mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-07 15:19:59 +08:00
添加with torch.no_grad(),速度快一大截
This commit is contained in:
parent
ec7647e08d
commit
adb7f71b64
4
.gitignore
vendored
4
.gitignore
vendored
@ -10,6 +10,8 @@ reference
|
||||
GPT_weights
|
||||
SoVITS_weights
|
||||
TEMP
|
||||
PortableGit
|
||||
ffmpeg.exe
|
||||
ffprobe.exe
|
||||
|
||||
tmp_audio
|
||||
trained
|
||||
|
@ -249,8 +249,6 @@ class TTS:
|
||||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||
self.bert_model = self.bert_model.half()
|
||||
|
||||
|
||||
|
||||
def init_vits_weights(self, weights_path: str):
|
||||
print(f"Loading VITS weights from {weights_path}")
|
||||
self.configs.vits_weights_path = weights_path
|
||||
@ -274,7 +272,7 @@ class TTS:
|
||||
# if ("pretrained" not in weights_path):
|
||||
if hasattr(vits_model, "enc_q"):
|
||||
del vits_model.enc_q
|
||||
|
||||
|
||||
vits_model = vits_model.to(self.configs.device)
|
||||
vits_model = vits_model.eval()
|
||||
vits_model.load_state_dict(dict_s2["weight"], strict=False)
|
||||
@ -282,7 +280,6 @@ class TTS:
|
||||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||
self.vits_model = self.vits_model.half()
|
||||
|
||||
|
||||
def init_t2s_weights(self, weights_path: str):
|
||||
print(f"Loading Text2Semantic weights from {weights_path}")
|
||||
self.configs.t2s_weights_path = weights_path
|
||||
@ -299,7 +296,7 @@ class TTS:
|
||||
self.t2s_model = t2s_model
|
||||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||
self.t2s_model = self.t2s_model.half()
|
||||
|
||||
|
||||
def enable_half_precision(self, enable: bool = True):
|
||||
'''
|
||||
To enable half precision for the TTS model.
|
||||
@ -310,7 +307,7 @@ class TTS:
|
||||
if str(self.configs.device) == "cpu" and enable:
|
||||
print("Half precision is not supported on CPU.")
|
||||
return
|
||||
|
||||
|
||||
self.configs.is_half = enable
|
||||
self.precision = torch.float16 if enable else torch.float32
|
||||
self.configs.save_configs()
|
||||
@ -332,7 +329,7 @@ class TTS:
|
||||
self.bert_model = self.bert_model.float()
|
||||
if self.cnhuhbert_model is not None:
|
||||
self.cnhuhbert_model = self.cnhuhbert_model.float()
|
||||
|
||||
|
||||
def set_device(self, device: torch.device):
|
||||
'''
|
||||
To set the device for all models.
|
||||
@ -349,7 +346,7 @@ class TTS:
|
||||
self.bert_model = self.bert_model.to(device)
|
||||
if self.cnhuhbert_model is not None:
|
||||
self.cnhuhbert_model = self.cnhuhbert_model.to(device)
|
||||
|
||||
|
||||
def set_ref_audio(self, ref_audio_path:str):
|
||||
'''
|
||||
To set the reference audio for the TTS model,
|
||||
@ -359,7 +356,7 @@ class TTS:
|
||||
'''
|
||||
self._set_prompt_semantic(ref_audio_path)
|
||||
self._set_ref_spec(ref_audio_path)
|
||||
|
||||
|
||||
def _set_ref_spec(self, ref_audio_path):
|
||||
audio = load_audio(ref_audio_path, int(self.configs.sampling_rate))
|
||||
audio = torch.FloatTensor(audio)
|
||||
@ -378,8 +375,7 @@ class TTS:
|
||||
spec = spec.half()
|
||||
# self.refer_spec = spec
|
||||
self.prompt_cache["refer_spec"] = spec
|
||||
|
||||
|
||||
|
||||
def _set_prompt_semantic(self, ref_wav_path:str):
|
||||
zero_wav = np.zeros(
|
||||
int(self.configs.sampling_rate * 0.3),
|
||||
@ -404,10 +400,10 @@ class TTS:
|
||||
1, 2
|
||||
) # .float()
|
||||
codes = self.vits_model.extract_latent(hubert_feature)
|
||||
|
||||
|
||||
prompt_semantic = codes[0, 0].to(self.configs.device)
|
||||
self.prompt_cache["prompt_semantic"] = prompt_semantic
|
||||
|
||||
|
||||
def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length:int=None):
|
||||
seq = sequences[0]
|
||||
ndim = seq.dim()
|
||||
@ -420,7 +416,8 @@ class TTS:
|
||||
max_length = max(seq_lengths)
|
||||
else:
|
||||
max_length = max(seq_lengths) if max_length < max(seq_lengths) else max_length
|
||||
|
||||
# 我爱套 torch.no_grad()
|
||||
# with torch.no_grad():
|
||||
padded_sequences = []
|
||||
for seq, length in zip(sequences, seq_lengths):
|
||||
padding = [0] * axis + [0, max_length - length] + [0] * (ndim - axis - 1)
|
||||
@ -428,7 +425,7 @@ class TTS:
|
||||
padded_sequences.append(padded_seq)
|
||||
batch = torch.stack(padded_sequences)
|
||||
return batch
|
||||
|
||||
|
||||
def to_batch(self, data:list,
|
||||
prompt_data:dict=None,
|
||||
batch_size:int=5,
|
||||
@ -438,112 +435,114 @@ class TTS:
|
||||
precision:torch.dtype=torch.float32,
|
||||
):
|
||||
|
||||
_data:list = []
|
||||
index_and_len_list = []
|
||||
for idx, item in enumerate(data):
|
||||
