mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-07 23:48:48 +08:00
Merge 7478a8a85622d2a4ff953b168cdd3748ccc49ce3 into 35e755427da174037da246642cab6987876c74fa
This commit is contained in:
commit
a93d60cb1a
@ -34,9 +34,6 @@ RUN if [ "$IMAGE_TYPE" != "elite" ]; then \
|
|||||||
fi
|
fi
|
||||||
|
|
||||||
|
|
||||||
# Copy the rest of the application
|
|
||||||
COPY . /workspace
|
|
||||||
|
|
||||||
# Copy the rest of the application
|
# Copy the rest of the application
|
||||||
COPY . /workspace
|
COPY . /workspace
|
||||||
|
|
||||||
|
@ -5,6 +5,7 @@ import random
|
|||||||
import traceback
|
import traceback
|
||||||
|
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
now_dir = os.getcwd()
|
now_dir = os.getcwd()
|
||||||
sys.path.append(now_dir)
|
sys.path.append(now_dir)
|
||||||
import ffmpeg
|
import ffmpeg
|
||||||
@ -26,6 +27,7 @@ from my_utils import load_audio
|
|||||||
from module.mel_processing import spectrogram_torch
|
from module.mel_processing import spectrogram_torch
|
||||||
from TTS_infer_pack.text_segmentation_method import splits
|
from TTS_infer_pack.text_segmentation_method import splits
|
||||||
from TTS_infer_pack.TextPreprocessor import TextPreprocessor
|
from TTS_infer_pack.TextPreprocessor import TextPreprocessor
|
||||||
|
|
||||||
i18n = I18nAuto()
|
i18n = I18nAuto()
|
||||||
|
|
||||||
# configs/tts_infer.yaml
|
# configs/tts_infer.yaml
|
||||||
@ -49,6 +51,7 @@ custom:
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
def set_seed(seed: int):
|
def set_seed(seed: int):
|
||||||
seed = int(seed)
|
seed = int(seed)
|
||||||
seed = seed if seed != -1 else random.randrange(1 << 32)
|
seed = seed if seed != -1 else random.randrange(1 << 32)
|
||||||
@ -71,6 +74,7 @@ def set_seed(seed:int):
|
|||||||
pass
|
pass
|
||||||
return seed
|
return seed
|
||||||
|
|
||||||
|
|
||||||
class TTS_Config:
|
class TTS_Config:
|
||||||
default_configs = {
|
default_configs = {
|
||||||
"device": "cpu",
|
"device": "cpu",
|
||||||
@ -79,8 +83,10 @@ class TTS_Config:
|
|||||||
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth",
|
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth",
|
||||||
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
||||||
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
||||||
|
"load_base": True,
|
||||||
}
|
}
|
||||||
configs: dict = None
|
configs: dict = None
|
||||||
|
|
||||||
def __init__(self, configs: Union[dict, str] = None):
|
def __init__(self, configs: Union[dict, str] = None):
|
||||||
|
|
||||||
# 设置默认配置文件路径
|
# 设置默认配置文件路径
|
||||||
@ -105,14 +111,13 @@ class TTS_Config:
|
|||||||
|
|
||||||
self.configs: dict = configs.get("custom", deepcopy(self.default_configs))
|
self.configs: dict = configs.get("custom", deepcopy(self.default_configs))
|
||||||
|
|
||||||
|
|
||||||
self.device = self.configs.get("device", torch.device("cpu"))
|
self.device = self.configs.get("device", torch.device("cpu"))
|
||||||
self.is_half = self.configs.get("is_half", False)
|
self.is_half = self.configs.get("is_half", False)
|
||||||
self.t2s_weights_path = self.configs.get("t2s_weights_path", None)
|
self.t2s_weights_path = self.configs.get("t2s_weights_path", None)
|
||||||
self.vits_weights_path = self.configs.get("vits_weights_path", None)
|
self.vits_weights_path = self.configs.get("vits_weights_path", None)
|
||||||
self.bert_base_path = self.configs.get("bert_base_path", None)
|
self.bert_base_path = self.configs.get("bert_base_path", None)
|
||||||
self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None)
|
