mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-07 23:48:48 +08:00
Merge 7478a8a85622d2a4ff953b168cdd3748ccc49ce3 into 35e755427da174037da246642cab6987876c74fa
This commit is contained in:
commit
a93d60cb1a
@ -34,9 +34,6 @@ RUN if [ "$IMAGE_TYPE" != "elite" ]; then \
|
||||
fi
|
||||
|
||||
|
||||
# Copy the rest of the application
|
||||
COPY . /workspace
|
||||
|
||||
# Copy the rest of the application
|
||||
COPY . /workspace
|
||||
|
||||
|
@ -5,6 +5,7 @@ import random
|
||||
import traceback
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
import ffmpeg
|
||||
@ -26,6 +27,7 @@ from my_utils import load_audio
|
||||
from module.mel_processing import spectrogram_torch
|
||||
from TTS_infer_pack.text_segmentation_method import splits
|
||||
from TTS_infer_pack.TextPreprocessor import TextPreprocessor
|
||||
|
||||
i18n = I18nAuto()
|
||||
|
||||
# configs/tts_infer.yaml
|
||||
@ -49,7 +51,8 @@ custom:
|
||||
|
||||
"""
|
||||
|
||||
def set_seed(seed:int):
|
||||
|
||||
def set_seed(seed: int):
|
||||
seed = int(seed)
|
||||
seed = seed if seed != -1 else random.randrange(1 << 32)
|
||||
print(f"Set seed to {seed}")
|
||||
@ -70,50 +73,52 @@ def set_seed(seed:int):
|
||||
except:
|
||||
pass
|
||||
return seed
|
||||
|
||||
|
||||
|
||||
class TTS_Config:
|
||||
default_configs={
|
||||
"device": "cpu",
|
||||
"is_half": False,
|
||||
"t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||||
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth",
|
||||
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
||||
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
||||
}
|
||||
configs:dict = None
|
||||
def __init__(self, configs: Union[dict, str]=None):
|
||||
|
||||
default_configs = {
|
||||
"device": "cpu",
|
||||
"is_half": False,
|
||||
"t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||||
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth",
|
||||
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
||||
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
||||
"load_base": True,
|
||||
}
|
||||
configs: dict = None
|
||||
|
||||
def __init__(self, configs: Union[dict, str] = None):
|
||||
|
||||
# 设置默认配置文件路径
|
||||
configs_base_path:str = "GPT_SoVITS/configs/"
|
||||
configs_base_path: str = "GPT_SoVITS/configs/"
|
||||
os.makedirs(configs_base_path, exist_ok=True)
|
||||
self.configs_path:str = os.path.join(configs_base_path, "tts_infer.yaml")
|
||||
|
||||
self.configs_path: str = os.path.join(configs_base_path, "tts_infer.yaml")
|
||||
|
||||
if configs in ["", None]:
|
||||
if not os.path.exists(self.configs_path):
|
||||
self.save_configs()
|
||||
print(f"Create default config file at {self.configs_path}")
|
||||
configs:dict = {"default": deepcopy(self.default_configs)}
|
||||
|
||||
configs: dict = {"default": deepcopy(self.default_configs)}
|
||||
|
||||
if isinstance(configs, str):
|
||||
self.configs_path = configs
|
||||
configs:dict = self._load_configs(self.configs_path)
|
||||
|
||||
configs: dict = self._load_configs(self.configs_path)
|
||||
|
||||
assert isinstance(configs, dict)
|
||||
default_configs:dict = configs.get("default", None)
|
||||
default_configs: dict = configs.get("default", None)
|
||||
if default_configs is not None:
|
||||
self.default_configs = default_configs
|
||||
|
||||
self.configs:dict = configs.get("custom", deepcopy(self.default_configs))
|
||||
|
||||
|
||||
|
||||
self.configs: dict = configs.get("custom", deepcopy(self.default_configs))
|
||||
|
||||
self.device = self.configs.get("device", torch.device("cpu"))
|
||||
self.is_half = self.configs.get("is_half", False)
|
||||
self.t2s_weights_path = self.configs.get("t2s_weights_path", None)
|
||||
self.vits_weights_path = self.configs.get("vits_weights_path", None)
|
||||
self.bert_base_path = self.configs.get("bert_base_path", None)
|
||||
self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None)
|
||||
self.load_base = self.configs.get("load_base", True)
|
||||
|
||||
|
||||
if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)):
|
||||
self.t2s_weights_path = self.default_configs['t2s_weights_path']
|
||||
print(f"fall back to default t2s_weights_path: {self.t2s_weights_path}")
|
||||
@ -127,34 +132,32 @@ class TTS_Config:
|
||||
self.cnhuhbert_base_path = self.default_configs['cnhuhbert_base_path']
|
||||
print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}")
|
||||
self.update_configs()
|
||||
|
||||
|
||||
self.max_sec = None
|
||||
self.hz:int = 50
|
||||
self.semantic_frame_rate:str = "25hz"
|
||||
self.segment_size:int = 20480
|
||||
self.filter_length:int = 2048
|
||||
self.sampling_rate:int = 32000
|
||||
self.hop_length:int = 640
|
||||
self.win_length:int = 2048
|
||||
self.n_speakers:int = 300
|
||||
|
||||
self.languages:list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
|
||||
|
||||
|
||||
def _load_configs(self, configs_path: str)->dict:
|
||||
self.max_sec = None
|
||||
self.hz: int = 50
|
||||
self.semantic_frame_rate: str = "25hz"
|
||||
self.segment_size: int = 20480
|
||||
self.filter_length: int = 2048
|
||||
self.sampling_rate: int = 32000
|
||||
self.hop_length: int = 640
|
||||
self.win_length: int = 2048
|
||||
self.n_speakers: int = 300
|
||||
|
||||
self.languages: list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
|
||||
|
||||
def _load_configs(self, configs_path: str) -> dict:
|
||||
with open(configs_path, 'r') as f:
|
||||
configs = yaml.load(f, Loader=yaml.FullLoader)
|
||||
|
||||
|
||||
return configs
|
||||
|
||||
def save_configs(self, configs_path:str=None)->None:
|
||||
configs={
|
||||
"default":self.default_configs,
|
||||
def save_configs(self, configs_path: str = None) -> None:
|
||||
configs = {
|
||||
"default": self.default_configs,
|
||||
}
|
||||
if self.configs is not None:
|
||||
configs["custom"] = self.update_configs()
|
||||
|
||||
|
||||
if configs_path is None:
|
||||
configs_path = self.configs_path
|
||||
with open(configs_path, 'w') as f:
|
||||
@ -162,15 +165,16 @@ class TTS_Config:
|
||||
|
||||
def update_configs(self):
|
||||
self.config = {
|
||||
"device" : str(self.device),
|
||||
"is_half" : self.is_half,
|
||||
"t2s_weights_path" : self.t2s_weights_path,
|
||||
"vits_weights_path" : self.vits_weights_path,
|
||||
"bert_base_path" : self.bert_base_path,
|
||||
"device": str(self.device),
|
||||
"is_half": self.is_half,
|
||||
"t2s_weights_path": self.t2s_weights_path,
|
||||
"vits_weights_path": self.vits_weights_path,
|
||||
"bert_base_path": self.bert_base_path,
|
||||
"cnhuhbert_base_path": self.cnhuhbert_base_path,
|
||||
"load_base": self.load_base,
|
||||
}
|
||||
return self.config
|
||||
|
||||
|
||||
def __str__(self):
|
||||
self.configs = self.update_configs()
|
||||
string = "TTS Config".center(100, '-') + '\n'
|
||||
@ -178,75 +182,87 @@ class TTS_Config:
|
||||
string += f"{str(k).ljust(20)}: {str(v)}\n"
|
||||
string += "-" * 100 + '\n'
|
||||
return string
|
||||
|
||||
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