norm_text_len = len(item["norm_text"])
|
||||
index_and_len_list.append([idx, norm_text_len])
|
||||
# 但是这里不能套,反而会负优化
|
||||
# with torch.no_grad():
|
||||
_data:list = []
|
||||
index_and_len_list = []
|
||||
for idx, item in enumerate(data):
|
||||
norm_text_len = len(item["norm_text"])
|
||||
index_and_len_list.append([idx, norm_text_len])
|
||||
|
||||
batch_index_list = []
|
||||
if split_bucket:
|
||||
index_and_len_list.sort(key=lambda x: x[1])
|
||||
index_and_len_list = np.array(index_and_len_list, dtype=np.int64)
|
||||
|
||||
batch_index_list_len = 0
|
||||
pos = 0
|
||||
while pos <index_and_len_list.shape[0]:
|
||||
# batch_index_list.append(index_and_len_list[pos:min(pos+batch_size,len(index_and_len_list))])
|
||||
pos_end = min(pos+batch_size,index_and_len_list.shape[0])
|
||||
while pos < pos_end:
|
||||
batch=index_and_len_list[pos:pos_end, 1].astype(np.float32)
|
||||
score=batch[(pos_end-pos)//2]/(batch.mean()+1e-8)
|
||||
if (score>=threshold) or (pos_end-pos==1):
|
||||
batch_index=index_and_len_list[pos:pos_end, 0].tolist()
|
||||
batch_index_list_len += len(batch_index)
|
||||
batch_index_list.append(batch_index)
|
||||
pos = pos_end
|
||||
break
|
||||
pos_end=pos_end-1
|
||||
|
||||
assert batch_index_list_len == len(data)
|
||||
|
||||
else:
|
||||
for i in range(len(data)):
|
||||
if i%batch_size == 0:
|
||||
batch_index_list.append([])
|
||||
batch_index_list[-1].append(i)
|
||||
batch_index_list = []
|
||||
if split_bucket:
|
||||
index_and_len_list.sort(key=lambda x: x[1])
|
||||
index_and_len_list = np.array(index_and_len_list, dtype=np.int64)
|
||||
|
||||
|
||||
for batch_idx, index_list in enumerate(batch_index_list):
|
||||
item_list = [data[idx] for idx in index_list]
|
||||
phones_list = []
|
||||
phones_len_list = []
|
||||
# bert_features_list = []
|
||||
all_phones_list = []
|
||||
all_phones_len_list = []
|
||||
all_bert_features_list = []
|
||||
norm_text_batch = []
|
||||
bert_max_len = 0
|
||||
phones_max_len = 0
|
||||
for item in item_list:
|
||||
if prompt_data is not None:
|
||||
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\
|
||||
batch_index_list_len = 0
|
||||
pos = 0
|
||||
while pos <index_and_len_list.shape[0]:
|
||||
# batch_index_list.append(index_and_len_list[pos:min(pos+batch_size,len(index_and_len_list))])
|
||||
pos_end = min(pos+batch_size,index_and_len_list.shape[0])
|
||||
while pos < pos_end:
|
||||
batch=index_and_len_list[pos:pos_end, 1].astype(np.float32)
|
||||
score=batch[(pos_end-pos)//2]/(batch.mean()+1e-8)
|
||||
if (score>=threshold) or (pos_end-pos==1):
|
||||
batch_index=index_and_len_list[pos:pos_end, 0].tolist()
|
||||
batch_index_list_len += len(batch_index)
|
||||
batch_index_list.append(batch_index)
|
||||
pos = pos_end
|
||||
break
|
||||
pos_end=pos_end-1
|
||||
|
||||
assert batch_index_list_len == len(data)
|
||||
|
||||
else:
|
||||
for i in range(len(data)):
|
||||
if i%batch_size == 0:
|
||||
batch_index_list.append([])
|
||||
batch_index_list[-1].append(i)
|
||||
|
||||
for batch_idx, index_list in enumerate(batch_index_list):
|
||||
item_list = [data[idx] for idx in index_list]
|
||||
phones_list = []
|
||||
phones_len_list = []
|
||||
# bert_features_list = []
|
||||
all_phones_list = []
|
||||
all_phones_len_list = []
|
||||
all_bert_features_list = []
|
||||
norm_text_batch = []
|
||||
bert_max_len = 0
|
||||
phones_max_len = 0
|
||||
# 但是这里也不能套,反而会负优化
|
||||
# with torch.no_grad():
|
||||
for item in item_list:
|
||||
if prompt_data is not None:
|
||||
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\
|
||||
.to(dtype=precision, device=device)
|
||||
all_phones = torch.LongTensor(prompt_data["phones"]+item["phones"]).to(device)
|
||||
phones = torch.LongTensor(item["phones"]).to(device)
|
||||
# norm_text = prompt_data["norm_text"]+item["norm_text"]
|
||||
else:
|
||||
all_bert_features = item["bert_features"]\
|
||||
.to(dtype=precision, device=device)
|
||||
all_phones = torch.LongTensor(prompt_data["phones"]+item["phones"]).to(device)
|
||||
phones = torch.LongTensor(item["phones"]).to(device)
|
||||
# norm_text = prompt_data["norm_text"]+item["norm_text"]
|
||||
else:
|
||||
all_bert_features = item["bert_features"]\
|
||||
.to(dtype=precision, device=device)
|
||||
phones = torch.LongTensor(item["phones"]).to(device)
|
||||
all_phones = phones
|
||||
# norm_text = item["norm_text"]
|
||||
phones = torch.LongTensor(item["phones"]).to(device)
|
||||
all_phones = phones
|
||||
# norm_text = item["norm_text"]
|
||||
|
||||