self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None)
|
||||||
|
self.load_base = self.configs.get("load_base", True)
|
||||||
|
|
||||||
if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)):
|
if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)):
|
||||||
self.t2s_weights_path = self.default_configs['t2s_weights_path']
|
self.t2s_weights_path = self.default_configs['t2s_weights_path']
|
||||||
@ -128,7 +133,6 @@ class TTS_Config:
|
|||||||
print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}")
|
print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}")
|
||||||
self.update_configs()
|
self.update_configs()
|
||||||
|
|
||||||
|
|
||||||
self.max_sec = None
|
self.max_sec = None
|
||||||
self.hz: int = 50
|
self.hz: int = 50
|
||||||
self.semantic_frame_rate: str = "25hz"
|
self.semantic_frame_rate: str = "25hz"
|
||||||
@ -141,7 +145,6 @@ class TTS_Config:
|
|||||||
|
|
||||||
self.languages: list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
|
self.languages: list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
|
||||||
|
|
||||||
|
|
||||||
def _load_configs(self, configs_path: str) -> dict:
|
def _load_configs(self, configs_path: str) -> dict:
|
||||||
with open(configs_path, 'r') as f:
|
with open(configs_path, 'r') as f:
|
||||||
configs = yaml.load(f, Loader=yaml.FullLoader)
|
configs = yaml.load(f, Loader=yaml.FullLoader)
|
||||||
@ -168,6 +171,7 @@ class TTS_Config:
|
|||||||
"vits_weights_path": self.vits_weights_path,
|
"vits_weights_path": self.vits_weights_path,
|
||||||
"bert_base_path": self.bert_base_path,
|
"bert_base_path": self.bert_base_path,
|
||||||
"cnhuhbert_base_path": self.cnhuhbert_base_path,
|
"cnhuhbert_base_path": self.cnhuhbert_base_path,
|
||||||
|
"load_base": self.load_base,
|
||||||
}
|
}
|
||||||
return self.config
|
return self.config
|
||||||
|
|
||||||
@ -182,8 +186,18 @@ class TTS_Config:
|
|||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
return self.__str__()
|
return self.__str__()
|
||||||
|
|
||||||
|
def __hash__(self):
|
||||||
|
return hash(self.configs_path)
|
||||||
|
|
||||||
|
def __eq__(self, other):
|
||||||
|
return isinstance(other, TTS_Config) and self.configs_path == other.configs_path
|
||||||
|
|
||||||
|
|
||||||
class TTS:
|
class TTS:
|
||||||
|
bert_tokenizer: AutoTokenizer = None
|
||||||
|
bert_model: AutoModelForMaskedLM = None
|
||||||
|
cnhuhbert_model: CNHubert = None
|
||||||
|
|
||||||
def __init__(self, configs: Union[dict, str, TTS_Config]):
|
def __init__(self, configs: Union[dict, str, TTS_Config]):
|
||||||
if isinstance(configs, TTS_Config):
|
if isinstance(configs, TTS_Config):
|
||||||
self.configs = configs
|
self.configs = configs
|
||||||
@ -192,18 +206,17 @@ class TTS:
|
|||||||
|
|
||||||
self.t2s_model: Text2SemanticLightningModule = None
|
self.t2s_model: Text2SemanticLightningModule = None
|
||||||
self.vits_model: SynthesizerTrn = None
|
self.vits_model: SynthesizerTrn = None
|
||||||
self.bert_tokenizer:AutoTokenizer = None
|
# self.bert_tokenizer:AutoTokenizer = None
|
||||||
self.bert_model:AutoModelForMaskedLM = None
|
# self.bert_model:AutoModelForMaskedLM = None
|
||||||
self.cnhuhbert_model:CNHubert = None
|
# self.cnhuhbert_model:CNHubert = None
|
||||||
|
|
||||||
self._init_models()
|
self._init_models()
|
||||||
|
|
||||||
self.text_preprocessor: TextPreprocessor = \
|
self.text_preprocessor: TextPreprocessor = \
|
||||||
TextPreprocessor(self.bert_model,
|
TextPreprocessor(TTS.bert_model,
|
||||||
self.bert_tokenizer,
|
TTS.bert_tokenizer,
|
||||||