||||
|
||||
def __hash__(self):
|
||||
return hash(self.configs_path)
|
||||
|
||||
def __eq__(self, other):
|
||||
return isinstance(other, TTS_Config) and self.configs_path == other.configs_path
|
||||
|
||||
|
||||
class TTS:
|
||||
bert_tokenizer: AutoTokenizer = None
|
||||
bert_model: AutoModelForMaskedLM = None
|
||||
cnhuhbert_model: CNHubert = None
|
||||
|
||||
def __init__(self, configs: Union[dict, str, TTS_Config]):
|
||||
if isinstance(configs, TTS_Config):
|
||||
self.configs = configs
|
||||
else:
|
||||
self.configs:TTS_Config = TTS_Config(configs)
|
||||
|
||||
self.t2s_model:Text2SemanticLightningModule = None
|
||||
self.vits_model:SynthesizerTrn = None
|
||||
self.bert_tokenizer:AutoTokenizer = None
|
||||
self.bert_model:AutoModelForMaskedLM = None
|
||||
self.cnhuhbert_model:CNHubert = None
|
||||
|
||||
self._init_models()
|
||||
|
||||
self.text_preprocessor:TextPreprocessor = \
|
||||
TextPreprocessor(self.bert_model,
|
||||
self.bert_tokenizer,
|
||||
self.configs.device)
|
||||
|
||||
|
||||
self.prompt_cache:dict = {
|
||||
"ref_audio_path" : None,
|
||||
"prompt_semantic": None,
|
||||
"refer_spec" : None,
|
||||
"prompt_text" : None,
|
||||
"prompt_lang" : None,
|
||||
"phones" : None,
|
||||
"bert_features" : None,
|
||||
"norm_text" : None,
|
||||
}
|
||||
|
||||
|
||||
self.stop_flag:bool = False
|
||||
self.precision:torch.dtype = torch.float16 if self.configs.is_half else torch.float32
|
||||
self.configs: TTS_Config = TTS_Config(configs)
|
||||
|
||||
def _init_models(self,):
|
||||
self.t2s_model: Text2SemanticLightningModule = None
|
||||
self.vits_model: SynthesizerTrn = None
|
||||
# self.bert_tokenizer:AutoTokenizer = None
|
||||
# self.bert_model:AutoModelForMaskedLM = None
|
||||
# self.cnhuhbert_model:CNHubert = None
|
||||
|
||||
self._init_models()
|
||||
|
||||
self.text_preprocessor: TextPreprocessor = \
|
||||
TextPreprocessor(TTS.bert_model,
|
||||
TTS.bert_tokenizer,
|
||||
self.configs.device)
|
||||
|
||||
self.prompt_cache: dict = {
|
||||
"ref_audio_path": None,
|
||||
"prompt_semantic": None,
|
||||
"refer_spec": None,
|
||||
"prompt_text": None,
|
||||
"prompt_lang": None,
|
||||
"phones": None,
|
||||
"bert_features": None,
|
||||
"norm_text": None,
|
||||
}
|
||||
|
||||
self.stop_flag: bool = False
|
||||
self.precision: torch.dtype = torch.float16 if self.configs.is_half else torch.float32
|
||||
|
||||
def _init_models(self):
|
||||
self.init_t2s_weights(self.configs.t2s_weights_path)
|
||||
self.init_vits_weights(self.configs.vits_weights_path)
|
||||
self.init_bert_weights(self.configs.bert_base_path)
|
||||
self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path)
|
||||
if self.configs.load_base:
|
||||
TTS.init_bert_weights(self.configs)
|
||||
TTS.init_cnhuhbert_weights(self.configs)
|
||||
# self.enable_half_precision(self.configs.is_half)
|
||||
|
||||
|
||||
|
||||
def init_cnhuhbert_weights(self, base_path: str):
|
||||
print(f"Loading CNHuBERT weights from {base_path}")
|
||||
self.cnhuhbert_model = CNHubert(base_path)
|
||||
self.cnhuhbert_model=self.cnhuhbert_model.eval()
|
||||
self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device)
|
||||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||
self.cnhuhbert_model = self.cnhuhbert_model.half()
|
||||
|
||||
|
||||
|
||||
def init_bert_weights(self, base_path: str):
|
||||
print(f"Loading BERT weights from {base_path}")
|
||||
self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path)
|
||||
self.bert_model = AutoModelForMaskedLM.from_pretrained(base_path)
|
||||
self.bert_model=self.bert_model.eval()
|
||||
self.bert_model = self.bert_model.to(self.configs.device)
|
||||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||
self.bert_model = self.bert_model.half()
|
||||
|
||||
|
||||
@staticmethod
|
||||
def init_base_models(configs: TTS_Config):
|
||||
TTS.init_bert_weights(configs)
|
||||
TTS.init_cnhuhbert_weights(configs)
|
||||
|
||||
@staticmethod
|
||||
def init_cnhuhbert_weights(configs: TTS_Config):
|
||||
print(f"Loading CNHuBERT weights from {configs.cnhuhbert_base_path}")
|
||||
TTS.cnhuhbert_model = CNHubert(configs.cnhuhbert_base_path)
|
||||
TTS.cnhuhbert_model = TTS.cnhuhbert_model.eval()
|
||||
TTS.cnhuhbert_model = TTS.cnhuhbert_model.to(configs.device)
|
||||
if configs.is_half and str(configs.device) != "cpu":
|
||||
TTS.cnhuhbert_model = TTS.cnhuhbert_model.half()
|
||||
|
||||
@staticmethod
|
||||
def init_bert_weights(configs: TTS_Config):
|
||||
print(f"Loading BERT weights from {configs.bert_base_path}")
|
||||
TTS.bert_tokenizer = AutoTokenizer.from_pretrained(configs.bert_base_path)
|
||||
TTS.bert_model = AutoModelForMaskedLM.from_pretrained(configs.bert_base_path)
|
||||
TTS.bert_model = TTS.bert_model.eval()
|
||||
TTS.bert_model = TTS.bert_model.to(configs.device)
|
||||
if configs.is_half and str(configs.device) != "cpu":
|
||||
TTS.bert_model = TTS.bert_model.half()
|
||||
|
||||
def init_vits_weights(self, weights_path: str):
|
||||
print(f"Loading VITS weights from {weights_path}")
|
||||
self.configs.vits_weights_path = weights_path
|
||||
@ -255,7 +271,7 @@ class TTS:
|
||||
hps = dict_s2["config"]
|
||||
self.configs.filter_length = hps["data"]["filter_length"]
|
||||
self.configs.segment_size = hps["train"]["segment_size"]
|
||||
self.configs.sampling_rate = hps["data"]["sampling_rate"]
|
||||
self.configs.sampling_rate = hps["data"]["sampling_rate"]
|
||||
self.configs.hop_length = hps["data"]["hop_length"]
|
||||
self.configs.win_length = hps["data"]["win_length"]
|
||||
self.configs.n_speakers = hps["data"]["n_speakers"]
|
||||
@ -270,15 +286,14 @@ class TTS:
|
||||
# if ("pretrained" not in weights_path):
|
||||
if hasattr(vits_model, "enc_q"):
|
||||
del vits_model.enc_q
|
||||
|
||||
|
||||
vits_model = vits_model.to(self.configs.device)
|
||||
vits_model = vits_model.eval()
|
||||
vits_model.load_state_dict(dict_s2["weight"], strict=False)
|
||||
self.vits_model = vits_model
|
||||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||
if self.configs.is_half and str(self.configs.device) != "cpu":
|
||||
self.vits_model = self.vits_model.half()
|
||||
|
||||
|
||||
def init_t2s_weights(self, weights_path: str):
|
||||
print(f"Loading Text2Semantic weights from {weights_path}")
|
||||
self.configs.t2s_weights_path = weights_path
|
||||
@ -292,9 +307,9 @@ class TTS:
|
||||
t2s_model = t2s_model.to(self.configs.device)
|
||||
t2s_model = t2s_model.eval()
|
||||
self.t2s_model = t2s_model
|
||||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||
if self.configs.is_half and str(self.configs.device) != "cpu":
|
||||
self.t2s_model = self.t2s_model.half()
|
||||
|
||||
|
||||
def enable_half_precision(self, enable: bool = True):
|
||||
'''
|
||||
To enable half precision for the TTS model.
|
||||
@ -305,29 +320,29 @@ class TTS:
|
||||
if str(self.configs.device) == "cpu" and enable:
|
||||
print("Half precision is not supported on CPU.")