bert_max_len = max(bert_max_len, all_bert_features.shape[-1])
|
||||
phones_max_len = max(phones_max_len, phones.shape[-1])
|
||||
|
||||
phones_list.append(phones)
|
||||
phones_len_list.append(phones.shape[-1])
|
||||
all_phones_list.append(all_phones)
|
||||
all_phones_len_list.append(all_phones.shape[-1])
|
||||
all_bert_features_list.append(all_bert_features)
|
||||
norm_text_batch.append(item["norm_text"])
|
||||
|
||||
phones_batch = phones_list
|
||||
all_phones_batch = all_phones_list
|
||||
all_bert_features_batch = all_bert_features_list
|
||||
|
||||
# max_len = max(bert_max_len, phones_max_len)
|
||||
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
|
||||
#### 直接对phones和bert_features进行pad,会增大复读概率。
|
||||
# all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
|
||||
# all_bert_features_batch = all_bert_features_list
|
||||
# all_bert_features_batch = torch.zeros(len(item_list), 1024, max_len, dtype=precision, device=device)
|
||||
# for idx, item in enumerate(all_bert_features_list):
|
||||
# all_bert_features_batch[idx, :, : item.shape[-1]] = item
|
||||
|
||||
# #### 先对phones进行embedding、对bert_features进行project,再pad到相同长度,以缓解复读问题。(可能还有其他因素导致复读)
|
||||
# all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list]
|
||||
# all_phones_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) for item in all_phones_list]
|
||||
# all_phones_batch = torch.stack(all_phones_list, dim=0)
|
||||
|
||||
# all_bert_features_list = [self.t2s_model.model.bert_proj(item.to(self.t2s_model.device).transpose(0, 1)) for item in all_bert_features_list]
|
||||
# all_bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) for item in all_bert_features_list]
|
||||
# all_bert_features_batch = torch.stack(all_bert_features_list, dim=0)
|
||||
|
||||
batch = {
|
||||
"phones": phones_batch,
|
||||
"phones_len": torch.LongTensor(phones_len_list).to(device),
|
||||
"all_phones": all_phones_batch,
|
||||
"all_phones_len": torch.LongTensor(all_phones_len_list).to(device),
|
||||
"all_bert_features": all_bert_features_batch,
|
||||
"norm_text": norm_text_batch
|
||||
}
|
||||
_data.append(batch)
|
||||
|
||||
return _data, batch_index_list
|
||||
|
||||
bert_max_len = max(bert_max_len, all_bert_features.shape[-1])
|
||||
phones_max_len = max(phones_max_len, phones.shape[-1])
|
||||
|
||||
phones_list.append(phones)
|
||||
phones_len_list.append(phones.shape[-1])
|
||||
all_phones_list.append(all_phones)
|
||||
all_phones_len_list.append(all_phones.shape[-1])
|
||||
all_bert_features_list.append(all_bert_features)
|
||||
norm_text_batch.append(item["norm_text"])
|
||||
|
||||
phones_batch = phones_list
|
||||
all_phones_batch = all_phones_list
|
||||
all_bert_features_batch = all_bert_features_list
|
||||
|
||||
|
||||
# max_len = max(bert_max_len, phones_max_len)
|
||||
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
|
||||
#### 直接对phones和bert_features进行pad,会增大复读概率。
|
||||
# all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
|
||||
# all_bert_features_batch = all_bert_features_list
|
||||
# all_bert_features_batch = torch.zeros(len(item_list), 1024, max_len, dtype=precision, device=device)
|
||||
# for idx, item in enumerate(all_bert_features_list):
|
||||
# all_bert_features_batch[idx, :, : item.shape[-1]] = item
|
||||
|
||||
# #### 先对phones进行embedding、对bert_features进行project,再pad到相同长度,以缓解复读问题。(可能还有其他因素导致复读)
|
||||
# all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list]
|
||||
# all_phones_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) for item in all_phones_list]
|
||||
# all_phones_batch = torch.stack(all_phones_list, dim=0)
|
||||
|
||||
# all_bert_features_list = [self.t2s_model.model.bert_proj(item.to(self.t2s_model.device).transpose(0, 1)) for item in all_bert_features_list]
|
||||
# all_bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) for item in all_bert_features_list]
|
||||
# all_bert_features_batch = torch.stack(all_bert_features_list, dim=0)
|
||||
|
||||
batch = {
|
||||
"phones": phones_batch,
|
||||
"phones_len": torch.LongTensor(phones_len_list).to(device),
|
||||
"all_phones": all_phones_batch,
|
||||
"all_phones_len": torch.LongTensor(all_phones_len_list).to(device),
|
||||
"all_bert_features": all_bert_features_batch,
|
||||
"norm_text": norm_text_batch
|
||||
}
|
||||
_data.append(batch)
|
||||
|
||||
return _data, batch_index_list
|
||||
|
||||
def recovery_order(self, data:list, batch_index_list:list)->list:
|
||||
'''
|
||||
Recovery the order of the audio according to the batch_index_list.