self.configs.device)
|
self.configs.device)
|
||||||
|
|
||||||
|
|
||||||
self.prompt_cache: dict = {
|
self.prompt_cache: dict = {
|
||||||
"ref_audio_path": None,
|
"ref_audio_path": None,
|
||||||
"prompt_semantic": None,
|
"prompt_semantic": None,
|
||||||
@ -215,37 +228,40 @@ class TTS:
|
|||||||
"norm_text": None,
|
"norm_text": None,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
self.stop_flag: bool = False
|
self.stop_flag: bool = False
|
||||||
self.precision: torch.dtype = torch.float16 if self.configs.is_half else torch.float32
|
self.precision: torch.dtype = torch.float16 if self.configs.is_half else torch.float32
|
||||||
|
|
||||||
def _init_models(self,):
|
def _init_models(self):
|
||||||
self.init_t2s_weights(self.configs.t2s_weights_path)
|
self.init_t2s_weights(self.configs.t2s_weights_path)
|
||||||
self.init_vits_weights(self.configs.vits_weights_path)
|
self.init_vits_weights(self.configs.vits_weights_path)
|
||||||
self.init_bert_weights(self.configs.bert_base_path)
|
if self.configs.load_base:
|
||||||
self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path)
|
TTS.init_bert_weights(self.configs)
|
||||||
|
TTS.init_cnhuhbert_weights(self.configs)
|
||||||
# self.enable_half_precision(self.configs.is_half)
|
# self.enable_half_precision(self.configs.is_half)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def init_base_models(configs: TTS_Config):
|
||||||
|
TTS.init_bert_weights(configs)
|
||||||
|
TTS.init_cnhuhbert_weights(configs)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def init_cnhuhbert_weights(configs: TTS_Config):
|
||||||
|
print(f"Loading CNHuBERT weights from {configs.cnhuhbert_base_path}")
|
||||||
|
TTS.cnhuhbert_model = CNHubert(configs.cnhuhbert_base_path)
|
||||||
|
TTS.cnhuhbert_model = TTS.cnhuhbert_model.eval()
|
||||||
|
TTS.cnhuhbert_model = TTS.cnhuhbert_model.to(configs.device)
|
||||||
|
if configs.is_half and str(configs.device) != "cpu":
|
||||||
|
TTS.cnhuhbert_model = TTS.cnhuhbert_model.half()
|
||||||
|
|
||||||
def init_cnhuhbert_weights(self, base_path: str):
|
@staticmethod
|
||||||
print(f"Loading CNHuBERT weights from {base_path}")
|
def init_bert_weights(configs: TTS_Config):
|
||||||
self.cnhuhbert_model = CNHubert(base_path)
|
print(f"Loading BERT weights from {configs.bert_base_path}")
|
||||||
self.cnhuhbert_model=self.cnhuhbert_model.eval()
|
TTS.bert_tokenizer = AutoTokenizer.from_pretrained(configs.bert_base_path)
|
||||||
self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device)
|
TTS.bert_model = AutoModelForMaskedLM.from_pretrained(configs.bert_base_path)
|
||||||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
TTS.bert_model = TTS.bert_model.eval()
|
||||||
self.cnhuhbert_model = self.cnhuhbert_model.half()
|
TTS.bert_model = TTS.bert_model.to(configs.device)
|
||||||
|
if configs.is_half and str(configs.device) != "cpu":
|
||||||
|
TTS.bert_model = TTS.bert_model.half()
|
||||||
|
|
||||||
def init_bert_weights(self, base_path: str):
|
|
||||||
print(f"Loading BERT weights from {base_path}")
|
|
||||||
self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path)
|
|
||||||
self.bert_model = AutoModelForMaskedLM.from_pretrained(base_path)
|
|
||||||
self.bert_model=self.bert_model.eval()
|
|
||||||
self.bert_model = self.bert_model.to(self.configs.device)
|
|
||||||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
|
||||||
self.bert_model = self.bert_model.half()
|
|
||||||
|
|
||||||
def init_vits_weights(self, weights_path: str):
|
def init_vits_weights(self, weights_path: str):