|
||||
return
|
||||
|
||||
|
||||
self.configs.is_half = enable
|
||||
self.precision = torch.float16 if enable else torch.float32
|
||||
self.configs.save_configs()
|
||||
if enable:
|
||||
if self.t2s_model is not None:
|
||||
self.t2s_model =self.t2s_model.half()
|
||||
self.t2s_model = self.t2s_model.half()
|
||||
if self.vits_model is not None:
|
||||
self.vits_model = self.vits_model.half()
|
||||
if self.bert_model is not None:
|
||||
self.bert_model =self.bert_model.half()
|
||||
if self.cnhuhbert_model is not None:
|
||||
self.cnhuhbert_model = self.cnhuhbert_model.half()
|
||||
if TTS.bert_model is not None:
|
||||
TTS.bert_model = TTS.bert_model.half()
|
||||
if TTS.cnhuhbert_model is not None:
|
||||
TTS.cnhuhbert_model = TTS.cnhuhbert_model.half()
|
||||
else:
|
||||
if self.t2s_model is not None:
|
||||
self.t2s_model = self.t2s_model.float()
|
||||
if self.vits_model is not None:
|
||||
self.vits_model = self.vits_model.float()
|
||||
if self.bert_model is not None:
|
||||
self.bert_model = self.bert_model.float()
|
||||
if self.cnhuhbert_model is not None:
|
||||
self.cnhuhbert_model = self.cnhuhbert_model.float()
|
||||
|
||||
if TTS.bert_model is not None:
|
||||
TTS.bert_model = TTS.bert_model.float()
|
||||
if TTS.cnhuhbert_model is not None:
|
||||
TTS.cnhuhbert_model = TTS.cnhuhbert_model.float()
|
||||
|
||||
def set_device(self, device: torch.device):
|
||||
'''
|
||||
To set the device for all models.
|
||||
@ -340,12 +355,12 @@ class TTS:
|
||||
self.t2s_model = self.t2s_model.to(device)
|
||||
if self.vits_model is not None:
|
||||
self.vits_model = self.vits_model.to(device)
|
||||
if self.bert_model is not None:
|
||||
self.bert_model = self.bert_model.to(device)
|
||||
if self.cnhuhbert_model is not None:
|
||||
self.cnhuhbert_model = self.cnhuhbert_model.to(device)
|
||||
|
||||
def set_ref_audio(self, ref_audio_path:str):
|
||||
if TTS.bert_model is not None:
|
||||
TTS.bert_model = TTS.bert_model.to(device)
|
||||
if TTS.cnhuhbert_model is not None:
|
||||
TTS.cnhuhbert_model = TTS.cnhuhbert_model.to(device)
|
||||
|
||||
def set_ref_audio(self, ref_audio_path: str):
|
||||
'''
|
||||
To set the reference audio for the TTS model,
|
||||
including the prompt_semantic and refer_spepc.
|
||||
@ -354,7 +369,7 @@ class TTS:
|
||||
'''
|
||||
self._set_prompt_semantic(ref_audio_path)
|
||||
self._set_ref_spec(ref_audio_path)
|
||||
|
||||
|
||||
def _set_ref_spec(self, ref_audio_path):
|
||||
audio = load_audio(ref_audio_path, int(self.configs.sampling_rate))
|
||||
audio = torch.FloatTensor(audio)
|
||||
@ -373,9 +388,8 @@ class TTS:
|
||||
spec = spec.half()
|
||||
# self.refer_spec = spec
|
||||
self.prompt_cache["refer_spec"] = spec
|
||||
|
||||
|
||||
def _set_prompt_semantic(self, ref_wav_path:str):
|
||||
|
||||
def _set_prompt_semantic(self, ref_wav_path: str):
|
||||
zero_wav = np.zeros(
|
||||
int(self.configs.sampling_rate * 0.3),
|
||||
dtype=np.float16 if self.configs.is_half else np.float32,
|
||||
@ -399,16 +413,16 @@ class TTS:
|
||||
1, 2
|
||||
) # .float()
|
||||
codes = self.vits_model.extract_latent(hubert_feature)
|
||||
|
||||
|
||||
prompt_semantic = codes[0, 0].to(self.configs.device)
|
||||
self.prompt_cache["prompt_semantic"] = prompt_semantic
|
||||
|
||||
def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length:int=None):
|
||||
|
||||
def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length: int = None):
|
||||
seq = sequences[0]
|
||||
ndim = seq.dim()
|
||||
if axis < 0:
|
||||
axis += ndim
|
||||
dtype:torch.dtype = seq.dtype
|
||||
dtype: torch.dtype = seq.dtype
|
||||
pad_value = torch.tensor(pad_value, dtype=dtype)
|
||||
seq_lengths = [seq.shape[axis] for seq in sequences]
|
||||
if max_length is None:
|
||||
@ -423,16 +437,16 @@ class TTS:
|
||||
padded_sequences.append(padded_seq)
|
||||
batch = torch.stack(padded_sequences)
|
||||
return batch
|
||||
|
||||
def to_batch(self, data:list,
|
||||
prompt_data:dict=None,
|
||||
batch_size:int=5,
|
||||
threshold:float=0.75,
|
||||
split_bucket:bool=True,
|
||||
device:torch.device=torch.device("cpu"),
|
||||
precision:torch.dtype=torch.float32,
|
||||
|
||||
def to_batch(self, data: list,
|
||||
prompt_data: dict = None,
|
||||
batch_size: int = 5,
|
||||
threshold: float = 0.75,
|
||||
split_bucket: bool = True,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
precision: torch.dtype = torch.float32,
|
||||
):
|
||||
_data:list = []
|
||||
_data: list = []
|
||||
index_and_len_list = []
|
||||
for idx, item in enumerate(data):
|
||||
norm_text_len = len(item["norm_text"])
|
||||
@ -441,33 +455,32 @@ class TTS:
|
||||
batch_index_list = []
|
||||
if split_bucket:
|
||||
index_and_len_list.sort(key=lambda x: x[1])
|
||||
index_and_len_list = np.array(index_and_len_list, dtype=np.int64)
|
||||
|
||||
index_and_len_list = np.array(index_and_len_list, dtype=np.int64)
|
||||
|
||||
batch_index_list_len = 0
|
||||
pos = 0
|
||||
while pos <index_and_len_list.shape[0]:
|
||||
while pos < index_and_len_list.shape[0]:
|
||||
# batch_index_list.append(index_and_len_list[pos:min(pos+batch_size,len(index_and_len_list))])
|
||||
pos_end = min(pos+batch_size,index_and_len_list.shape[0])
|
||||
pos_end = min(pos + batch_size, index_and_len_list.shape[0])
|
||||
while pos < pos_end:
|
||||
batch=index_and_len_list[pos:pos_end, 1].astype(np.float32)
|
||||
score=batch[(pos_end-pos)//2]/(batch.mean()+1e-8)
|
||||
if (score>=threshold) or (pos_end-pos==1):
|
||||
batch_index=index_and_len_list[pos:pos_end, 0].tolist()
|
||||
batch = index_and_len_list[pos:pos_end, 1].astype(np.float32)
|
||||
score = batch[(pos_end - pos) // 2] / (batch.mean() + 1e-8)
|
||||
if (score >= threshold) or (pos_end - pos == 1):
|
||||
batch_index = index_and_len_list[pos:pos_end, 0].tolist()
|
||||
batch_index_list_len += len(batch_index)
|
||||
batch_index_list.append(batch_index)
|
||||
pos = pos_end
|
||||
break
|
||||
pos_end=pos_end-1
|
||||
|
||||
pos_end = pos_end - 1
|
||||
|
||||
assert batch_index_list_len == len(data)
|
||||
|
||||
|
||||
else:
|
||||
for i in range(len(data)):
|
||||
if i%batch_size == 0:
|
||||
if i % batch_size == 0:
|
||||
batch_index_list.append([])
|
||||
batch_index_list[-1].append(i)
|
||||
|
||||
|
||||
for batch_idx, index_list in enumerate(batch_index_list):
|
||||
item_list = [data[idx] for idx in index_list]
|
||||
phones_list = []
|
||||
@ -481,33 +494,32 @@ class TTS:
|
||||
phones_max_len = 0
|
||||
for item in item_list:
|
||||
if prompt_data is not None:
|
||||
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\
|
||||
.to(dtype=precision, device=device)
|
||||
all_phones = torch.LongTensor(prompt_data["phones"]+item["phones"]).to(device)
|
||||