|
||||
@ -567,8 +566,7 @@ class TTS:
|
||||
Stop the inference process.
|
||||
'''
|
||||
self.stop_flag = True
|
||||
|
||||
|
||||
|
||||
def run(self, inputs:dict):
|
||||
"""
|
||||
Text to speech inference.
|
||||
@ -596,156 +594,159 @@ class TTS:
|
||||
returns:
|
||||
tuple[int, np.ndarray]: sampling rate and audio data.
|
||||
"""
|
||||
########## variables initialization ###########
|
||||
self.stop_flag:bool = False
|
||||
text:str = inputs.get("text", "")
|
||||
text_lang:str = inputs.get("text_lang", "")
|
||||
ref_audio_path:str = inputs.get("ref_audio_path", "")
|
||||
prompt_text:str = inputs.get("prompt_text", "")
|
||||
prompt_lang:str = inputs.get("prompt_lang", "")
|
||||
top_k:int = inputs.get("top_k", 5)
|
||||
top_p:float = inputs.get("top_p", 1)
|
||||
temperature:float = inputs.get("temperature", 1)
|
||||
text_split_method:str = inputs.get("text_split_method", "cut0")
|
||||
batch_size = inputs.get("batch_size", 1)
|
||||
batch_threshold = inputs.get("batch_threshold", 0.75)
|
||||
speed_factor = inputs.get("speed_factor", 1.0)
|
||||
split_bucket = inputs.get("split_bucket", True)
|
||||
return_fragment = inputs.get("return_fragment", False)
|
||||
fragment_interval = inputs.get("fragment_interval", 0.3)
|
||||
seed = inputs.get("seed", -1)
|
||||
seed = -1 if seed in ["", None] else seed
|
||||
actual_seed = set_seed(seed)
|
||||
|
||||
if return_fragment:
|
||||
# split_bucket = False
|
||||
print(i18n("分段返回模式已开启"))
|
||||
def make_batch(batch_texts):
|
||||
batch_data = []
|
||||
print(i18n("############ 提取文本Bert特征 ############"))
|
||||
for text in tqdm(batch_texts):
|
||||
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text, text_lang)
|
||||
if phones is None:
|
||||
continue
|
||||
res={
|
||||
"phones": phones,
|
||||
"bert_features": bert_features,
|
||||
"norm_text": norm_text,
|
||||
}
|
||||
batch_data.append(res)
|
||||
if len(batch_data) == 0:
|
||||
return None
|
||||
batch, _ = self.to_batch(batch_data,
|
||||
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
||||
batch_size=batch_size,
|
||||
threshold=batch_threshold,
|
||||
split_bucket=False,
|
||||
device=self.configs.device,
|
||||
precision=self.precision
|
||||
)
|
||||
return batch[0]
|
||||
|
||||
# 直接给全体套一个torch.no_grad()
|
||||
with torch.no_grad():
|
||||
########## variables initialization ###########
|
||||
self.stop_flag:bool = False
|
||||
text:str = inputs.get("text", "")
|
||||
text_lang:str = inputs.get("text_lang", "")
|
||||
ref_audio_path:str = inputs.get("ref_audio_path", "")
|
||||
prompt_text:str = inputs.get("prompt_text", "")
|
||||
prompt_lang:str = inputs.get("prompt_lang", "")
|
||||
top_k:int = inputs.get("top_k", 5)
|
||||
top_p:float = inputs.get("top_p", 1)
|
||||
temperature:float = inputs.get("temperature", 1)
|
||||
text_split_method:str = inputs.get("text_split_method", "cut0")
|
||||
batch_size = inputs.get("batch_size", 1)
|
||||
batch_threshold = inputs.get("batch_threshold", 0.75)
|
||||
speed_factor = inputs.get("speed_factor", 1.0)
|
||||
split_bucket = inputs.get("split_bucket", True)
|
||||
return_fragment = inputs.get("return_fragment", False)
|
||||
fragment_interval = inputs.get("fragment_interval", 0.3)
|
||||
seed = inputs.get("seed", -1)
|
||||
seed = -1 if seed in ["", None] else seed
|
||||
actual_seed = set_seed(seed)
|
||||
|
||||
if return_fragment:
|
||||
# split_bucket = False
|
||||
print(i18n("分段返回模式已开启"))
|
||||
if split_bucket:
|
||||
split_bucket = False
|
||||
print(i18n("分段返回模式不支持分桶处理,已自动关闭分桶处理"))
|
||||
|
||||
if split_bucket:
|
||||
split_bucket = False
|
||||
print(i18n("分段返回模式不支持分桶处理,已自动关闭分桶处理"))
|
||||
|
||||
if split_bucket:
|
||||
print(i18n("分桶处理模式已开启"))
|
||||
|
||||
if fragment_interval<0.01:
|
||||
fragment_interval = 0.01
|
||||
print(i18n("分段间隔过小,已自动设置为0.01"))
|
||||
|
||||
no_prompt_text = False
|
||||
if prompt_text in [None, ""]:
|
||||
no_prompt_text = True
|
||||
|
||||
assert text_lang in self.configs.languages
|
||||
if not no_prompt_text:
|
||||