|
||||||
print(f"Loading VITS weights from {weights_path}")
|
print(f"Loading VITS weights from {weights_path}")
|
||||||
@ -278,7 +294,6 @@ class TTS:
|
|||||||
if self.configs.is_half and str(self.configs.device) != "cpu":
|
if self.configs.is_half and str(self.configs.device) != "cpu":
|
||||||
self.vits_model = self.vits_model.half()
|
self.vits_model = self.vits_model.half()
|
||||||
|
|
||||||
|
|
||||||
def init_t2s_weights(self, weights_path: str):
|
def init_t2s_weights(self, weights_path: str):
|
||||||
print(f"Loading Text2Semantic weights from {weights_path}")
|
print(f"Loading Text2Semantic weights from {weights_path}")
|
||||||
self.configs.t2s_weights_path = weights_path
|
self.configs.t2s_weights_path = weights_path
|
||||||
@ -314,19 +329,19 @@ class TTS:
|
|||||||
self.t2s_model = self.t2s_model.half()
|
self.t2s_model = self.t2s_model.half()
|
||||||
if self.vits_model is not None:
|
if self.vits_model is not None:
|
||||||
self.vits_model = self.vits_model.half()
|
self.vits_model = self.vits_model.half()
|
||||||
if self.bert_model is not None:
|
if TTS.bert_model is not None:
|
||||||
self.bert_model =self.bert_model.half()
|
TTS.bert_model = TTS.bert_model.half()
|
||||||
if self.cnhuhbert_model is not None:
|
if TTS.cnhuhbert_model is not None:
|
||||||
self.cnhuhbert_model = self.cnhuhbert_model.half()
|
TTS.cnhuhbert_model = TTS.cnhuhbert_model.half()
|
||||||
else:
|
else:
|
||||||
if self.t2s_model is not None:
|
if self.t2s_model is not None:
|
||||||
self.t2s_model = self.t2s_model.float()
|
self.t2s_model = self.t2s_model.float()
|
||||||
if self.vits_model is not None:
|
if self.vits_model is not None:
|
||||||
self.vits_model = self.vits_model.float()
|
self.vits_model = self.vits_model.float()
|
||||||
if self.bert_model is not None:
|
if TTS.bert_model is not None:
|
||||||
self.bert_model = self.bert_model.float()
|
TTS.bert_model = TTS.bert_model.float()
|
||||||
if self.cnhuhbert_model is not None:
|
if TTS.cnhuhbert_model is not None:
|
||||||
self.cnhuhbert_model = self.cnhuhbert_model.float()
|
TTS.cnhuhbert_model = TTS.cnhuhbert_model.float()
|
||||||
|
|
||||||
def set_device(self, device: torch.device):
|
def set_device(self, device: torch.device):
|
||||||
'''
|
'''
|
||||||
@ -340,10 +355,10 @@ class TTS:
|
|||||||
self.t2s_model = self.t2s_model.to(device)
|
self.t2s_model = self.t2s_model.to(device)
|
||||||
if self.vits_model is not None:
|
if self.vits_model is not None:
|
||||||
self.vits_model = self.vits_model.to(device)
|
self.vits_model = self.vits_model.to(device)
|
||||||
if self.bert_model is not None:
|
if TTS.bert_model is not None:
|
||||||
self.bert_model = self.bert_model.to(device)
|
TTS.bert_model = TTS.bert_model.to(device)
|
||||||
if self.cnhuhbert_model is not None:
|
if TTS.cnhuhbert_model is not None:
|
||||||
self.cnhuhbert_model = self.cnhuhbert_model.to(device)
|
TTS.cnhuhbert_model = TTS.cnhuhbert_model.to(device)
|
||||||
|
|
||||||
def set_ref_audio(self, ref_audio_path: str):
|
def set_ref_audio(self, ref_audio_path: str):
|
||||||
'''
|
'''
|
||||||
@ -374,7 +389,6 @@ class TTS:
|
|||||||
# self.refer_spec = spec
|
# self.refer_spec = spec
|
||||||
self.prompt_cache["refer_spec"] = spec
|
self.prompt_cache["refer_spec"] = spec
|
||||||
|
|
||||||
|
|
||||||
def _set_prompt_semantic(self, ref_wav_path: str):
|
def _set_prompt_semantic(self, ref_wav_path: str):
|
||||||
zero_wav = np.zeros(
|
zero_wav = np.zeros(
|
||||||
int(self.configs.sampling_rate * 0.3),
|
int(self.configs.sampling_rate * 0.3),
|
||||||