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1) \
|
||||
.to(dtype=precision, device=device)
|
||||
all_phones = torch.LongTensor(prompt_data["phones"] + item["phones"]).to(device)
|
||||
phones = torch.LongTensor(item["phones"]).to(device)
|
||||
# norm_text = prompt_data["norm_text"]+item["norm_text"]
|
||||
else:
|
||||
all_bert_features = item["bert_features"]\
|
||||
.to(dtype=precision, device=device)
|
||||
all_bert_features = item["bert_features"] \
|
||||
.to(dtype=precision, device=device)
|
||||
phones = torch.LongTensor(item["phones"]).to(device)
|
||||
all_phones = phones
|
||||
# norm_text = item["norm_text"]
|
||||
|
||||
bert_max_len = max(bert_max_len, all_bert_features.shape[-1])
|
||||
phones_max_len = max(phones_max_len, phones.shape[-1])
|
||||
|
||||
|
||||
phones_list.append(phones)
|
||||
phones_len_list.append(phones.shape[-1])
|
||||
all_phones_list.append(all_phones)
|
||||
all_phones_len_list.append(all_phones.shape[-1])
|
||||
all_bert_features_list.append(all_bert_features)
|
||||
norm_text_batch.append(item["norm_text"])
|
||||
|
||||
|
||||
phones_batch = phones_list
|
||||
all_phones_batch = all_phones_list
|
||||
all_bert_features_batch = all_bert_features_list
|
||||
|
||||
|
||||
|
||||
max_len = max(bert_max_len, phones_max_len)
|
||||
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
|
||||
#### 直接对phones和bert_features进行pad。(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略)
|
||||
@ -516,16 +528,16 @@ class TTS:
|
||||
# all_bert_features_batch = torch.zeros((len(all_bert_features_list), 1024, max_len), dtype=precision, device=device)
|
||||
# for idx, item in enumerate(all_bert_features_list):
|
||||
# all_bert_features_batch[idx, :, : item.shape[-1]] = item
|
||||
|
||||
|
||||
# #### 先对phones进行embedding、对bert_features进行project,再pad到相同长度,(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略)
|
||||
# all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list]
|
||||
# all_phones_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) for item in all_phones_list]
|
||||
# all_phones_batch = torch.stack(all_phones_list, dim=0)
|
||||
|
||||
|
||||
# all_bert_features_list = [self.t2s_model.model.bert_proj(item.to(self.t2s_model.device).transpose(0, 1)) for item in all_bert_features_list]
|
||||
# all_bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) for item in all_bert_features_list]
|
||||
# all_bert_features_batch = torch.stack(all_bert_features_list, dim=0)
|
||||
|
||||
|
||||
batch = {
|
||||
"phones": phones_batch,
|
||||
"phones_len": torch.LongTensor(phones_len_list).to(device),
|
||||
@ -536,10 +548,10 @@ class TTS:
|
||||
"max_len": max_len,
|
||||
}
|
||||
_data.append(batch)
|
||||
|
||||
|
||||
return _data, batch_index_list
|
||||
|
||||
def recovery_order(self, data:list, batch_index_list:list)->list:
|
||||
|
||||
def recovery_order(self, data: list, batch_index_list: list) -> list:
|
||||
'''
|
||||
Recovery the order of the audio according to the batch_index_list.
|
||||
|
||||
@ -551,20 +563,20 @@ class TTS:
|
||||
list (List[np.ndarray]): the data in the original order.
|
||||
'''
|
||||
length = len(sum(batch_index_list, []))
|
||||
_data = [None]*length
|
||||
_data = [None] * length
|
||||
for i, index_list in enumerate(batch_index_list):
|
||||
for j, index in enumerate(index_list):
|
||||
_data[index] = data[i][j]
|
||||
return _data
|
||||
|
||||
def stop(self,):
|
||||
def stop(self, ):
|
||||
'''
|
||||
Stop the inference process.
|
||||
'''
|
||||
self.stop_flag = True
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def run(self, inputs:dict):
|
||||
def run(self, inputs: dict):
|
||||
"""
|
||||
Text to speech inference.
|
||||
|
||||
@ -594,16 +606,16 @@ class TTS:
|
||||
tuple[int, np.ndarray]: sampling rate and audio data.
|
||||
"""
|
||||
########## variables initialization ###########
|
||||
self.stop_flag:bool = False
|
||||
text:str = inputs.get("text", "")
|
||||
text_lang:str = inputs.get("text_lang", "")
|
||||
ref_audio_path:str = inputs.get("ref_audio_path", "")
|
||||
prompt_text:str = inputs.get("prompt_text", "")
|
||||
prompt_lang:str = inputs.get("prompt_lang", "")
|
||||
top_k:int = inputs.get("top_k", 5)
|
||||
top_p:float = inputs.get("top_p", 1)
|
||||
temperature:float = inputs.get("temperature", 1)
|
||||
text_split_method:str = inputs.get("text_split_method", "cut0")
|
||||
self.stop_flag: bool = False
|
||||
text: str = inputs.get("text", "")
|
||||
text_lang: str = inputs.get("text_lang", "")
|
||||
ref_audio_path: str = inputs.get("ref_audio_path", "")
|
||||
prompt_text: str = inputs.get("prompt_text", "")
|
||||
prompt_lang: str = inputs.get("prompt_lang", "")
|
||||
top_k: int = inputs.get("top_k", 5)
|
||||
top_p: float = inputs.get("top_p", 1)
|
||||
temperature: float = inputs.get("temperature", 1)
|
||||
text_split_method: str = inputs.get("text_split_method", "cut0")
|
||||
batch_size = inputs.get("batch_size", 1)
|
||||
batch_threshold = inputs.get("batch_threshold", 0.75)
|
||||
speed_factor = inputs.get("speed_factor", 1.0)
|
||||
@ -632,7 +644,7 @@ class TTS:
|
||||
if split_bucket:
|
||||
print(i18n("分桶处理模式已开启"))
|
||||
|
||||
if fragment_interval<0.01:
|
||||
if fragment_interval < 0.01:
|
||||
fragment_interval = 0.01
|
||||
print(i18n("分段间隔过小,已自动设置为0.01"))
|
||||
|
||||
@ -645,8 +657,9 @@ class TTS:
|
||||
assert prompt_lang in self.configs.languages
|
||||
|
||||
if ref_audio_path in [None, ""] and \
|
||||
((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] is None)):
|
||||
raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
|
||||
((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] is None)):
|
||||
raise ValueError(
|
||||
"ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
|
||||
|
||||
###### setting reference audio and prompt text preprocessing ########
|
||||
t0 = ttime()
|
||||
@ -662,48 +675,49 @@ class TTS:
|
||||
self.prompt_cache["prompt_lang"] = prompt_lang
|
||||
phones, bert_features, norm_text = \
|
||||
self.text_preprocessor.segment_and_extract_feature_for_text(
|
||||
prompt_text,
|
||||
prompt_lang)
|
||||
prompt_text,
|
||||
prompt_lang)
|
||||
self.prompt_cache["phones"] = phones
|
||||
self.prompt_cache["bert_features"] = bert_features
|
||||
self.prompt_cache["norm_text"] = norm_text
|
||||
|
||||
###### text preprocessing ########
|
||||
t1 = ttime()
|
||||
data:list = None
|
||||
data: list = None
|
||||
if not return_fragment:
|
||||
data = self.text_preprocessor.preprocess(text, text_lang, text_split_method)
|
||||
if len(data) == 0:
|
||||
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
|
||||
dtype=np.int16)
|
||||
dtype=np.int16)
|
||||
return
|
||||
|
||||
batch_index_list:list = None
|
||||