assert prompt_lang in self.configs.languages
|
||||
print(i18n("分桶处理模式已开启"))
|
||||
|
||||
if ref_audio_path in [None, ""] and \
|
||||
((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] is None)):
|
||||
raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
|
||||
if fragment_interval<0.01:
|
||||
fragment_interval = 0.01
|
||||
print(i18n("分段间隔过小,已自动设置为0.01"))
|
||||
|
||||
no_prompt_text = False
|
||||
if prompt_text in [None, ""]:
|
||||
no_prompt_text = True
|
||||
|
||||
###### setting reference audio and prompt text preprocessing ########
|
||||
t0 = ttime()
|
||||
if (ref_audio_path is not None) and (ref_audio_path != self.prompt_cache["ref_audio_path"]):
|
||||
assert text_lang in self.configs.languages
|
||||
if not no_prompt_text:
|
||||
assert prompt_lang in self.configs.languages
|
||||
|
||||
if ref_audio_path in [None, ""] and \
|
||||
((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] is None)):
|
||||
raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
|
||||
|
||||
###### setting reference audio and prompt text preprocessing ########
|
||||
t0 = ttime()
|
||||
if (ref_audio_path is not None) and (ref_audio_path != self.prompt_cache["ref_audio_path"]):
|
||||
self.set_ref_audio(ref_audio_path)
|
||||
|
||||
if not no_prompt_text:
|
||||
prompt_text = prompt_text.strip("\n")
|
||||
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_lang != "en" else "."
|
||||
print(i18n("实际输入的参考文本:"), prompt_text)
|
||||
if self.prompt_cache["prompt_text"] != prompt_text:
|
||||
self.prompt_cache["prompt_text"] = prompt_text
|
||||
self.prompt_cache["prompt_lang"] = prompt_lang
|
||||
phones, bert_features, norm_text = \
|
||||
self.text_preprocessor.segment_and_extract_feature_for_text(
|
||||
prompt_text,
|
||||
prompt_lang)
|
||||
self.prompt_cache["phones"] = phones
|
||||
self.prompt_cache["bert_features"] = bert_features
|
||||
self.prompt_cache["norm_text"] = norm_text
|
||||
|
||||
|
||||
###### text preprocessing ########
|
||||
t1 = ttime()
|
||||
data:list = None
|
||||
if not return_fragment:
|
||||
data = self.text_preprocessor.preprocess(text, text_lang, text_split_method)
|
||||
if len(data) == 0:
|
||||
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
|
||||
dtype=np.int16)
|
||||
return
|
||||
|
||||
batch_index_list:list = None
|
||||
data, batch_index_list = self.to_batch(data,
|
||||
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
||||
batch_size=batch_size,
|
||||
threshold=batch_threshold,
|
||||
split_bucket=split_bucket,
|
||||
device=self.configs.device,
|
||||
precision=self.precision
|
||||
)
|
||||
else:
|
||||
print(i18n("############ 切分文本 ############"))
|
||||
texts = self.text_preprocessor.pre_seg_text(text, text_lang, text_split_method)
|
||||
data = []
|
||||
for i in range(len(texts)):
|
||||
if i%batch_size == 0:
|
||||
data.append([])
|
||||
data[-1].append(texts[i])
|
||||
|
||||
def make_batch(batch_texts):
|
||||
batch_data = []
|
||||
print(i18n("############ 提取文本Bert特征 ############"))
|
||||
for text in tqdm(batch_texts):
|
||||
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text, text_lang)
|
||||
if phones is None:
|
||||
continue
|
||||
res={
|
||||
"phones": phones,
|
||||
"bert_features": bert_features,
|
||||
"norm_text": norm_text,
|
||||
}
|
||||
batch_data.append(res)
|
||||
if len(batch_data) == 0:
|
||||
return None
|
||||
batch, _ = self.to_batch(batch_data,
|
||||
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
||||
batch_size=batch_size,
|
||||
threshold=batch_threshold,
|
||||
split_bucket=False,
|
||||
device=self.configs.device,
|
||||
precision=self.precision
|
||||
)
|
||||
return batch[0]
|
||||
|
||||
t2 = ttime()
|
||||
try:
|
||||
print("############ 推理 ############")
|
||||
###### inference ######
|
||||
t_34 = 0.0
|
||||
t_45 = 0.0
|
||||
audio = []
|
||||
for item in data:
|
||||
t3 = ttime()
|
||||
if return_fragment:
|
||||
item = make_batch(item)
|
||||
if item is None:
|
||||
continue
|
||||
|
||||
batch_phones:List[torch.LongTensor] = item["phones"]
|
||||
