mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
double inference speed
double inference speed
This commit is contained in:
parent
6638e66294
commit
b0786f2998
@ -1,8 +1,11 @@
|
||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
|
||||
# reference: https://github.com/lifeiteng/vall-e
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
import random
|
||||
import numpy as np
|
||||
|
||||
from tqdm import tqdm
|
||||
from typing import List
|
||||
from AR.models.utils import make_pad_mask
|
||||
from AR.models.utils import (
|
||||
topk_sampling,
|
||||
@ -35,6 +38,139 @@ default_config = {
|
||||
}
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
class T2SMLP:
|
||||
def __init__(self, w1, b1, w2, b2):
|
||||
self.w1 = w1
|
||||
self.b1 = b1
|
||||
self.w2 = w2
|
||||
self.b2 = b2
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(F.linear(x, self.w1, self.b1))
|
||||
x = F.linear(x, self.w2, self.b2)
|
||||
return x
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
class T2SBlock:
|
||||
def __init__(
|
||||
self,
|
||||
num_heads,
|
||||
hidden_dim: int,
|
||||
mlp: T2SMLP,
|
||||
qkv_w,
|
||||
qkv_b,
|
||||
out_w,
|
||||
out_b,
|
||||
norm_w1,
|
||||
norm_b1,
|
||||
norm_eps1,
|
||||
norm_w2,
|
||||
norm_b2,
|
||||
norm_eps2,
|
||||
):
|
||||
self.num_heads = num_heads
|
||||
self.mlp = mlp
|
||||
self.hidden_dim: int = hidden_dim
|
||||
self.qkv_w = qkv_w
|
||||
self.qkv_b = qkv_b
|
||||
self.out_w = out_w
|
||||
self.out_b = out_b
|
||||
self.norm_w1 = norm_w1
|
||||
self.norm_b1 = norm_b1
|
||||
self.norm_eps1 = norm_eps1
|
||||
self.norm_w2 = norm_w2
|
||||
self.norm_b2 = norm_b2
|
||||
self.norm_eps2 = norm_eps2
|
||||
|
||||
def process_prompt(self, x, attn_mask: torch.Tensor):
|
||||
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
|
||||
|
||||
batch_size = q.shape[0]
|
||||
q_len = q.shape[1]
|
||||
kv_len = k.shape[1]
|
||||
|
||||
k_cache = k
|
||||
v_cache = v
|
||||
|
||||
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
|
||||
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||
|
||||
attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask)
|
||||
|
||||
attn = attn.permute(2, 0, 1, 3).reshape(batch_size, -1, self.hidden_dim)
|
||||
attn = F.linear(attn, self.out_w, self.out_b)
|
||||
|
||||
x = F.layer_norm(
|
||||
x + attn, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
|
||||
)
|
||||
x = F.layer_norm(
|
||||
x + self.mlp.forward(x),
|
||||
[self.hidden_dim],
|
||||
self.norm_w2,
|
||||
self.norm_b2,
|
||||
self.norm_eps2,
|
||||
)
|
||||
return x, k_cache, v_cache
|
||||
|
||||
def decode_next_token(self, x, k_cache, v_cache):
|
||||
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
|
||||
|
||||
k_cache = torch.cat([k_cache, k], dim=1)
|
||||
v_cache = torch.cat([v_cache, v], dim=1)
|
||||
kv_len = k_cache.shape[1]
|
||||
|
||||
batch_size = q.shape[0]
|
||||
q_len = q.shape[1]
|
||||
|
||||
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
|
||||
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||
|
||||
attn = F.scaled_dot_product_attention(q, k, v)
|
||||
|
||||
attn = attn.permute(2, 0, 1, 3).reshape(batch_size, -1, self.hidden_dim)
|
||||
attn = F.linear(attn, self.out_w, self.out_b)
|
||||
|
||||
x = F.layer_norm(
|
||||
x + attn, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
|
||||
)
|
||||
x = F.layer_norm(
|
||||
x + self.mlp.forward(x),
|
||||
[self.hidden_dim],
|
||||
self.norm_w2,
|
||||
self.norm_b2,
|
||||
self.norm_eps2,
|
||||
)
|
||||
return x, k_cache, v_cache
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
class T2STransformer:
|
||||
def __init__(self, num_blocks: int, blocks: List[T2SBlock]):
|
||||
self.num_blocks: int = num_blocks
|
||||
self.blocks = blocks
|
||||
|
||||
def process_prompt(
|
||||
self, x, attn_mask: torch.Tensor):
|
||||
k_cache: List[torch.Tensor] = []
|
||||
v_cache: List[torch.Tensor] = []
|
||||
for i in range(self.num_blocks):
|
||||
x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask)
|
||||
k_cache.append(k_cache_)
|
||||
v_cache.append(v_cache_)
|
||||
return x, k_cache, v_cache
|
||||
|
||||
def decode_next_token(
|
||||
self, x, k_cache: List[torch.Tensor], v_cache: List[torch.Tensor]
|
||||
):
|
||||
for i in range(self.num_blocks):
|
||||
x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(x, k_cache[i], v_cache[i])
|
||||
return x, k_cache, v_cache
|
||||
|
||||
|
||||
class Text2SemanticDecoder(nn.Module):
|
||||
def __init__(self, config, norm_first=False, top_k=3):
|
||||
super(Text2SemanticDecoder, self).__init__()
|
||||