data, batch_index_list = self.to_batch(data,
|
||||
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
||||
batch_size=batch_size,
|
||||
threshold=batch_threshold,
|
||||
split_bucket=split_bucket,
|
||||
device=self.configs.device,
|
||||
precision=self.precision
|
||||
)
|
||||
batch_index_list: list = None
|
||||
data, batch_index_list = self.to_batch(data,
|
||||
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
||||
batch_size=batch_size,
|
||||
threshold=batch_threshold,
|
||||
split_bucket=split_bucket,
|
||||
device=self.configs.device,
|
||||
precision=self.precision
|
||||
)
|
||||
else:
|
||||
print(i18n("############ 切分文本 ############"))
|
||||
texts = self.text_preprocessor.pre_seg_text(text, text_lang, text_split_method)
|
||||
data = []
|
||||
for i in range(len(texts)):
|
||||
if i%batch_size == 0:
|
||||
if i % batch_size == 0:
|
||||
data.append([])
|
||||
data[-1].append(texts[i])
|
||||
|
||||
|
||||
def make_batch(batch_texts):
|
||||
batch_data = []
|
||||
print(i18n("############ 提取文本Bert特征 ############"))
|
||||
for text in tqdm(batch_texts):
|
||||
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text, text_lang)
|
||||
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text,
|
||||
text_lang)
|
||||
if phones is None:
|
||||
continue
|
||||
res={
|
||||
res = {
|
||||
"phones": phones,
|
||||
"bert_features": bert_features,
|
||||
"norm_text": norm_text,
|
||||
@ -711,17 +725,16 @@ class TTS:
|
||||
batch_data.append(res)
|
||||
if len(batch_data) == 0:
|
||||
return None
|
||||
batch, _ = self.to_batch(batch_data,
|
||||
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
||||
batch_size=batch_size,
|
||||
threshold=batch_threshold,
|
||||
split_bucket=False,
|
||||
device=self.configs.device,
|
||||
precision=self.precision
|
||||
)
|
||||
batch, _ = self.to_batch(batch_data,
|
||||
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
||||
batch_size=batch_size,
|
||||
threshold=batch_threshold,
|
||||
split_bucket=False,
|
||||
device=self.configs.device,
|
||||
precision=self.precision
|
||||
)
|
||||
return batch[0]
|
||||
|
||||
|
||||
t2 = ttime()
|
||||
try:
|
||||
print("############ 推理 ############")
|
||||
@ -736,21 +749,21 @@ class TTS:
|
||||
if item is None:
|
||||
continue
|
||||
|
||||
batch_phones:List[torch.LongTensor] = item["phones"]
|
||||
batch_phones: List[torch.LongTensor] = item["phones"]
|
||||
# batch_phones:torch.LongTensor = item["phones"]
|
||||
batch_phones_len:torch.LongTensor = item["phones_len"]
|
||||
all_phoneme_ids:torch.LongTensor = item["all_phones"]
|
||||
all_phoneme_lens:torch.LongTensor = item["all_phones_len"]
|
||||
all_bert_features:torch.LongTensor = item["all_bert_features"]
|
||||
norm_text:str = item["norm_text"]
|
||||
batch_phones_len: torch.LongTensor = item["phones_len"]
|
||||
all_phoneme_ids: torch.LongTensor = item["all_phones"]
|
||||
all_phoneme_lens: torch.LongTensor = item["all_phones_len"]
|
||||
all_bert_features: torch.LongTensor = item["all_bert_features"]
|
||||
norm_text: str = item["norm_text"]
|
||||
max_len = item["max_len"]
|
||||
|
||||
print(i18n("前端处理后的文本(每句):"), norm_text)
|
||||
if no_prompt_text :
|
||||
if no_prompt_text:
|
||||
prompt = None
|
||||
else:
|
||||
prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device)
|
||||
|
||||
prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(
|
||||
self.configs.device)
|
||||
|
||||
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
|
||||
all_phoneme_ids,
|
||||
@ -768,14 +781,14 @@ class TTS:
|
||||
t4 = ttime()
|
||||
t_34 += t4 - t3
|
||||
|
||||
refer_audio_spec:torch.Tensor = self.prompt_cache["refer_spec"]\
|
||||
.to(dtype=self.precision, device=self.configs.device)
|
||||
refer_audio_spec: torch.Tensor = self.prompt_cache["refer_spec"] \
|
||||
.to(dtype=self.precision, device=self.configs.device)
|
||||
|
||||
batch_audio_fragment = []
|
||||
|
||||
# 这里要记得加 torch.no_grad() 不然速度慢一大截
|
||||
# with torch.no_grad():
|
||||
|
||||
|
||||
# ## vits并行推理 method 1
|
||||
# pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
||||
# pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device)
|
||||
@ -792,15 +805,17 @@ class TTS:
|
||||
# ## vits并行推理 method 2
|
||||
pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
||||
upsample_rate = math.prod(self.vits_model.upsample_rates)
|
||||
audio_frag_idx = [pred_semantic_list[i].shape[0]*2*upsample_rate for i in range(0, len(pred_semantic_list))]
|
||||
audio_frag_end_idx = [ sum(audio_frag_idx[:i+1]) for i in range(0, len(audio_frag_idx))]
|
||||
audio_frag_idx = [pred_semantic_list[i].shape[0] * 2 * upsample_rate for i in
|
||||
range(0, len(pred_semantic_list))]
|
||||
audio_frag_end_idx = [sum(audio_frag_idx[:i + 1]) for i in range(0, len(audio_frag_idx))]
|
||||
all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device)
|
||||
_batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device)
|
||||
_batch_audio_fragment = (self.vits_model.decode(
|
||||
all_pred_semantic, _batch_phones, refer_audio_spec
|
||||
).detach()[0, 0, :])
|
||||
all_pred_semantic, _batch_phones, refer_audio_spec
|
||||
).detach()[0, 0, :])
|
||||
audio_frag_end_idx.insert(0, 0)
|
||||
batch_audio_fragment= [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))]
|
||||
batch_audio_fragment = [_batch_audio_fragment[audio_frag_end_idx[i - 1]:audio_frag_end_idx[i]] for i in
|
||||
range(1, len(audio_frag_end_idx))]
|
||||
|
||||
# ## vits串行推理
|
||||
# for i, idx in enumerate(idx_list):
|
||||
@ -817,36 +832,36 @@ class TTS:
|
||||
t_45 += t5 - t4
|
||||
if return_fragment:
|
||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4))
|
||||
yield self.audio_postprocess([batch_audio_fragment],
|
||||
self.configs.sampling_rate,
|
||||
None,
|
||||
speed_factor,
|
||||
False,
|
||||
fragment_interval
|
||||
)
|
||||
yield self.audio_postprocess([batch_audio_fragment],
|
||||
self.configs.sampling_rate,
|
||||
None,
|
||||
speed_factor,
|
||||
False,
|
||||
fragment_interval
|
||||
)
|
||||
else:
|
||||
audio.append(batch_audio_fragment)
|
||||
|
||||
if self.stop_flag:
|
||||
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
|
||||
dtype=np.int16)
|
||||
dtype=np.int16)
|
||||
return
|
||||
|
||||
if not return_fragment:
|
||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45))
|
||||
yield self.audio_postprocess(audio,
|
||||
self.configs.sampling_rate,
|
||||
batch_index_list,
|
||||
speed_factor,
|
||||
split_bucket,
|
||||
fragment_interval
|
||||
)
|
||||
yield self.audio_postprocess(audio,
|
||||
self.configs.sampling_rate,
|
||||
batch_index_list,
|
||||
speed_factor,
|
||||
split_bucket,
|
||||
fragment_interval
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
