 全部按韩文识别 + i18n("中英混合"): "zh", # 按中英混合识别####不变 + i18n("日英混合"): "ja", # 按日英混合识别####不变 + i18n("粤英混合"): "yue", # 按粤英混合识别####不变 + i18n("韩英混合"): "ko", # 按韩英混合识别####不变 + i18n("多语种混合"): "auto", # 多语种启动切分识别语种 + i18n("多语种混合(粤语)"): "auto_yue", # 多语种启动切分识别语种 +} +dict_language = dict_language_v1 if version == "v1" else dict_language_v2 + +tokenizer = AutoTokenizer.from_pretrained(bert_path) +bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) +if is_half == True: + bert_model = bert_model.half().to(device) +else: + bert_model = bert_model.to(device) + + +def get_bert_feature(text, word2ph): + with torch.no_grad(): + inputs = tokenizer(text, return_tensors="pt") + for i in inputs: + inputs[i] = inputs[i].to(device) + res = bert_model(**inputs, output_hidden_states=True) + res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] + assert len(word2ph) == len(text) + phone_level_feature = [] + for i in range(len(word2ph)): + repeat_feature = res[i].repeat(word2ph[i], 1) + phone_level_feature.append(repeat_feature) + phone_level_feature = torch.cat(phone_level_feature, dim=0) + return phone_level_feature.T + + +class DictToAttrRecursive(dict): + def __init__(self, input_dict): + super().__init__(input_dict) + for key, value in input_dict.items(): + if isinstance(value, dict): + value = DictToAttrRecursive(value) + self[key] = value + setattr(self, key, value) + + def __getattr__(self, item): + try: + return self[item] + except KeyError: + raise AttributeError(f"Attribute {item} not found") + + def __setattr__(self, key, value): + if isinstance(value, dict): + value = DictToAttrRecursive(value) + super(DictToAttrRecursive, self).__setitem__(key, value) + super().__setattr__(key, value) + + def __delattr__(self, item): + try: + del self[item] + except KeyError: + raise AttributeError(f"Attribute {item} not found") + + +ssl_model = cnhubert.get_model() +if is_half == True: + ssl_model = ssl_model.half().to(device) +else: + ssl_model = ssl_model.to(device) + +resample_transform_dict = {} + + +def resample(audio_tensor, sr0,sr1): + global resample_transform_dict + key="%s-%s"%(sr0,sr1) + if key not in resample_transform_dict: + resample_transform_dict[key] = torchaudio.transforms.Resample(sr0, sr1).to(device) + return resample_transform_dict[key](audio_tensor) + + +###todo:put them to process_ckpt and modify my_save func (save sovits weights), gpt save weights use my_save in process_ckpt +# symbol_version-model_version-if_lora_v3 +from process_ckpt import get_sovits_version_from_path_fast, load_sovits_new + +v3v4set={"v3","v4"} +def change_sovits_weights(sovits_path, prompt_language=None, text_language=None): + global vq_model, hps, version, model_version, dict_language, if_lora_v3 + version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path) + print(sovits_path,version, model_version, if_lora_v3) + is_exist=is_exist_s2gv3 if model_version=="v3"else is_exist_s2gv4 + if if_lora_v3 == True and is_exist == False: + info = "GPT_SoVITS/pretrained_models/s2Gv3.pth" + i18n("SoVITS %s 底模缺失,无法加载相应 LoRA 权重"%model_version) + raise FileExistsError(info) + dict_language = dict_language_v1 if version == "v1" else dict_language_v2 + if prompt_language is not None and text_language is not None: + if prompt_language in list(dict_language.keys()): + prompt_text_update, prompt_language_update = ( + {"__type__": "update"}, + {"__type__": "update", "value": prompt_language}, + ) + else: + prompt_text_update = {"__type__": "update", "value": ""} + prompt_language_update = {"__type__": "update", "value": i18n("中文")} + if text_language in list(dict_language.keys()): + text_update, text_language_update = {"__type__": "update"}, {"__type__": "update", "value": text_language} + else: + text_update = {"__type__": "update", "value": ""} + text_language_update = {"__type__": "update", "value": i18n("中文")} + if model_version in v3v4set: + visible_sample_steps = True + visible_inp_refs = False + else: + visible_sample_steps = False + visible_inp_refs = True + yield ( + {"__type__": "update", "choices": list(dict_language.keys())}, + {"__type__": "update", "choices": list(dict_language.keys())}, + prompt_text_update, + prompt_language_update, + text_update, + text_language_update, + {"__type__": "update", "visible": visible_sample_steps, "value": 32 if model_version=="v3"else 8,"choices":[4, 8, 16, 32,64,128]if model_version=="v3"else [4, 8, 16, 32]}, + {"__type__": "update", "visible": visible_inp_refs}, + {"__type__": "update", "value": False, "interactive": True if model_version not in v3v4set else False}, + {"__type__": "update", "visible": True if model_version =="v3" else False}, + {"__type__": "update", "value": i18n("模型加载中,请等待"), "interactive": False}, + ) + + dict_s2 = load_sovits_new(sovits_path) + hps = dict_s2["config"] + hps = DictToAttrRecursive(hps) + hps.model.semantic_frame_rate = "25hz" + if "enc_p.text_embedding.weight" not in dict_s2["weight"]: + hps.model.version = "v2" # v3model,v2sybomls + elif dict_s2["weight"]["enc_p.text_embedding.weight"].shape[0] == 322: + hps.model.version = "v1" + else: + hps.model.version = "v2" + version = hps.model.version + # print("sovits版本:",hps.model.version) + if model_version not in v3v4set: + vq_model = SynthesizerTrn( + hps.data.filter_length // 2 + 1, + hps.train.segment_size // hps.data.hop_length, + n_speakers=hps.data.n_speakers, + **hps.model, + ) + model_version = version + else: + hps.model.version=model_version + vq_model = SynthesizerTrnV3( + hps.data.filter_length // 2 + 1, + hps.train.segment_size // hps.data.hop_length, + n_speakers=hps.data.n_speakers, + **hps.model, + ) + if "pretrained" not in sovits_path: + try: + del vq_model.enc_q + except: + pass + if is_half == True: + vq_model = vq_model.half().to(device) + else: + vq_model = vq_model.to(device) + vq_model.eval() + if if_lora_v3 == False: + print("loading sovits_%s" % model_version, vq_model.load_state_dict(dict_s2["weight"], strict=False)) + else: + path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4 + print( + "loading sovits_%spretrained_G"%model_version, + vq_model.load_state_dict(load_sovits_new(path_sovits)["weight"], strict=False), + ) + lora_rank = dict_s2["lora_rank"] + lora_config = LoraConfig( + target_modules=["to_k", "to_q", "to_v", "to_out.0"], + r=lora_rank, + lora_alpha=lora_rank, + init_lora_weights=True, + ) + vq_model.cfm = get_peft_model(vq_model.cfm, lora_config) + print("loading sovits_%s_lora%s" % (model_version,lora_rank)) + vq_model.load_state_dict(dict_s2["weight"], strict=False) + vq_model.cfm = vq_model.cfm.merge_and_unload() + # torch.save(vq_model.state_dict(),"merge_win.pth") + vq_model.eval() + + yield ( + {"__type__": "update", "choices": list(dict_language.keys())}, + {"__type__": "update", "choices": list(dict_language.keys())}, + prompt_text_update, + prompt_language_update, + text_update, + text_language_update, + {"__type__": "update", "visible": visible_sample_steps, "value":32 if model_version=="v3"else 8,"choices":[4, 8, 16, 32,64,128]if model_version=="v3"else [4, 8, 16, 32]}, + {"__type__": "update", "visible": visible_inp_refs}, + {"__type__": "update", "value": False, "interactive": True if model_version not in v3v4set else False}, + {"__type__": "update", "visible": True if model_version =="v3" else False}, + {"__type__": "update", "value": i18n("合成语音"), "interactive": True}, + ) + with open("./weight.json") as f: + data = f.read() + data = json.loads(data) + data["SoVITS"][version] = sovits_path + with open("./weight.json", "w") as f: + f.write(json.dumps(data)) + + +try: + next(change_sovits_weights(sovits_path)) +except: + pass + + +def change_gpt_weights(gpt_path): + global hz, max_sec, t2s_model, config + hz = 50 + dict_s1 = torch.load(gpt_path, map_location="cpu") + config = dict_s1["config"] + max_sec = config["data"]["max_sec"] + t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) + t2s_model.load_state_dict(dict_s1["weight"]) + if is_half == True: + t2s_model = t2s_model.half() + t2s_model = t2s_model.to(device) + t2s_model.eval() + # total = sum([param.nelement() for param in t2s_model.parameters()]) + # print("Number of parameter: %.2fM" % (total / 1e6)) + with open("./weight.json") as f: + data = f.read() + data = json.loads(data) + data["GPT"][version] = gpt_path + with open("./weight.json", "w") as f: + f.write(json.dumps(data)) + + +change_gpt_weights(gpt_path) +os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" +import torch + +now_dir = os.getcwd() + + +def init_bigvgan(): + global bigvgan_model,hifigan_model + from BigVGAN import bigvgan + + bigvgan_model = bigvgan.BigVGAN.from_pretrained( + "%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,), + use_cuda_kernel=False, + ) # if True, RuntimeError: Ninja is required to load C++ extensions + # remove weight norm in the model and set to eval mode + bigvgan_model.remove_weight_norm() + bigvgan_model = bigvgan_model.eval() + if hifigan_model: + hifigan_model=hifigan_model.cpu() + hifigan_model=None + try:torch.cuda.empty_cache() + except:pass + if is_half == True: + bigvgan_model = bigvgan_model.half().to(device) + else: + bigvgan_model = bigvgan_model.to(device) + +def init_hifigan(): + global hifigan_model,bigvgan_model + hifigan_model = Generator( + initial_channel=100, + resblock="1", + resblock_kernel_sizes=[3, 7, 11], + resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], + upsample_rates=[10, 6, 2, 2, 2], + upsample_initial_channel=512, + upsample_kernel_sizes=[20, 12, 4, 4, 4], + gin_channels=0, is_bias=True + ) + hifigan_model.eval() + hifigan_model.remove_weight_norm() + state_dict_g = torch.load("%s/GPT_SoVITS/pretrained_models/gsv-v4-pretrained/vocoder.pth" % (now_dir,), map_location="cpu") + print("loading vocoder",hifigan_model.load_state_dict(state_dict_g)) + if bigvgan_model: + bigvgan_model=bigvgan_model.cpu() + bigvgan_model=None + try:torch.cuda.empty_cache() + except:pass + if is_half == True: + hifigan_model = hifigan_model.half().to(device) + else: + hifigan_model = hifigan_model.to(device) + +bigvgan_model=hifigan_model=None +if model_version=="v3": + init_bigvgan() +if model_version=="v4": + init_hifigan() + + +def get_spepc(hps, filename): + # audio = load_audio(filename, int(hps.data.sampling_rate)) + audio, sampling_rate = librosa.load(filename, sr=int(hps.data.sampling_rate)) + audio = torch.FloatTensor(audio) + maxx = audio.abs().max() + if maxx > 1: + audio /= min(2, maxx) + audio_norm = audio + audio_norm = audio_norm.unsqueeze(0) + spec = spectrogram_torch( + audio_norm, + hps.data.filter_length, + hps.data.sampling_rate, + hps.data.hop_length, + hps.data.win_length, + center=False, + ) + return spec + + +def clean_text_inf(text, language, version): + language = language.replace("all_", "") + phones, word2ph, norm_text = clean_text(text, language, version) + phones = cleaned_text_to_sequence(phones, version) + return phones, word2ph, norm_text + + +dtype = torch.float16 if is_half == True else torch.float32 + + +def get_bert_inf(phones, word2ph, norm_text, language): + language = language.replace("all_", "") + if language == "zh": + bert = get_bert_feature(norm_text, word2ph).to(device) # .to(dtype) + else: + bert = torch.zeros( + (1024, len(phones)), + dtype=torch.float16 if is_half == True else torch.float32, + ).to(device) + + return bert + + +splits = { + ",", + "。", + "?", + "!", + ",", + ".", + "?", + "!", + "~", + ":", + ":", + "—", + "…", +} + + +def get_first(text): + pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" + text = re.split(pattern, text)[0].strip() + return text + + +from text import chinese + + +def get_phones_and_bert(text, language, version, final=False): + if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}: + formattext = text + while " " in formattext: + formattext = formattext.replace(" ", " ") + if language == "all_zh": + if re.search(r"[A-Za-z]", formattext): + formattext = re.sub(r"[a-z]", lambda x: x.group(0).upper(), formattext) + formattext = chinese.mix_text_normalize(formattext) + return get_phones_and_bert(formattext, "zh", version) + else: + phones, word2ph, norm_text = clean_text_inf(formattext, language, version) + bert = get_bert_feature(norm_text, word2ph).to(device) + elif language == "all_yue" and re.search(r"[A-Za-z]", formattext): + formattext = re.sub(r"[a-z]", lambda x: x.group(0).upper(), formattext) + formattext = chinese.mix_text_normalize(formattext) + return get_phones_and_bert(formattext, "yue", version) + else: + phones, word2ph, norm_text = clean_text_inf(formattext, language, version) + bert = torch.zeros( + (1024, len(phones)), + dtype=torch.float16 if is_half == True else torch.float32, + ).to(device) + elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}: + textlist = [] + langlist = [] + if language == "auto": + for tmp in LangSegmenter.getTexts(text): + langlist.append(tmp["lang"]) + textlist.append(tmp["text"]) + elif language == "auto_yue": + for tmp in LangSegmenter.getTexts(text): + if tmp["lang"] == "zh": + tmp["lang"] = "yue" + langlist.append(tmp["lang"]) + textlist.append(tmp["text"]) + else: + for tmp in LangSegmenter.getTexts(text): + if tmp["lang"] == "en": + langlist.append(tmp["lang"]) + else: + # 因无法区别中日韩文汉字,以用户输入为准 + langlist.append(language) + textlist.append(tmp["text"]) + print(textlist) + print(langlist) + phones_list = [] + bert_list = [] + norm_text_list = [] + for i in range(len(textlist)): + lang = langlist[i] + phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version) + bert = get_bert_inf(phones, word2ph, norm_text, lang) + phones_list.append(phones) + norm_text_list.append(norm_text) + bert_list.append(bert) + bert = torch.cat(bert_list, dim=1) + phones = sum(phones_list, []) + norm_text = "".join(norm_text_list) + + if not final and len(phones) < 6: + return get_phones_and_bert("." + text, language, version, final=True) + + return phones, bert.to(dtype), norm_text + + +from module.mel_processing import mel_spectrogram_torch, spectrogram_torch + +spec_min = -12 +spec_max = 2 + + +def norm_spec(x): + return (x - spec_min) / (spec_max - spec_min) * 2 - 1 + + +def denorm_spec(x): + return (x + 1) / 2 * (spec_max - spec_min) + spec_min + + +mel_fn = lambda x: mel_spectrogram_torch( + x, + **{ + "n_fft": 1024, + "win_size": 1024, + "hop_size": 256, + "num_mels": 100, + "sampling_rate": 24000, + "fmin": 0, + "fmax": None, + "center": False, + }, +) +mel_fn_v4 = lambda x: mel_spectrogram_torch( + x, + **{ + "n_fft": 1280, + "win_size": 1280, + "hop_size": 320, + "num_mels": 100, + "sampling_rate": 32000, + "fmin": 0, + "fmax": None, + "center": False, + }, +) + + +def merge_short_text_in_array(texts, threshold): + if (len(texts)) < 2: + return texts + result = [] + text = "" + for ele in texts: + text += ele + if len(text) >= threshold: + result.append(text) + text = "" + if len(text) > 0: + if len(result) == 0: + result.append(text) + else: + result[len(result) - 1] += text + return result + + +sr_model = None + + +def audio_sr(audio, sr): + global sr_model + if sr_model == None: + from tools.audio_sr import AP_BWE + + try: + sr_model = AP_BWE(device, DictToAttrRecursive) + except FileNotFoundError: + return