@ -89,6 +225,37 @@ class Text2SemanticDecoder(nn.Module):
|
||||
ignore_index=self.EOS,
|
||||
)
|
||||
|
||||
blocks = []
|
||||
|
||||
for i in range(self.num_layers):
|
||||
layer = self.h.layers[i]
|
||||
t2smlp = T2SMLP(
|
||||
layer.linear1.weight,
|
||||
layer.linear1.bias,
|
||||
layer.linear2.weight,
|
||||
layer.linear2.bias
|
||||
)
|
||||
# (layer.self_attn.in_proj_weight, layer.self_attn.in_proj_bias)
|
||||
block = T2SBlock(
|
||||
self.num_head,
|
||||
self.model_dim,
|
||||
t2smlp,
|
||||
layer.self_attn.in_proj_weight,
|
||||
layer.self_attn.in_proj_bias,
|
||||
layer.self_attn.out_proj.weight,
|
||||
layer.self_attn.out_proj.bias,
|
||||
layer.norm1.weight,
|
||||
layer.norm1.bias,
|
||||
layer.norm1.eps,
|
||||
layer.norm2.weight,
|
||||
layer.norm2.bias,
|
||||
layer.norm2.eps
|
||||
)
|
||||
|
||||
blocks.append(block)
|
||||
|
||||
self.t2s_transformer = T2STransformer(self.num_layers, blocks)
|
||||
|
||||
def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||
@ -343,17 +510,9 @@ class Text2SemanticDecoder(nn.Module):
|
||||
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
||||
stop = False
|
||||
# print(1111111,self.num_layers)
|
||||
cache = {
|
||||
"all_stage": self.num_layers,
|
||||
"k": [None] * self.num_layers, ###根据配置自己手写
|
||||
"v": [None] * self.num_layers,
|
||||
# "xy_pos":None,##y_pos位置编码每次都不一样的没法缓存,每次都要重新拼xy_pos.主要还是写法原因,其实是可以历史统一一样的,但也没啥计算量就不管了
|
||||
"y_emb": None, ##只需要对最新的samples求emb,再拼历史的就行
|
||||
# "logits":None,###原版就已经只对结尾求再拼接了,不用管
|
||||
# "xy_dec":None,###不需要,本来只需要最后一个做logits
|
||||
"first_infer": 1,
|
||||
"stage": 0,
|
||||
}
|
||||
|
||||
k_cache = None
|
||||
v_cache = None
|
||||
################### first step ##########################
|
||||
if y is not None:
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
@ -361,7 +520,6 @@ class Text2SemanticDecoder(nn.Module):
|
||||
prefix_len = y.shape[1]
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
cache["y_emb"] = y_emb
|
||||
ref_free = False
|
||||
else:
|
||||
y_emb = None
|
||||
@ -386,21 +544,23 @@ class Text2SemanticDecoder(nn.Module):
|
||||
x.device
|
||||
)
|
||||
|
||||
|
||||
for idx in tqdm(range(1500)):
|
||||
if xy_attn_mask is not None:
|
||||
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask)
|
||||
else:
|
||||
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
|
||||
|
||||
xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache)
|
||||
logits = self.ar_predict_layer(
|
||||
xy_dec[:, -1]
|
||||
) ##不用改,如果用了cache的默认就是只有一帧,取最后一帧一样的
|
||||
# samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
|
||||
if(idx==0):###第一次跑不能EOS否则没有了
|
||||
logits = logits[:, :-1] ###刨除1024终止符号的概率
|
||||
)
|
||||
|
||||
if idx == 0:
|
||||
xy_attn_mask = None
|
||||
logits = logits[:, :-1]
|
||||
samples = sample(
|
||||
logits[0], y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
|
||||
)[0].unsqueeze(0)
|
||||
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
||||
# print(samples.shape)#[1,1]#第一个1是bs
|
||||
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||
@ -408,12 +568,8 @@ class Text2SemanticDecoder(nn.Module):
|
||||
stop = True
|
||||
|
||||
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
||||
stop = True
|
||||
if stop:
|
||||
# if prompts.shape[1] == y.shape[1]:
|
||||
# y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
# print("bad zero prediction")
|
||||
if y.shape[1] == 0:
|
||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
print("bad zero prediction")
|
||||
@ -421,28 +577,9 @@ class Text2SemanticDecoder(nn.Module):
|
||||
break
|
||||
|
||||
####################### update next step ###################################
|
||||
cache["first_infer"] = 0
|
||||
if cache["y_emb"] is not None:
|
||||
y_emb = torch.cat(
|
||||
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], dim = 1
|
||||
)
|
||||
cache["y_emb"] = y_emb
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = y_pos[:, -1:]
|
||||
else:
|
||||
y_emb = self.ar_audio_embedding(y[:, -1:])
|
||||
cache["y_emb"] = y_emb
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = y_pos
|
||||
y_len = y_pos.shape[1]
|
||||
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, prompts.shape[1] + idx]
|
||||
|
||||
###最右边一列(是错的)
|
||||
# xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device)
|
||||
# xy_attn_mask[:,-1]=False
|
||||
###最下面一行(是对的)
|
||||
xy_attn_mask = torch.zeros(
|
||||
(1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
|
||||
)
|
||||
if ref_free:
|
||||
return y[:, :-1], 0
|
||||
return y[:, :-1], idx - 1
|
Loading…
x
Reference in New Issue
Block a user