# 必须返回一个空音频, 否则会导致显存不释放。
|
||||
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
|
||||
dtype=np.int16)
|
||||
dtype=np.int16)
|
||||
# 重置模型, 否则会导致显存释放不完全。
|
||||
del self.t2s_model
|
||||
del self.vits_model
|
||||
@ -857,60 +872,56 @@ class TTS:
|
||||
raise e
|
||||
finally:
|
||||
self.empty_cache()
|
||||
|
||||
|
||||
def empty_cache(self):
|
||||
try:
|
||||
try:
|
||||
if "cuda" in str(self.configs.device):
|
||||
torch.cuda.empty_cache()
|
||||
elif str(self.configs.device) == "mps":
|
||||
torch.mps.empty_cache()
|
||||
except:
|
||||
pass
|
||||
|
||||
def audio_postprocess(self,
|
||||
audio:List[torch.Tensor],
|
||||
sr:int,
|
||||
batch_index_list:list=None,
|
||||
speed_factor:float=1.0,
|
||||
split_bucket:bool=True,
|
||||
fragment_interval:float=0.3
|
||||
)->tuple[int, np.ndarray]:
|
||||
pass
|
||||
|
||||
def audio_postprocess(self,
|
||||
audio: List[torch.Tensor],
|
||||
sr: int,
|
||||
batch_index_list: list = None,
|
||||
speed_factor: float = 1.0,
|
||||
split_bucket: bool = True,
|
||||
fragment_interval: float = 0.3
|
||||
) -> tuple[int, np.ndarray]:
|
||||
zero_wav = torch.zeros(
|
||||
int(self.configs.sampling_rate * fragment_interval),
|
||||
dtype=self.precision,
|
||||
device=self.configs.device
|
||||
)
|
||||
|
||||
int(self.configs.sampling_rate * fragment_interval),
|
||||
dtype=self.precision,
|
||||
device=self.configs.device
|
||||
)
|
||||
|
||||
for i, batch in enumerate(audio):
|
||||
for j, audio_fragment in enumerate(batch):
|
||||
max_audio=torch.abs(audio_fragment).max()#简单防止16bit爆音
|
||||
if max_audio>1: audio_fragment/=max_audio
|
||||
audio_fragment:torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
|
||||
max_audio = torch.abs(audio_fragment).max() # 简单防止16bit爆音
|
||||
if max_audio > 1: audio_fragment /= max_audio
|
||||
audio_fragment: torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
|
||||
audio[i][j] = audio_fragment.cpu().numpy()
|
||||
|
||||
|
||||
|
||||
if split_bucket:
|
||||
audio = self.recovery_order(audio, batch_index_list)
|
||||
else:
|
||||
# audio = [item for batch in audio for item in batch]
|
||||
audio = sum(audio, [])
|
||||
|
||||
|
||||
|
||||
audio = np.concatenate(audio, 0)
|
||||
audio = (audio * 32768).astype(np.int16)
|
||||
|
||||
audio = (audio * 32768).astype(np.int16)
|
||||
|
||||
try:
|
||||
if speed_factor != 1.0:
|
||||
audio = speed_change(audio, speed=speed_factor, sr=int(sr))
|
||||
except Exception as e:
|
||||
print(f"Failed to change speed of audio: \n{e}")
|
||||
|
||||
|
||||
return sr, audio
|
||||
|
||||
|
||||
|
||||
|
||||
def speed_change(input_audio:np.ndarray, speed:float, sr:int):
|
||||
|
||||
|
||||
def speed_change(input_audio: np.ndarray, speed: float, sr: int):
|
||||
# 将 NumPy 数组转换为原始 PCM 流
|
||||
raw_audio = input_audio.astype(np.int16).tobytes()
|
||||
|
||||
@ -929,4 +940,4 @@ def speed_change(input_audio:np.ndarray, speed:float, sr:int):
|
||||
# 将管道输出解码为 NumPy 数组
|
||||
processed_audio = np.frombuffer(out, np.int16)
|
||||
|
||||
return processed_audio
|
||||
return processed_audio
|
||||
|
@ -1,6 +1,7 @@
|
||||
custom:
|
||||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||
load_base: true
|
||||
device: cuda
|
||||
is_half: true
|
||||
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||
|
15
GPT_SoVITS/configs/voices/voice1.yaml
Normal file
15
GPT_SoVITS/configs/voices/voice1.yaml
Normal file
@ -0,0 +1,15 @@
|
||||
custom:
|
||||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||
device: cpu
|
||||
is_half: false
|
||||
load_base: false
|
||||
t2s_weights_path: GPT_weights/voice1-e10.ckpt
|
||||
vits_weights_path: SoVITS_weights/voice1_e8_s192.pth
|
||||
default:
|
||||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||
device: cpu
|
||||
is_half: false
|
||||
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
15
GPT_SoVITS/configs/voices/voice2.yaml
Normal file
15
GPT_SoVITS/configs/voices/voice2.yaml
Normal file
@ -0,0 +1,15 @@
|
||||
custom:
|
||||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||
device: cpu
|
||||
is_half: false
|
||||
load_base: false
|
||||
t2s_weights_path: GPT_weights/voice1-e10.ckpt
|
||||
vits_weights_path: SoVITS_weights/voice1_e8_s192.pth
|
||||
default:
|
||||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||
device: cpu
|
||||
is_half: false
|
||||
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
470
api_v3.py
Normal file
470
api_v3.py
Normal file
@ -0,0 +1,470 @@
|
||||
"""
|
||||
# WebAPI文档 (3.0) - 使用了缓存技术,初始化时使用LRU Cache TTS 实例,缓存加载模型的世界,达到减少切换不同语音时的推理时间
|
||||
|
||||
` python api_v2.py -a 127.0.0.1 -p 9880 -c GPT_SoVITS/configs/tts_infer.yaml `
|
||||
|
||||
## 执行参数:
|
||||
`-a` - `绑定地址, 默认"127.0.0.1"`
|
||||
`-p` - `绑定端口, 默认9880`
|
||||
`-c` - `TTS配置文件路径, 默认"GPT_SoVITS/configs/tts_infer.yaml"`
|
||||
|
||||
## 调用:
|
||||
|
||||
### 推理
|
||||
|
||||
endpoint: `/tts`
|
||||
GET:
|
||||
```
|
||||
http://127.0.0.1:9880/tts?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_lang=zh&ref_audio_path=archive_jingyuan_1.wav&prompt_lang=zh&prompt_text=我是「罗浮」云骑将军景元。不必拘谨,「将军」只是一时的身份,你称呼我景元便可&text_split_method=cut5&batch_size=1&media_type=wav&streaming_mode=true
|
||||
```
|
||||
|
||||
POST:
|
||||
```json
|
||||
{
|
||||
"text": "", # str.(required) text to be synthesized
|
||||
"text_lang": "", # str.(required) language of the text to be synthesized
|
||||
"ref_audio_path": "", # str.(required) reference audio path.
|
||||
"prompt_text": "", # str.(optional) prompt text for the reference audio
|
||||
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio
|
||||
"top_k": 5, # int.(optional) top k sampling
|
||||
"top_p": 1, # float.(optional) top p sampling
|
||||
"temperature": 1, # float.(optional) temperature for sampling
|
||||
"text_split_method": "cut5", # str.(optional) text split method, see text_segmentation_method.py for details.
|
||||
"batch_size": 1, # int.(optional) batch size for inference
|
||||
"batch_threshold": 0.75, # float.(optional) threshold for batch splitting.
|
||||
"split_bucket": true, # bool.(optional) whether to split the batch into multiple buckets.
|
||||
"speed_factor":1.0, # float.(optional) control the speed of the synthesized audio.
|
||||
"fragment_interval":0.3, # float.(optional) to control the interval of the audio fragment.
|
||||
"seed": -1, # int.(optional) random seed for reproducibility.
|
||||
"media_type": "wav", # str.(optional) media type of the output audio, support "wav", "raw", "ogg", "aac".
|
||||
"streaming_mode": false, # bool.(optional) whether to return a streaming response.
|
||||
"parallel_infer": True, # bool.(optional) whether to use parallel inference.
|
||||
"repetition_penalty": 1.35, # float.(optional) repetition penalty for T2S model.