audio.cpu().detach().numpy(), sr + return sr_model(audio, sr) + + +##ref_wav_path+prompt_text+prompt_language+text(单个)+text_language+top_k+top_p+temperature +# cache_tokens={}#暂未实现清理机制 +cache = {} + + +def get_tts_wav( + ref_wav_path, + prompt_text, + prompt_language, + text, + text_language, + how_to_cut=i18n("不切"), + top_k=20, + top_p=0.6, + temperature=0.6, + speed=1, + sample_steps=8, + if_sr=False, + media_type="ogg", + pause_second=0.3, + ref_free=False, + if_freeze=False, + inp_refs=None, +): + #top_k = int(top_k) + global cache + t = [] + if prompt_text is None or len(prompt_text) == 0: + ref_free = True + if model_version in v3v4set: + ref_free = False # s2v3暂不支持ref_free + else: + if_sr = False + t0 = ttime() + + #prompt_language = dict_language[prompt_language] + #text_language = dict_language[text_language] + + if not ref_free: + prompt_text = prompt_text.strip("\n") + if prompt_text[-1] not in splits: + prompt_text += "。" if prompt_language != "en" else "." + print(i18n("实际输入的参考文本:"), prompt_text) + text = text.strip("\n") + # if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text + + print(i18n("实际输入的目标文本:"), text) + zero_wav = np.zeros( + int(hps.data.sampling_rate * pause_second), + dtype=np.float16 if is_half == True else np.float32, + ) + zero_wav_torch = torch.from_numpy(zero_wav) + if is_half == True: + zero_wav_torch = zero_wav_torch.half().to(device) + else: + zero_wav_torch = zero_wav_torch.to(device) + if not ref_free: + with torch.no_grad(): + wav16k, sr = librosa.load(ref_wav_path, sr=16000) + if wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000: + raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) + wav16k = torch.from_numpy(wav16k) + if is_half == True: + wav16k = wav16k.half().to(device) + else: + wav16k = wav16k.to(device) + wav16k = torch.cat([wav16k, zero_wav_torch]) + ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float() + codes = vq_model.extract_latent(ssl_content) + prompt_semantic = codes[0, 0] + prompt = prompt_semantic.unsqueeze(0).to(device) + + t1 = ttime() + t.append(t1 - t0) + + if how_to_cut == i18n("凑四句一切"): + text = cut1(text) + elif how_to_cut == i18n("凑50字一切"): + text = cut2(text) + elif how_to_cut == i18n("按中文句号。切"): + text = cut3(text) + elif how_to_cut == i18n("按英文句号.切"): + text = cut4(text) + elif how_to_cut == i18n("按标点符号切"): + text = cut5(text) + while "\n\n" in text: + text = text.replace("\n\n", "\n") + print(i18n("实际输入的目标文本(切句后):"), text) + texts = text.split("\n") + texts = process_text(texts) + texts = merge_short_text_in_array(texts, 5) + audio_opt = [] + ###s2v3暂不支持ref_free + if not ref_free: + phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, version) + + for i_text, text in enumerate(texts): + # 解决输入目标文本的空行导致报错的问题 + if len(text.strip()) == 0: + continue + if text[-1] not in splits: + text += "。" if text_language != "en" else "." + print(i18n("实际输入的目标文本(每句):"), text) + phones2, bert2, norm_text2 = get_phones_and_bert(text, text_language, version) + print(i18n("前端处理后的文本(每句):"), norm_text2) + if not ref_free: + bert = torch.cat([bert1, bert2], 1) + all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) + else: + bert = bert2 + all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0) + + bert = bert.to(device).unsqueeze(0) + all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) + + t2 = ttime() + # cache_key="%s-%s-%s-%s-%s-%s-%s-%s"%(ref_wav_path,prompt_text,prompt_language,text,text_language,top_k,top_p,temperature) + # print(cache.keys(),if_freeze) + if i_text in cache and if_freeze == True: + pred_semantic = cache[i_text] + else: + with torch.no_grad(): + pred_semantic, idx = t2s_model.model.infer_panel( + all_phoneme_ids, + all_phoneme_len, + None if ref_free else prompt, + bert, + # prompt_phone_len=ph_offset, + top_k=top_k, + top_p=top_p, + temperature=temperature, + early_stop_num=hz * max_sec, + ) + pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) + cache[i_text] = pred_semantic + t3 = ttime() + ###v3不存在以下逻辑和inp_refs + if model_version not in v3v4set: + refers = [] + if inp_refs: + for path in inp_refs: + try: + refer = get_spepc(hps, path.name).to(dtype).to(device) + refers.append(refer) + except: + traceback.print_exc() + if len(refers) == 0: + refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)] + audio = vq_model.decode( + pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers, speed=speed + )[0][0] # .cpu().detach().numpy() + else: + refer = get_spepc(hps, ref_wav_path).to(device).to(dtype) + phoneme_ids0 = torch.LongTensor(phones1).to(device).unsqueeze(0) + phoneme_ids1 = torch.LongTensor(phones2).to(device).unsqueeze(0) + # print(11111111, phoneme_ids0, phoneme_ids1) + fea_ref, ge = vq_model.decode_encp(prompt.unsqueeze(0), phoneme_ids0, refer) + ref_audio, sr = torchaudio.load(ref_wav_path) + ref_audio = ref_audio.to(device).float() + if ref_audio.shape[0] == 2: + ref_audio = ref_audio.mean(0).unsqueeze(0) + tgt_sr=24000 if model_version=="v3"else 32000 + if sr != tgt_sr: + ref_audio = resample(ref_audio, sr,tgt_sr) + # print("ref_audio",ref_audio.abs().mean()) + mel2 = mel_fn(ref_audio)if model_version=="v3"else mel_fn_v4(ref_audio) + mel2 = norm_spec(mel2) + T_min = min(mel2.shape[2], fea_ref.shape[2]) + mel2 = mel2[:, :, :T_min] + fea_ref = fea_ref[:, :, :T_min] + Tref=468 if model_version=="v3"else 500 + Tchunk=934 if model_version=="v3"else 1000 + if T_min > Tref: + mel2 = mel2[:, :, -Tref:] + fea_ref = fea_ref[:, :, -Tref:] + T_min = Tref + chunk_len = Tchunk - T_min + mel2 = mel2.to(dtype) + fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge, speed) + cfm_resss = [] + idx = 0 + while 1: + fea_todo_chunk = fea_todo[:, :, idx : idx + chunk_len] + if fea_todo_chunk.shape[-1] == 0: + break + idx += chunk_len + fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1) + cfm_res = vq_model.cfm.inference( + fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0 + ) + cfm_res = cfm_res[:, :, mel2.shape[2] :] + mel2 = cfm_res[:, :, -T_min:] + fea_ref = fea_todo_chunk[:, :, -T_min:] + cfm_resss.append(cfm_res) + cfm_res = torch.cat(cfm_resss, 2) + cfm_res = denorm_spec(cfm_res) + if model_version=="v3": + if bigvgan_model == None: + init_bigvgan() + else:#v4 + if hifigan_model == None: + init_hifigan() + vocoder_model=bigvgan_model if model_version=="v3"else hifigan_model + with torch.inference_mode(): + wav_gen = vocoder_model(cfm_res) + audio = wav_gen[0][0] # .cpu().detach().numpy() + max_audio = torch.abs(audio).max() # 简单防止16bit爆音 + if max_audio > 1: + audio = audio / max_audio + audio_opt.append(audio) + audio_opt.append(zero_wav_torch) # zero_wav + t4 = ttime() + t.extend([t2 - t1, t3 - t2, t4 - t3]) + t1 = ttime() + print("%.3f\t%.3f\t%.3f\t%.3f" % (t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3]))) + audio_opt = torch.cat(audio_opt, 0) # np.concatenate + if model_version in {"v1","v2"}:opt_sr=32000 + elif model_version=="v3":opt_sr=24000 + else:opt_sr=48000#v4 + if if_sr == True and opt_sr == 24000: + print(i18n("音频超分中")) + audio_opt, opt_sr = audio_sr(audio_opt.unsqueeze(0), opt_sr) + max_audio = np.abs(audio_opt).max() + if max_audio > 1: + audio_opt /= max_audio + else: + audio_opt = audio_opt.cpu().detach().numpy() + + audio_bytes = pack_audio(io.BytesIO(), (audio_opt * 32767).astype(np.int16), sr, media_type) + yield audio_bytes.getvalue() + +def pack_audio(audio_bytes, data, rate, media_type)->io.BytesIO: + if media_type == "ogg": + audio_bytes = pack_ogg(audio_bytes, data, rate) + else: + # wav无法流式, 先暂存raw + audio_bytes = pack_raw(audio_bytes, data, rate) + return audio_bytes + + +def