batch_phones_len:torch.LongTensor = item["phones_len"]
|
||||
all_phoneme_ids:List[torch.LongTensor] = item["all_phones"]
|
||||
all_phoneme_lens:torch.LongTensor = item["all_phones_len"]
|
||||
all_bert_features:List[torch.LongTensor] = item["all_bert_features"]
|
||||
norm_text:str = item["norm_text"]
|
||||
|
||||
print(i18n("前端处理后的文本(每句):"), norm_text)
|
||||
if no_prompt_text :
|
||||
prompt = None
|
||||
else:
|
||||
prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device)
|
||||
|
||||
with torch.no_grad():
|
||||
if not no_prompt_text:
|
||||
prompt_text = prompt_text.strip("\n")
|
||||
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_lang != "en" else "."
|
||||
print(i18n("实际输入的参考文本:"), prompt_text)
|
||||
if self.prompt_cache["prompt_text"] != prompt_text:
|
||||
self.prompt_cache["prompt_text"] = prompt_text
|
||||
self.prompt_cache["prompt_lang"] = prompt_lang
|
||||
phones, bert_features, norm_text = \
|
||||
self.text_preprocessor.segment_and_extract_feature_for_text(
|
||||
prompt_text,
|
||||
prompt_lang)
|
||||
self.prompt_cache["phones"] = phones
|
||||
self.prompt_cache["bert_features"] = bert_features
|
||||
self.prompt_cache["norm_text"] = norm_text
|
||||
|
||||
###### text preprocessing ########
|
||||
t1 = ttime()
|
||||
data:list = None
|
||||
if not return_fragment:
|
||||
data = self.text_preprocessor.preprocess(text, text_lang, text_split_method)
|
||||
if len(data) == 0:
|
||||
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
|
||||
dtype=np.int16)
|
||||
return
|
||||
|
||||
batch_index_list:list = None
|
||||
data, batch_index_list = self.to_batch(data,
|
||||
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
||||
batch_size=batch_size,
|
||||
threshold=batch_threshold,
|
||||
split_bucket=split_bucket,
|
||||
device=self.configs.device,
|
||||
precision=self.precision
|
||||
)
|
||||
else:
|
||||
print(i18n("############ 切分文本 ############"))
|
||||
texts = self.text_preprocessor.pre_seg_text(text, text_lang, text_split_method)
|
||||
data = []
|
||||
for i in range(len(texts)):
|
||||
if i%batch_size == 0:
|
||||
data.append([])
|
||||
data[-1].append(texts[i])
|
||||
|
||||
|
||||
|
||||
t2 = ttime()
|
||||
try:
|
||||
print("############ 推理 ############")
|
||||
###### inference ######
|
||||
t_34 = 0.0
|
||||
t_45 = 0.0
|
||||
audio = []
|
||||
for item in data:
|
||||
t3 = ttime()
|
||||
if return_fragment:
|
||||
item = make_batch(item)
|
||||
if item is None:
|
||||
continue
|
||||
|
||||
batch_phones:List[torch.LongTensor] = item["phones"]
|
||||
batch_phones_len:torch.LongTensor = item["phones_len"]
|
||||
all_phoneme_ids:List[torch.LongTensor] = item["all_phones"]
|
||||
all_phoneme_lens:torch.LongTensor = item["all_phones_len"]
|
||||
all_bert_features:List[torch.LongTensor] = item["all_bert_features"]
|
||||
norm_text:str = item["norm_text"]
|
||||
|
||||
print(i18n("前端处理后的文本(每句):"), norm_text)
|
||||
if no_prompt_text :
|
||||
prompt = None
|
||||
else:
|
||||
prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device)
|
||||
|
||||
|
||||
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
|
||||
all_phoneme_ids,
|
||||
all_phoneme_lens,
|
||||
@ -757,97 +758,99 @@ class TTS:
|
||||
temperature=temperature,
|
||||
early_stop_num=self.configs.hz * self.configs.max_sec,
|
||||
)
|
||||
t4 = ttime()
|
||||
t_34 += t4 - t3
|
||||
|
||||
refer_audio_spec:torch.Tensor = self.prompt_cache["refer_spec"]\
|
||||
.to(dtype=self.precision, device=self.configs.device)
|
||||
|
||||
batch_audio_fragment = []
|
||||
t4 = ttime()
|
||||
t_34 += t4 - t3
|
||||
|
||||
# ## vits并行推理 method 1
|
||||
# pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
||||
# pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device)
|
||||
# pred_semantic = self.batch_sequences(pred_semantic_list, axis=0, pad_value=0).unsqueeze(0)
|
||||
# max_len = 0
|
||||
# for i in range(0, len(batch_phones)):
|
||||
# max_len = max(max_len, batch_phones[i].shape[-1])
|
||||
# batch_phones = self.batch_sequences(batch_phones, axis=0, pad_value=0, max_length=max_len)
|