|
||||
"tts_infer_yaml_path": “GPT_SoVITS/configs/tts_infer.yaml” # str.(optional) tts infer yaml path
|
||||
}
|
||||
```
|
||||
|
||||
RESP:
|
||||
成功: 直接返回 wav 音频流, http code 200
|
||||
失败: 返回包含错误信息的 json, http code 400
|
||||
|
||||
### 命令控制
|
||||
|
||||
endpoint: `/control`
|
||||
|
||||
command:
|
||||
"restart": 重新运行
|
||||
"exit": 结束运行
|
||||
|
||||
GET:
|
||||
```
|
||||
http://127.0.0.1:9880/control?command=restart
|
||||
```
|
||||
POST:
|
||||
```json
|
||||
{
|
||||
"command": "restart"
|
||||
}
|
||||
```
|
||||
|
||||
RESP: 无
|
||||
|
||||
|
||||
### 切换GPT模型
|
||||
|
||||
endpoint: `/set_gpt_weights`
|
||||
|
||||
GET:
|
||||
```
|
||||
http://127.0.0.1:9880/set_gpt_weights?weights_path=GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||
```
|
||||
RESP:
|
||||
成功: 返回"success", http code 200
|
||||
失败: 返回包含错误信息的 json, http code 400
|
||||
|
||||
|
||||
### 切换Sovits模型
|
||||
|
||||
endpoint: `/set_sovits_weights`
|
||||
|
||||
GET:
|
||||
```
|
||||
http://127.0.0.1:9880/set_sovits_weights?weights_path=GPT_SoVITS/pretrained_models/s2G488k.pth
|
||||
```
|
||||
|
||||
RESP:
|
||||
成功: 返回"success", http code 200
|
||||
失败: 返回包含错误信息的 json, http code 400
|
||||
|
||||
"""
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
from typing import Generator
|
||||
|
||||
import torch
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
sys.path.append("%s/GPT_SoVITS" % (now_dir))
|
||||
|
||||
import argparse
|
||||
import subprocess
|
||||
import wave
|
||||
import signal
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
from fastapi import Response
|
||||
from fastapi.responses import JSONResponse
|
||||
from fastapi import FastAPI
|
||||
import uvicorn
|
||||
from io import BytesIO
|
||||
from GPT_SoVITS.TTS_infer_pack.TTS import TTS, TTS_Config
|
||||
from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import get_method_names as get_cut_method_names
|
||||
from fastapi.responses import StreamingResponse
|
||||
from pydantic import BaseModel
|
||||
from functools import lru_cache
|
||||
|
||||
cut_method_names = get_cut_method_names()
|
||||
|
||||
parser = argparse.ArgumentParser(description="GPT-SoVITS api")
|
||||
parser.add_argument("-a", "--bind_addr", type=str, default="0.0.0.0", help="default: 0.0.0.0")
|
||||
parser.add_argument("-p", "--port", type=int, default="9880", help="default: 9880")
|
||||
args = parser.parse_args()
|
||||
port = args.port
|
||||
host = args.bind_addr
|
||||
argv = sys.argv
|
||||
|
||||
default_tts_config = TTS_Config()
|
||||
TTS.init_base_models(default_tts_config)
|
||||
|
||||
APP = FastAPI()
|
||||
|
||||
|
||||
class TTS_Request(BaseModel):
|
||||
text: str = None
|
||||
text_lang: str = None
|
||||
ref_audio_path: str = None
|
||||
prompt_lang: str = None
|
||||
prompt_text: str = ""
|
||||
top_k: int = 5
|
||||
top_p: float = 1
|
||||
temperature: float = 1
|
||||
text_split_method: str = "cut5"
|
||||
batch_size: int = 1
|
||||
batch_threshold: float = 0.75
|
||||
split_bucket: bool = True
|
||||
speed_factor: float = 1.0
|
||||
fragment_interval: float = 0.3
|
||||
seed: int = -1
|
||||
media_type: str = "wav"
|
||||
streaming_mode: bool = False
|
||||
parallel_infer: bool = True
|
||||
repetition_penalty: float = 1.35
|
||||
tts_infer_yaml_path: str = None
|
||||
"""推理时需要加载的声音模型的yaml配置文件路径,如:GPT_SoVITS/configs/tts_infer.yaml"""
|
||||
|
||||
|
||||
@lru_cache(maxsize=10)
|
||||
def get_tts_instance(tts_config: TTS_Config) -> TTS:
|
||||
print(f"load tts config from {tts_config.configs_path}")
|
||||
return TTS(tts_config)
|
||||
|
||||
|
||||
def pack_ogg(io_buffer: BytesIO, data: np.ndarray, rate: int):
|
||||
"""modify from https://github.com/RVC-Boss/GPT-SoVITS/pull/894/files"""
|
||||
with sf.SoundFile(io_buffer, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file:
|
||||
audio_file.write(data)
|
||||
return io_buffer
|
||||
|
||||
|
||||
def pack_raw(io_buffer: BytesIO, data: np.ndarray, rate: int):
|
||||
io_buffer.write(data.tobytes())
|
||||
return io_buffer
|
||||
|
||||
|
||||
def pack_wav(io_buffer: BytesIO, data: np.ndarray, rate: int):
|
||||
io_buffer = BytesIO()
|
||||
sf.write(io_buffer, data, rate, format='wav')
|
||||
return io_buffer
|
||||
|
||||
|
||||
def pack_aac(io_buffer: BytesIO, data: np.ndarray, rate: int):
|
||||
process = subprocess.Popen([
|
||||
'ffmpeg',
|
||||
'-f', 's16le', # 输入16位有符号小端整数PCM
|
||||
'-ar', str(rate), # 设置采样率
|
||||
'-ac', '1', # 单声道
|
||||
'-i', 'pipe:0', # 从管道读取输入
|
||||
'-c:a', 'aac', # 音频编码器为AAC
|
||||
'-b:a', '192k', # 比特率
|
||||
'-vn', # 不包含视频
|
||||
'-f', 'adts', # 输出AAC数据流格式
|
||||
'pipe:1' # 将输出写入管道
|
||||
], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
out, _ = process.communicate(input=data.tobytes())
|
||||
io_buffer.write(out)
|
||||
return io_buffer
|
||||
|
||||
|
||||
def pack_audio(io_buffer: BytesIO, data: np.ndarray, rate: int, media_type: str):
|
||||
if media_type == "ogg":
|
||||
io_buffer = pack_ogg(io_buffer, data, rate)
|
||||
elif media_type == "aac":
|
||||
io_buffer = pack_aac(io_buffer, data, rate)
|
||||
elif media_type == "wav":
|
||||
io_buffer = pack_wav(io_buffer, data, rate)
|
||||
else:
|
||||
io_buffer = pack_raw(io_buffer, data, rate)
|
||||
io_buffer.seek(0)
|
||||
return io_buffer
|
||||
|
||||
|
||||
# from https://huggingface.co/spaces/coqui/voice-chat-with-mistral/blob/main/app.py
|
||||
def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=32000):
|
||||
# This will create a wave header then append the frame input
|
||||
# It should be first on a streaming wav file
|
||||
# Other frames better should not have it (else you will hear some artifacts each chunk start)
|
||||
wav_buf = BytesIO()
|
||||
with wave.open(wav_buf, "wb") as vfout:
|
||||
vfout.setnchannels(channels)
|
||||
vfout.setsampwidth(sample_width)
|
||||
vfout.setframerate(sample_rate)
|
||||
vfout.writeframes(frame_input)
|
||||
|
||||
wav_buf.seek(0)
|
||||
return wav_buf.read()
|
||||
|
||||
|
||||
def handle_control(command: str):
|
||||
if command == "restart":
|
||||
os.execl(sys.executable, sys.executable, *argv)
|
||||
elif command == "exit":
|
||||
os.kill(os.getpid(), signal.SIGTERM)
|
||||
exit(0)
|
||||
|
||||
|
||||
def check_params(req: dict, tts_config: TTS_Config):
|
||||
text: str = req.get("text", "")
|
||||
text_lang: str = req.get("text_lang", "")
|
||||
ref_audio_path: str = req.get("ref_audio_path", "")
|
||||
streaming_mode: bool = req.get("streaming_mode", False)
|
||||
media_type: str = req.get("media_type", "wav")
|
||||
prompt_lang: str = req.get("prompt_lang", "")
|
||||
text_split_method: str = req.get("text_split_method", "cut5")
|
||||
|
||||
if ref_audio_path in [None, ""]:
|
||||
return JSONResponse(status_code=400, content={"message": "ref_audio_path is required"})
|
||||
if text in [None, ""]:
|
||||
return JSONResponse(status_code=400, content={"message": "text is required"})
|
||||
if (text_lang in [None, ""]):
|
||||
return JSONResponse(status_code=400, content={"message": "text_lang is required"})
|
||||
elif text_lang.lower() not in tts_config.languages:
|
||||
return JSONResponse(status_code=400, content={"message": "text_lang is not supported"})
|
||||
if (prompt_lang in [None, ""]):
|
||||
return JSONResponse(status_code=400, content={"message": "prompt_lang is required"})
|
||||
elif prompt_lang.lower() not in tts_config.languages:
|
||||
return JSONResponse(status_code=400, content={"message": "prompt_lang is not supported"})
|
||||
if media_type not in ["wav", "raw", "ogg", "aac"]:
|
||||
return JSONResponse(status_code=400, content={"message": "media_type is not supported"})
|
||||
elif media_type == "ogg" and not streaming_mode:
|
||||
return JSONResponse(status_code=400, content={"message": "ogg format is not supported in non-streaming mode"})
|
||||
|
||||
if text_split_method not in cut_method_names:
|
||||
return JSONResponse(status_code=400,
|
||||
content={"message": f"text_split_method:{text_split_method} is not supported"})
|
||||
|
||||
return None
|
||||
|
||||
|
||||
async def tts_handle(req: dict):
|
||||
"""
|
||||
Text to speech handler.
|
||||
|
||||
Args:
|
||||
req (dict):
|
||||
{
|
||||
"text": "", # str.(required) text to be synthesized
|
||||
"text_lang: "", # str.(required) language of the text to be synthesized
|
||||
"ref_audio_path": "", # str.(required) reference audio path
|
||||
"prompt_text": "", # str.(optional) prompt text for the reference audio
|
||||
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio
|
||||
"top_k": 5, # int. top k sampling
|
||||
"top_p": 1, # float. top p sampling
|
||||
"temperature": 1, # float. temperature for sampling
|
||||
"text_split_method": "cut5", # str. text split method, see text_segmentation_method.py for details.