@ -467,7 +481,6 @@ class TTS:
|
|||||||
batch_index_list.append([])
|
batch_index_list.append([])
|
||||||
batch_index_list[-1].append(i)
|
batch_index_list[-1].append(i)
|
||||||
|
|
||||||
|
|
||||||
for batch_idx, index_list in enumerate(batch_index_list):
|
for batch_idx, index_list in enumerate(batch_index_list):
|
||||||
item_list = [data[idx] for idx in index_list]
|
item_list = [data[idx] for idx in index_list]
|
||||||
phones_list = []
|
phones_list = []
|
||||||
@ -507,7 +520,6 @@ class TTS:
|
|||||||
all_phones_batch = all_phones_list
|
all_phones_batch = all_phones_list
|
||||||
all_bert_features_batch = all_bert_features_list
|
all_bert_features_batch = all_bert_features_list
|
||||||
|
|
||||||
|
|
||||||
max_len = max(bert_max_len, phones_max_len)
|
max_len = max(bert_max_len, phones_max_len)
|
||||||
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
|
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
|
||||||
#### 直接对phones和bert_features进行pad。(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略)
|
#### 直接对phones和bert_features进行pad。(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略)
|
||||||
@ -646,7 +658,8 @@ class TTS:
|
|||||||
|
|
||||||
if ref_audio_path in [None, ""] and \
|
if ref_audio_path in [None, ""] and \
|
||||||
((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] is None)):
|
((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] is None)):
|
||||||
raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
|
raise ValueError(
|
||||||
|
"ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
|
||||||
|
|
||||||
###### setting reference audio and prompt text preprocessing ########
|
###### setting reference audio and prompt text preprocessing ########
|
||||||
t0 = ttime()
|
t0 = ttime()
|
||||||
@ -700,7 +713,8 @@ class TTS:
|
|||||||
batch_data = []
|
batch_data = []
|
||||||
print(i18n("############ 提取文本Bert特征 ############"))
|
print(i18n("############ 提取文本Bert特征 ############"))
|
||||||
for text in tqdm(batch_texts):
|
for text in tqdm(batch_texts):
|
||||||
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text, text_lang)
|
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text,
|
||||||
|
text_lang)
|
||||||
if phones is None:
|
if phones is None:
|
||||||
continue
|
continue
|
||||||
res = {
|
res = {
|
||||||
@ -721,7 +735,6 @@ class TTS:
|
|||||||
)
|
)
|
||||||
return batch[0]
|
return batch[0]
|
||||||
|
|
||||||
|
|
||||||
t2 = ttime()
|
t2 = ttime()
|
||||||
try:
|
try:
|
||||||
print("############ 推理 ############")
|
print("############ 推理 ############")
|
||||||
@ -749,8 +762,8 @@ class TTS:
|
|||||||
if no_prompt_text:
|
if no_prompt_text:
|
||||||
prompt = None
|
prompt = None
|
||||||
else:
|
else:
|
||||||
prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device)
|
prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(
|
||||||
|
self.configs.device)
|
||||||
|
|
||||||
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
|
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
|
||||||
all_phoneme_ids,
|
all_phoneme_ids,
|
||||||
@ -792,7 +805,8 @@ class TTS:
|
|||||||
# ## vits并行推理 method 2
|
# ## vits并行推理 method 2
|
||||||
pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
||||||
upsample_rate = math.prod(self.vits_model.upsample_rates)
|
upsample_rate = math.prod(self.vits_model.upsample_rates)
|
||||||
audio_frag_idx = [pred_semantic_list[i].shape[0]*2*upsample_rate for i in range(0, len(pred_semantic_list))]
|
audio_frag_idx = [pred_semantic_list[i].shape[0] * 2 * upsample_rate for i in
|
||||||
|