pack_ogg(audio_bytes, data, rate): + # Author: AkagawaTsurunaki + # Issue: + # Stack overflow probabilistically occurs + # when the function `sf_writef_short` of `libsndfile_64bit.dll` is called + # using the Python library `soundfile` + # Note: + # This is an issue related to `libsndfile`, not this project itself. + # It happens when you generate a large audio tensor (about 499804 frames in my PC) + # and try to convert it to an ogg file. + # Related: + # https://github.com/RVC-Boss/GPT-SoVITS/issues/1199 + # https://github.com/libsndfile/libsndfile/issues/1023 + # https://github.com/bastibe/python-soundfile/issues/396 + # Suggestion: + # Or split the whole audio data into smaller audio segment to avoid stack overflow? + + def handle_pack_ogg(): + import soundfile as sf + with sf.SoundFile(audio_bytes, mode="w", samplerate=rate, channels=1, format="ogg") as audio_file: + audio_file.write(data) + + import threading + + # See: https://docs.python.org/3/library/threading.html + # The stack size of this thread is at least 32768 + # If stack overflow error still occurs, just modify the `stack_size`. + # stack_size = n * 4096, where n should be a positive integer. + # Here we chose n = 4096. + stack_size = 4096 * 4096 + try: + threading.stack_size(stack_size) + pack_ogg_thread = threading.Thread(target=handle_pack_ogg) + pack_ogg_thread.start() + pack_ogg_thread.join() + except RuntimeError as e: + # If changing the thread stack size is unsupported, a RuntimeError is raised. + print("RuntimeError: {}".format(e)) + print("Changing the thread stack size is unsupported.") + except ValueError as e: + # If the specified stack size is invalid, a ValueError is raised and the stack size is unmodified. + print("ValueError: {}".format(e)) + print("The specified stack size is invalid.") + + return audio_bytes + +def pack_raw(audio_bytes, data, rate): + audio_bytes.write(data.tobytes()) + return audio_bytes + +def split(todo_text): + todo_text = todo_text.replace("……", "。").replace("——", ",") + if todo_text[-1] not in splits: + todo_text += "。" + i_split_head = i_split_tail = 0 + len_text = len(todo_text) + todo_texts = [] + while 1: + if i_split_head >= len_text: + break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 + if todo_text[i_split_head] in splits: + i_split_head += 1 + todo_texts.append(todo_text[i_split_tail:i_split_head]) + i_split_tail = i_split_head + else: + i_split_head += 1 + return todo_texts + + +def cut1(inp): + inp = inp.strip("\n") + inps = split(inp) + split_idx = list(range(0, len(inps), 4)) + split_idx[-1] = None + if len(split_idx) > 1: + opts = [] + for idx in range(len(split_idx) - 1): + opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]])) + else: + opts = [inp] + opts = [item for item in opts if not set(item).issubset(punctuation)] + return "\n".join(opts) + + +def cut2(inp): + inp = inp.strip("\n") + inps = split(inp) + if len(inps) < 2: + return inp + opts = [] + summ = 0 + tmp_str = "" + for i in range(len(inps)): + summ += len(inps[i]) + tmp_str += inps[i] + if summ > 50: + summ = 0 + opts.append(tmp_str) + tmp_str = "" + if tmp_str != "": + opts.append(tmp_str) + # print(opts) + if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起 + opts[-2] = opts[-2] + opts[-1] + opts = opts[:-1] + opts = [item for item in opts if not set(item).issubset(punctuation)] + return "\n".join(opts) + + +def cut3(inp): + inp = inp.strip("\n") + opts = ["%s" % item for item in inp.strip("。").split("。")] + opts = [item for item in opts if not set(item).issubset(punctuation)] + return "\n".join(opts) + + +def cut4(inp): + inp = inp.strip("\n") + opts = re.split(r"(? 