mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-08 16:00:01 +08:00
添加with torch.no_grad(),速度快一大截
This commit is contained in:
parent
ec7647e08d
commit
adb7f71b64
4
.gitignore
vendored
4
.gitignore
vendored
@ -10,6 +10,8 @@ reference
|
|||||||
GPT_weights
|
GPT_weights
|
||||||
SoVITS_weights
|
SoVITS_weights
|
||||||
TEMP
|
TEMP
|
||||||
|
PortableGit
|
||||||
ffmpeg.exe
|
ffmpeg.exe
|
||||||
ffprobe.exe
|
ffprobe.exe
|
||||||
|
tmp_audio
|
||||||
|
trained
|
||||||
|
@ -249,8 +249,6 @@ class TTS:
|
|||||||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||||
self.bert_model = self.bert_model.half()
|
self.bert_model = self.bert_model.half()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def init_vits_weights(self, weights_path: str):
|
def init_vits_weights(self, weights_path: str):
|
||||||
print(f"Loading VITS weights from {weights_path}")
|
print(f"Loading VITS weights from {weights_path}")
|
||||||
self.configs.vits_weights_path = weights_path
|
self.configs.vits_weights_path = weights_path
|
||||||
@ -282,7 +280,6 @@ class TTS:
|
|||||||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||||
self.vits_model = self.vits_model.half()
|
self.vits_model = self.vits_model.half()
|
||||||
|
|
||||||
|
|
||||||
def init_t2s_weights(self, weights_path: str):
|
def init_t2s_weights(self, weights_path: str):
|
||||||
print(f"Loading Text2Semantic weights from {weights_path}")
|
print(f"Loading Text2Semantic weights from {weights_path}")
|
||||||
self.configs.t2s_weights_path = weights_path
|
self.configs.t2s_weights_path = weights_path
|
||||||
@ -379,7 +376,6 @@ class TTS:
|
|||||||
# self.refer_spec = spec
|
# self.refer_spec = spec
|
||||||
self.prompt_cache["refer_spec"] = spec
|
self.prompt_cache["refer_spec"] = spec
|
||||||
|
|
||||||
|
|
||||||
def _set_prompt_semantic(self, ref_wav_path:str):
|
def _set_prompt_semantic(self, ref_wav_path:str):
|
||||||
zero_wav = np.zeros(
|
zero_wav = np.zeros(
|
||||||
int(self.configs.sampling_rate * 0.3),
|
int(self.configs.sampling_rate * 0.3),
|
||||||
@ -420,7 +416,8 @@ class TTS:
|
|||||||
max_length = max(seq_lengths)
|
max_length = max(seq_lengths)
|
||||||
else:
|
else:
|
||||||
max_length = max(seq_lengths) if max_length < max(seq_lengths) else max_length
|
max_length = max(seq_lengths) if max_length < max(seq_lengths) else max_length
|
||||||
|
# 我爱套 torch.no_grad()
|
||||||
|
# with torch.no_grad():
|
||||||
padded_sequences = []
|
padded_sequences = []
|
||||||
for seq, length in zip(sequences, seq_lengths):
|
for seq, length in zip(sequences, seq_lengths):
|
||||||
padding = [0] * axis + [0, max_length - length] + [0] * (ndim - axis - 1)
|
padding = [0] * axis + [0, max_length - length] + [0] * (ndim - axis - 1)
|
||||||
@ -438,6 +435,8 @@ class TTS:
|
|||||||
precision:torch.dtype=torch.float32,
|
precision:torch.dtype=torch.float32,
|
||||||
):
|
):
|
||||||
|
|
||||||
|
# 但是这里不能套,反而会负优化
|
||||||
|
# with torch.no_grad():
|
||||||
_data:list = []
|
_data:list = []
|
||||||
index_and_len_list = []
|
index_and_len_list = []
|
||||||
for idx, item in enumerate(data):
|
for idx, item in enumerate(data):
|
||||||
@ -473,7 +472,6 @@ class TTS:
|
|||||||
batch_index_list.append([])
|
batch_index_list.append([])
|
||||||
batch_index_list[-1].append(i)
|
batch_index_list[-1].append(i)
|
||||||
|
|
||||||
|
|
||||||
for batch_idx, index_list in enumerate(batch_index_list):
|
for batch_idx, index_list in enumerate(batch_index_list):
|
||||||
item_list = [data[idx] for idx in index_list]
|
item_list = [data[idx] for idx in index_list]
|
||||||
phones_list = []
|
phones_list = []
|
||||||
@ -485,6 +483,8 @@ class TTS:
|
|||||||
norm_text_batch = []
|
norm_text_batch = []
|
||||||
bert_max_len = 0
|
bert_max_len = 0
|
||||||
phones_max_len = 0
|
phones_max_len = 0
|
||||||
|
# 但是这里也不能套,反而会负优化
|
||||||
|