||||
# batch_phones = batch_phones.to(self.configs.device)
|
||||
# batch_audio_fragment = (self.vits_model.batched_decode(
|
||||
# pred_semantic, pred_semantic_len, batch_phones, batch_phones_len,refer_audio_spec
|
||||
# ))
|
||||
|
||||
# ## vits并行推理 method 2
|
||||
pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
||||
upsample_rate = math.prod(self.vits_model.upsample_rates)
|
||||
audio_frag_idx = [pred_semantic_list[i].shape[0]*2*upsample_rate for i in range(0, len(pred_semantic_list))]
|
||||
audio_frag_end_idx = [ sum(audio_frag_idx[:i+1]) for i in range(0, len(audio_frag_idx))]
|
||||
all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device)
|
||||
_batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device)
|
||||
_batch_audio_fragment = (self.vits_model.decode(
|
||||
all_pred_semantic, _batch_phones, refer_audio_spec
|
||||
).detach()[0, 0, :])
|
||||
audio_frag_end_idx.insert(0, 0)
|
||||
batch_audio_fragment= [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))]
|
||||
|
||||
refer_audio_spec:torch.Tensor = self.prompt_cache["refer_spec"]\
|
||||
.to(dtype=self.precision, device=self.configs.device)
|
||||
|
||||
# ## vits串行推理
|
||||
# for i, idx in enumerate(idx_list):
|
||||
# phones = batch_phones[i].unsqueeze(0).to(self.configs.device)
|
||||
# _pred_semantic = (pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0)) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||
# audio_fragment =(self.vits_model.decode(
|
||||
# _pred_semantic, phones, refer_audio_spec
|
||||
# ).detach()[0, 0, :])
|
||||
# batch_audio_fragment.append(
|
||||
# audio_fragment
|
||||
# ) ###试试重建不带上prompt部分
|
||||
batch_audio_fragment = []
|
||||
|
||||
# 这里要记得加 torch.no_grad() 不然速度慢一大截
|
||||
# with torch.no_grad():
|
||||
|
||||
t5 = ttime()
|
||||
t_45 += t5 - t4
|
||||
if return_fragment:
|
||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4))
|
||||
yield self.audio_postprocess([batch_audio_fragment],
|
||||
# ## vits并行推理 method 1
|
||||
# pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
||||
# pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device)
|
||||
# pred_semantic = self.batch_sequences(pred_semantic_list, axis=0, pad_value=0).unsqueeze(0)
|
||||
# max_len = 0
|
||||
# for i in range(0, len(batch_phones)):
|
||||
# max_len = max(max_len, batch_phones[i].shape[-1])
|
||||
# batch_phones = self.batch_sequences(batch_phones, axis=0, pad_value=0, max_length=max_len)
|
||||
# batch_phones = batch_phones.to(self.configs.device)
|
||||
# batch_audio_fragment = (self.vits_model.batched_decode(
|
||||
# pred_semantic, pred_semantic_len, batch_phones, batch_phones_len,refer_audio_spec
|
||||
# ))
|
||||
|
||||
# ## vits并行推理 method 2
|
||||
pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
||||
upsample_rate = math.prod(self.vits_model.upsample_rates)
|
||||
audio_frag_idx = [pred_semantic_list[i].shape[0]*2*upsample_rate for i in range(0, len(pred_semantic_list))]
|
||||
audio_frag_end_idx = [ sum(audio_frag_idx[:i+1]) for i in range(0, len(audio_frag_idx))]
|
||||
all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device)
|
||||
_batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device)
|
||||
_batch_audio_fragment = (self.vits_model.decode(
|
||||
all_pred_semantic, _batch_phones, refer_audio_spec
|
||||
).detach()[0, 0, :])
|
||||
audio_frag_end_idx.insert(0, 0)
|
||||
batch_audio_fragment= [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))]
|
||||
|
||||
# ## vits串行推理
|
||||
# for i, idx in enumerate(idx_list):
|
||||
# phones = batch_phones[i].unsqueeze(0).to(self.configs.device)
|
||||
# _pred_semantic = (pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0)) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||
# audio_fragment =(self.vits_model.decode(
|
||||
# _pred_semantic, phones, refer_audio_spec
|
||||
# ).detach()[0, 0, :])
|
||||
# batch_audio_fragment.append(
|
||||
# audio_fragment
|
||||
# ) ###试试重建不带上prompt部分
|
||||
|
||||
t5 = ttime()