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit(): + items.append(char) + else: + items.append(char) + mergeitems.append("".join(items)) + items = [] + else: + items.append(char) + + if items: + mergeitems.append("".join(items)) + + opt = [item for item in mergeitems if not set(item).issubset(punds)] + return "\n".join(opt) + + +def custom_sort_key(s): + # 使用正则表达式提取字符串中的数字部分和非数字部分 + parts = re.split("(\d+)", s) + # 将数字部分转换为整数,非数字部分保持不变 + parts = [int(part) if part.isdigit() else part for part in parts] + return parts + + +def process_text(texts): + _text = [] + if all(text in [None, " ", "\n", ""] for text in texts): + raise ValueError(i18n("请输入有效文本")) + for text in texts: + if text in [None, " ", ""]: + pass + else: + _text.append(text) + return _text + + +def change_choices(): + SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root) + return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, { + "choices": sorted(GPT_names, key=custom_sort_key), + "__type__": "update", + } + + +SoVITS_weight_root = ["SoVITS_weights", "SoVITS_weights_v2", "SoVITS_weights_v3", "SoVITS_weights_v4"] +GPT_weight_root = ["GPT_weights", "GPT_weights_v2", "GPT_weights_v3", "GPT_weights_v4"] +for path in SoVITS_weight_root + GPT_weight_root: + os.makedirs(path, exist_ok=True) + + +def get_weights_names(GPT_weight_root, SoVITS_weight_root): + SoVITS_names = [i for i in pretrained_sovits_name] + for path in SoVITS_weight_root: + for name in os.listdir(path): + if name.endswith(".pth"): + SoVITS_names.append("%s/%s" % (path, name)) + GPT_names = [i for i in pretrained_gpt_name] + for path in GPT_weight_root: + for name in os.listdir(path): + if name.endswith(".ckpt"): + GPT_names.append("%s/%s" % (path, name)) + return SoVITS_names, GPT_names + + +SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root) + + +def html_center(text, label="p"): + return f"""
+ <{label} style="margin: 0; padding: 0;">{text} +
""" + + +def html_left(text, label="p"): + return f"""
+ <{label} style="margin: 0; padding: 0;">{text} +
""" + + +from fastapi import FastAPI, Request, Query +from fastapi.responses import StreamingResponse +import uvicorn + +def handle( + refer_wav_path, + prompt_text, + prompt_language, + text, + text_language, + how_to_cut, + top_k, + top_p, + temperature, + speed, + sample_steps, + if_sr, + media_type, +): + + if sample_steps not in [4, 8, 16, 32]: + sample_steps = 32 + + return StreamingResponse( + get_tts_wav( + refer_wav_path, + prompt_text, + prompt_language, + text, + text_language, + how_to_cut, + top_k, + top_p, + temperature, + speed, + sample_steps, + if_sr, + media_type, + ), + media_type="audio/wav", + ) +app = FastAPI() +@app.post("/") +async def tts_endpoint(request: Request): + json_post_raw = await request.json() + return handle( + json_post_raw.get("refer_wav_path"), + json_post_raw.get("prompt_text"), + json_post_raw.get("prompt_language"), + json_post_raw.get("text"), + json_post_raw.get("text_language"), + json_post_raw.get("how_to_cut","cut1"), + json_post_raw.get("top_k", 15), + json_post_raw.get("top_p", 1.0), + json_post_raw.get("temperature", 1.0), + json_post_raw.get("speed", 1.0), + json_post_raw.get("sample_steps", 32), + json_post_raw.get("if_sr", False), + json_post_raw.get("media_type", "ogg"), + ) + + +@app.get("/") +async def tts_endpoint( + refer_wav_path: str = None, + prompt_text: str = None, + prompt_language: str = None, + text: str = None, + text_language: str = None, + how_to_cut: str = "cut1", + top_k: int = 15, + top_p: float = 1.0, + temperature: float = 1.0, + speed: float = 1.0, + sample_steps: int = 32, + if_sr: bool = False, + media_type: str = "ogg", +): + return handle( + refer_wav_path, + prompt_text, + prompt_language, + text, + text_language, + how_to_cut, + top_k, + top_p, + temperature, + speed, + sample_steps, + if_sr, + media_type, + ) + +if __name__ == "__main__": + uvicorn.run(app, host="0.0.0.0", port=9880, workers=1)