|
||||
"batch_size": 1, # int. batch size for inference
|
||||
"batch_threshold": 0.75, # float. threshold for batch splitting.
|
||||
"split_bucket: True, # bool. whether to split the batch into multiple buckets.
|
||||
"speed_factor":1.0, # float. control the speed of the synthesized audio.
|
||||
"fragment_interval":0.3, # float. to control the interval of the audio fragment.
|
||||
"seed": -1, # int. random seed for reproducibility.
|
||||
"media_type": "wav", # str. media type of the output audio, support "wav", "raw", "ogg", "aac".
|
||||
"streaming_mode": False, # bool. whether to return a streaming response.
|
||||
"parallel_infer": True, # bool.(optional) whether to use parallel inference.
|
||||
"repetition_penalty": 1.35 # float.(optional) repetition penalty for T2S model.
|
||||
}
|
||||
returns:
|
||||
StreamingResponse: audio stream response.
|
||||
"""
|
||||
|
||||
streaming_mode = req.get("streaming_mode", False)
|
||||
media_type = req.get("media_type", "wav")
|
||||
tts_infer_yaml_path = req.get("tts_infer_yaml_path", "GPT_SoVITS/configs/tts_infer.yaml")
|
||||
|
||||
tts_config = TTS_Config(tts_infer_yaml_path)
|
||||
check_res = check_params(req, tts_config)
|
||||
if check_res is not None:
|
||||
return check_res
|
||||
|
||||
if streaming_mode:
|
||||
req["return_fragment"] = True
|
||||
|
||||
try:
|
||||
tts_instance = get_tts_instance(tts_config)
|
||||
|
||||
move_to_gpu(tts_instance, tts_config)
|
||||
|
||||
tts_generator = tts_instance.run(req)
|
||||
|
||||
if streaming_mode:
|
||||
def streaming_generator(tts_generator: Generator, media_type: str):
|
||||
if media_type == "wav":
|
||||
yield wave_header_chunk()
|
||||
media_type = "raw"
|
||||
for sr, chunk in tts_generator:
|
||||
yield pack_audio(BytesIO(), chunk, sr, media_type).getvalue()
|
||||
move_to_cpu(tts_instance)
|
||||
|
||||
# _media_type = f"audio/{media_type}" if not (streaming_mode and media_type in ["wav", "raw"]) else f"audio/x-{media_type}"
|
||||
return StreamingResponse(streaming_generator(tts_generator, media_type, ), media_type=f"audio/{media_type}")
|
||||
|
||||
else:
|
||||
sr, audio_data = next(tts_generator)
|
||||
audio_data = pack_audio(BytesIO(), audio_data, sr, media_type).getvalue()
|
||||
move_to_cpu(tts_instance)
|
||||
return Response(audio_data, media_type=f"audio/{media_type}")
|
||||
except Exception as e:
|
||||
return JSONResponse(status_code=400, content={"message": f"tts failed", "Exception": str(e)})
|
||||
|
||||
|
||||
def move_to_cpu(tts):
|
||||
cpu_device = torch.device('cpu')
|
||||
tts.set_device(cpu_device)
|
||||
print("Moved TTS models to CPU to save GPU memory.")
|
||||
|
||||
|
||||
def move_to_gpu(tts: TTS, tts_config: TTS_Config):
|
||||
tts.set_device(tts_config.device)
|
||||
print("Moved TTS models back to GPU for performance.")
|
||||
|
||||
|
||||
@APP.get("/control")
|
||||
async def control(command: str = None):
|
||||
if command is None:
|
||||
return JSONResponse(status_code=400, content={"message": "command is required"})
|
||||
handle_control(command)
|
||||
|
||||
|
||||
@APP.get("/tts")
|
||||
async def tts_get_endpoint(
|
||||
text: str = None,
|
||||
text_lang: str = None,
|
||||
ref_audio_path: str = None,
|
||||
prompt_lang: str = None,
|
||||
prompt_text: str = "",
|
||||
top_k: int = 5,
|
||||
top_p: float = 1,
|
||||
temperature: float = 1,
|
||||
text_split_method: str = "cut0",
|
||||
batch_size: int = 1,
|
||||
batch_threshold: float = 0.75,
|
||||
split_bucket: bool = True,
|
||||
speed_factor: float = 1.0,
|
||||
fragment_interval: float = 0.3,
|
||||
seed: int = -1,
|
||||
media_type: str = "wav",
|
||||
streaming_mode: bool = False,
|
||||
parallel_infer: bool = True,
|
||||
repetition_penalty: float = 1.35,
|
||||
tts_infer_yaml_path: str = "GPT_SoVITS/configs/tts_infer.yaml"
|
||||
):
|
||||
req = {
|
||||
"text": text,
|
||||
"text_lang": text_lang.lower(),
|
||||
"ref_audio_path": ref_audio_path,
|
||||
"prompt_text": prompt_text,
|
||||
"prompt_lang": prompt_lang.lower(),
|
||||
"top_k": top_k,
|
||||
"top_p": top_p,
|
||||
"temperature": temperature,
|
||||
"text_split_method": text_split_method,
|
||||
"batch_size": int(batch_size),
|
||||
"batch_threshold": float(batch_threshold),
|
||||
"speed_factor": float(speed_factor),
|
||||
"split_bucket": split_bucket,
|
||||
"fragment_interval": fragment_interval,
|
||||
"seed": seed,
|
||||
"media_type": media_type,
|
||||
"streaming_mode": streaming_mode,
|
||||
"parallel_infer": parallel_infer,
|
||||
"repetition_penalty": float(repetition_penalty),
|
||||
"tts_infer_yaml_path": tts_infer_yaml_path
|
||||
}
|
||||
|
||||
return await tts_handle(req)
|
||||
|
||||
|
||||
@APP.post("/tts")
|
||||
async def tts_post_endpoint(request: TTS_Request):
|
||||
req = request.dict()
|
||||
return await tts_handle(req)
|
||||
|
||||
|
||||
@APP.get("/set_refer_audio")
|
||||
async def set_refer_audio(refer_audio_path: str = None, tts_infer_yaml_path: str = "GPT_SoVITS/configs/tts_infer.yaml"):
|
||||
try:
|
||||
tts_config = TTS_Config(tts_infer_yaml_path)
|
||||
tts_instance = get_tts_instance(tts_config)
|
||||
tts_instance.set_ref_audio(refer_audio_path)
|
||||
except Exception as e:
|
||||
return JSONResponse(status_code=400, content={"message": f"set refer audio failed", "Exception": str(e)})
|
||||
return JSONResponse(status_code=200, content={"message": "success"})
|
||||
|
||||
|
||||
@APP.get("/set_gpt_weights")
|
||||
async def set_gpt_weights(weights_path: str = None, tts_infer_yaml_path: str = "GPT_SoVITS/configs/tts_infer.yaml"):
|
||||
try:
|
||||
if weights_path in ["", None]:
|
||||
return JSONResponse(status_code=400, content={"message": "gpt weight path is required"})
|
||||
|
||||
tts_config = TTS_Config(tts_infer_yaml_path)
|
||||
tts_instance = get_tts_instance(tts_config)
|
||||
tts_instance.init_t2s_weights(weights_path)
|
||||
except Exception as e:
|
||||
return JSONResponse(status_code=400, content={"message": f"change gpt weight failed", "Exception": str(e)})
|
||||
|
||||
return JSONResponse(status_code=200, content={"message": "success"})
|
||||
|
||||
|
||||
@APP.get("/set_sovits_weights")
|
||||
async def set_sovits_weights(weights_path: str = None, tts_infer_yaml_path: str = "GPT_SoVITS/configs/tts_infer.yaml"):
|
||||
try:
|
||||
if weights_path in ["", None]:
|
||||
return JSONResponse(status_code=400, content={"message": "sovits weight path is required"})
|
||||
|
||||
tts_config = TTS_Config(tts_infer_yaml_path)
|
||||
tts_instance = get_tts_instance(tts_config)
|
||||
tts_instance.init_vits_weights(weights_path)
|
||||
except Exception as e:
|
||||
return JSONResponse(status_code=400, content={"message": f"change sovits weight failed", "Exception": str(e)})
|
||||
return JSONResponse(status_code=200, content={"message": "success"})
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
uvicorn.run(APP, host=host, port=port, workers=1)
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
os.kill(os.getpid(), signal.SIGTERM)
|
||||
exit(0)
|
Loading…
x
Reference in New Issue
Block a user