|
||||
t_45 += t5 - t4
|
||||
if return_fragment:
|
||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4))
|
||||
yield self.audio_postprocess([batch_audio_fragment],
|
||||
self.configs.sampling_rate,
|
||||
None,
|
||||
speed_factor,
|
||||
False,
|
||||
fragment_interval
|
||||
)
|
||||
else:
|
||||
audio.append(batch_audio_fragment)
|
||||
|
||||
if self.stop_flag:
|
||||
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
|
||||
dtype=np.int16)
|
||||
return
|
||||
|
||||
if not return_fragment:
|
||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45))
|
||||
yield self.audio_postprocess(audio,
|
||||
self.configs.sampling_rate,
|
||||
None,
|
||||
batch_index_list,
|
||||
speed_factor,
|
||||
False,
|
||||
split_bucket,
|
||||
fragment_interval
|
||||
)
|
||||
else:
|
||||
audio.append(batch_audio_fragment)
|
||||
|
||||
if self.stop_flag:
|
||||
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
|
||||
dtype=np.int16)
|
||||
return
|
||||
|
||||
if not return_fragment:
|
||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45))
|
||||
yield self.audio_postprocess(audio,
|
||||
self.configs.sampling_rate,
|
||||
batch_index_list,
|
||||
speed_factor,
|
||||
split_bucket,
|
||||
fragment_interval
|
||||
)
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
# 必须返回一个空音频, 否则会导致显存不释放。
|
||||
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
|
||||
dtype=np.int16)
|
||||
# 重置模型, 否则会导致显存释放不完全。
|
||||
del self.t2s_model
|
||||
del self.vits_model
|
||||
self.t2s_model = None
|
||||
self.vits_model = None
|
||||
self.init_t2s_weights(self.configs.t2s_weights_path)
|
||||
self.init_vits_weights(self.configs.vits_weights_path)
|
||||
raise e
|
||||
finally:
|
||||
self.empty_cache()
|
||||
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
# 必须返回一个空音频, 否则会导致显存不释放。
|
||||
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
|
||||
dtype=np.int16)
|
||||
# 重置模型, 否则会导致显存释放不完全。
|
||||
del self.t2s_model
|
||||
del self.vits_model
|
||||
self.t2s_model = None
|
||||
self.vits_model = None
|
||||
self.init_t2s_weights(self.configs.t2s_weights_path)
|
||||
self.init_vits_weights(self.configs.vits_weights_path)
|
||||
raise e
|
||||
finally:
|
||||
self.empty_cache()
|
||||
|
||||
def empty_cache(self):
|
||||
try:
|
||||
if "cuda" in str(self.configs.device):
|
||||
@ -856,7 +859,7 @@ class TTS:
|
||||
torch.mps.empty_cache()
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
def audio_postprocess(self,
|
||||
audio:List[torch.Tensor],
|
||||
sr:int,
|
||||
@ -870,36 +873,32 @@ class TTS:
|
||||
dtype=self.precision,
|
||||
device=self.configs.device
|
||||
)
|
||||
|
||||
|
||||
for i, batch in enumerate(audio):
|
||||
for j, audio_fragment in enumerate(batch):
|
||||
max_audio=torch.abs(audio_fragment).max()#简单防止16bit爆音
|
||||
if max_audio>1: audio_fragment/=max_audio
|
||||
audio_fragment:torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
|
||||
audio[i][j] = audio_fragment.cpu().numpy()
|
||||
|
||||
|
||||
|
||||
if split_bucket:
|
||||
audio = self.recovery_order(audio, batch_index_list)
|
||||
else:
|
||||
# audio = [item for batch in audio for item in batch]
|
||||
audio = sum(audio, [])
|
||||
|
||||
|
||||
|
||||
audio = np.concatenate(audio, 0)
|
||||
audio = (audio * 32768).astype(np.int16)
|
||||
|
||||
|
||||
try:
|
||||
if speed_factor != 1.0:
|
||||
audio = speed_change(audio, speed=speed_factor, sr=int(sr))
|
||||
except Exception as e:
|
||||
print(f"Failed to change speed of audio: \n{e}")
|
||||
|
||||
|
||||
return sr, audio
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def speed_change(input_audio:np.ndarray, speed:float, sr:int):
|
||||
# 将 NumPy 数组转换为原始 PCM 流
|
||||
raw_audio = input_audio.astype(np.int16).tobytes()
|
||||
@ -919,4 +918,4 @@ def speed_change(input_audio:np.ndarray, speed:float, sr:int):
|
||||
# 将管道输出解码为 NumPy 数组
|
||||
processed_audio = np.frombuffer(out, np.int16)
|
||||
|
||||
return processed_audio
|
||||
return processed_audio
|
||||
|
Loading…
x
Reference in New Issue
Block a user