# with torch.no_grad():
|
||||||
for item in item_list:
|
for item in item_list:
|
||||||
if prompt_data is not None:
|
if prompt_data is not None:
|
||||||
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\
|
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\
|
||||||
@ -513,7 +513,6 @@ class TTS:
|
|||||||
all_phones_batch = all_phones_list
|
all_phones_batch = all_phones_list
|
||||||
all_bert_features_batch = all_bert_features_list
|
all_bert_features_batch = all_bert_features_list
|
||||||
|
|
||||||
|
|
||||||
# max_len = max(bert_max_len, phones_max_len)
|
# max_len = max(bert_max_len, phones_max_len)
|
||||||
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
|
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
|
||||||
#### 直接对phones和bert_features进行pad,会增大复读概率。
|
#### 直接对phones和bert_features进行pad,会增大复读概率。
|
||||||
@ -568,7 +567,6 @@ class TTS:
|
|||||||
'''
|
'''
|
||||||
self.stop_flag = True
|
self.stop_flag = True
|
||||||
|
|
||||||
|
|
||||||
def run(self, inputs:dict):
|
def run(self, inputs:dict):
|
||||||
"""
|
"""
|
||||||
Text to speech inference.
|
Text to speech inference.
|
||||||
@ -596,6 +594,34 @@ class TTS:
|
|||||||
returns:
|
returns:
|
||||||
tuple[int, np.ndarray]: sampling rate and audio data.
|
tuple[int, np.ndarray]: sampling rate and audio data.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
def make_batch(batch_texts):
|
||||||
|
batch_data = []
|
||||||
|
print(i18n("############ 提取文本Bert特征 ############"))
|
||||||
|
for text in tqdm(batch_texts):
|
||||||
|
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text, text_lang)
|
||||||
|
if phones is None:
|
||||||
|
continue
|
||||||
|
res={
|
||||||
|
"phones": phones,
|
||||||
|
"bert_features": bert_features,
|
||||||
|
"norm_text": norm_text,
|
||||||
|
}
|
||||||
|
batch_data.append(res)
|
||||||
|
if len(batch_data) == 0:
|
||||||
|
return None
|
||||||
|
batch, _ = self.to_batch(batch_data,
|
||||||
|
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
||||||
|
batch_size=batch_size,
|
||||||
|
threshold=batch_threshold,
|
||||||
|
split_bucket=False,
|
||||||
|
device=self.configs.device,
|
||||||
|
precision=self.precision
|
||||||
|
)
|
||||||
|
return batch[0]
|
||||||
|
|
||||||
|
# 直接给全体套一个torch.no_grad()
|
||||||
|
with torch.no_grad():
|
||||||
########## variables initialization ###########
|
########## variables initialization ###########
|
||||||
self.stop_flag:bool = False
|
self.stop_flag:bool = False
|
||||||
text:str = inputs.get("text", "")
|
text:str = inputs.get("text", "")
|
||||||
@ -643,7 +669,6 @@ class TTS:
|
|||||||
((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] is None)):
|
((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] is None)):
|
||||||
raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
|
raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
|
||||||
|
|
||||||
|
|
||||||
###### setting reference audio and prompt text preprocessing ########
|
###### setting reference audio and prompt text preprocessing ########
|
||||||
t0 = ttime()
|
t0 = ttime()
|
||||||
if (ref_audio_path is not None) and (ref_audio_path != self.prompt_cache["ref_audio_path"]):
|
if (ref_audio_path is not None) and (ref_audio_path != self.prompt_cache["ref_audio_path"]):
|
||||||
@ -664,7 +689,6 @@ class TTS:
|
|||||||
self.prompt_cache["bert_features"] = bert_features
|
self.prompt_cache["bert_features"] = bert_features
|
||||||
self.prompt_cache["norm_text"] = norm_text
|
self.prompt_cache["norm_text"] = norm_text
|
||||||
|
|
||||||
|
|
||||||
###### text preprocessing ########
|
###### text preprocessing ########
|
||||||
t1 = ttime()
|
t1 = ttime()
|
||||||
data:list = None
|
data:list = None
|
||||||
@ -693,30 +717,7 @@ class TTS:
|
|||||||
data.append([])
|
data.append([])
|
||||||
data[-1].append(texts[i])
|
data[-1].append(texts[i])
|
||||||
|
|
||||||
def make_batch(batch_texts):
|
|
||||||
batch_data = []
|
|
||||||
print(i18n("############ 提取文本Bert特征 ############"))
|
|
||||||
for text in tqdm(batch_texts):
|
|
||||||
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text, text_lang)
|
|
||||||
if phones is None:
|
|
||||||
continue
|
|
||||||
res={
|
|
||||||
"phones": phones,
|
|
||||||
"bert_features": bert_features,
|
|
||||||
"norm_text": norm_text,
|
|
||||||
}
|
|
||||||
batch_data.append(res)
|
|
||||||
if len(batch_data) == 0:
|
|
||||||
return None
|
|
||||||
batch, _ = self.to_batch(batch_data,
|
|
||||||
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
|
||||||
batch_size=batch_size,
|
|
||||||
threshold=batch_threshold,
|
|
||||||
split_bucket=False,
|
|
||||||
device=self.configs.device,
|
|
||||||
precision=self.precision
|
|
||||||
)
|
|
||||||
return batch[0]
|
|
||||||
|
|
||||||
t2 = ttime()
|
t2 = ttime()
|
||||||
try:
|
try:
|
||||||
@ -745,7 +746,7 @@ class TTS:
|
|||||||
else:
|
else:
|
||||||
prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device)
|
prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device)
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
|
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
|
||||||
all_phoneme_ids,
|
all_phoneme_ids,
|
||||||
all_phoneme_lens,
|
all_phoneme_lens,
|
||||||
@ -765,6 +766,9 @@ class TTS:
|
|||||||
|
|
||||||
batch_audio_fragment = []
|
batch_audio_fragment = []
|
||||||
|
|
||||||
|
# 这里要记得加 torch.no_grad() 不然速度慢一大截
|
||||||
|
# with torch.no_grad():
|
||||||
|
|
||||||
# ## vits并行推理 method 1
|
# ## vits并行推理 method 1
|
||||||
# pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
# pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
||||||
# pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device)
|
# pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device)
|
||||||
@ -791,7 +795,6 @@ class TTS:
|
|||||||
audio_frag_end_idx.insert(0, 0)
|
audio_frag_end_idx.insert(0, 0)
|
||||||
batch_audio_fragment= [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))]
|
batch_audio_fragment= [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))]
|
||||||
|
|
||||||
|
|
||||||
# ## vits串行推理
|
# ## vits串行推理
|
||||||
# for i, idx in enumerate(idx_list):
|
# for i, idx in enumerate(idx_list):
|
||||||
# phones = batch_phones[i].unsqueeze(0).to(self.configs.device)
|
# phones = batch_phones[i].unsqueeze(0).to(self.configs.device)
|
||||||
@ -878,14 +881,12 @@ class TTS:
|
|||||||
audio_fragment:torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
|
audio_fragment:torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
|
||||||
audio[i][j] = audio_fragment.cpu().numpy()
|
audio[i][j] = audio_fragment.cpu().numpy()
|
||||||
|
|
||||||
|
|
||||||
if split_bucket:
|
if split_bucket:
|
||||||
audio = self.recovery_order(audio, batch_index_list)
|
audio = self.recovery_order(audio, batch_index_list)
|
||||||
else:
|
else:
|
||||||
# audio = [item for batch in audio for item in batch]
|
# audio = [item for batch in audio for item in batch]
|
||||||
audio = sum(audio, [])
|
audio = sum(audio, [])
|
||||||
|
|
||||||
|
|
||||||
audio = np.concatenate(audio, 0)
|
audio = np.concatenate(audio, 0)
|
||||||
audio = (audio * 32768).astype(np.int16)
|
audio = (audio * 32768).astype(np.int16)
|
||||||
|
|
||||||
@ -898,8 +899,6 @@ class TTS:
|
|||||||
return sr, audio
|
return sr, audio
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def speed_change(input_audio:np.ndarray, speed:float, sr:int):
|
def speed_change(input_audio:np.ndarray, speed:float, sr:int):
|
||||||
# 将 NumPy 数组转换为原始 PCM 流
|
# 将 NumPy 数组转换为原始 PCM 流
|
||||||
raw_audio = input_audio.astype(np.int16).tobytes()
|
raw_audio = input_audio.astype(np.int16).tobytes()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user