range(0, len(pred_semantic_list))]
|
||||||
audio_frag_end_idx = [sum(audio_frag_idx[:i + 1]) for i in range(0, len(audio_frag_idx))]
|
audio_frag_end_idx = [sum(audio_frag_idx[:i + 1]) for i in range(0, len(audio_frag_idx))]
|
||||||
all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device)
|
all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device)
|
||||||
_batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device)
|
_batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device)
|
||||||
@ -800,7 +814,8 @@ class TTS:
|
|||||||
all_pred_semantic, _batch_phones, refer_audio_spec
|
all_pred_semantic, _batch_phones, refer_audio_spec
|
||||||
).detach()[0, 0, :])
|
).detach()[0, 0, :])
|
||||||
audio_frag_end_idx.insert(0, 0)
|
audio_frag_end_idx.insert(0, 0)
|
||||||
batch_audio_fragment= [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))]
|
batch_audio_fragment = [_batch_audio_fragment[audio_frag_end_idx[i - 1]:audio_frag_end_idx[i]] for i in
|
||||||
|
range(1, len(audio_frag_end_idx))]
|
||||||
|
|
||||||
# ## vits串行推理
|
# ## vits串行推理
|
||||||
# for i, idx in enumerate(idx_list):
|
# for i, idx in enumerate(idx_list):
|
||||||
@ -888,14 +903,12 @@ class TTS:
|
|||||||
audio_fragment: torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
|
audio_fragment: torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
|
||||||
audio[i][j] = audio_fragment.cpu().numpy()
|
audio[i][j] = audio_fragment.cpu().numpy()
|
||||||
|
|
||||||
|
|
||||||
if split_bucket:
|
if split_bucket:
|
||||||
audio = self.recovery_order(audio, batch_index_list)
|
audio = self.recovery_order(audio, batch_index_list)
|
||||||
else:
|
else:
|
||||||
# audio = [item for batch in audio for item in batch]
|
# audio = [item for batch in audio for item in batch]
|
||||||
audio = sum(audio, [])
|
audio = sum(audio, [])
|
||||||
|
|
||||||
|
|
||||||
audio = np.concatenate(audio, 0)
|
audio = np.concatenate(audio, 0)
|
||||||
audio = (audio * 32768).astype(np.int16)
|
audio = (audio * 32768).astype(np.int16)
|
||||||
|
|
||||||
@ -908,8 +921,6 @@ class TTS:
|
|||||||
return sr, audio
|
return sr, audio
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def speed_change(input_audio: np.ndarray, speed: float, sr: int):
|
def speed_change(input_audio: np.ndarray, speed: float, sr: int):
|
||||||
# 将 NumPy 数组转换为原始 PCM 流
|
# 将 NumPy 数组转换为原始 PCM 流
|
||||||
raw_audio = input_audio.astype(np.int16).tobytes()
|
raw_audio = input_audio.astype(np.int16).tobytes()
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
custom:
|
custom:
|
||||||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
load_base: true
|
||||||
device: cuda
|
device: cuda
|
||||||
is_half: true
|
is_half: true
|
||||||
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||||
|
15
GPT_SoVITS/configs/voices/voice1.yaml
Normal file
15
GPT_SoVITS/configs/voices/voice1.yaml
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
custom:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
load_base: false
|
||||||
|
t2s_weights_path: GPT_weights/voice1-e10.ckpt
|
||||||
|
vits_weights_path: SoVITS_weights/voice1_e8_s192.pth
|
||||||
|
default:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||||
|
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
15
GPT_SoVITS/configs/voices/voice2.yaml
Normal file
15
GPT_SoVITS/configs/voices/voice2.yaml
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
custom:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
load_base: false
|
||||||
|
t2s_weights_path: GPT_weights/voice1-e10.ckpt
|
||||||
|
vits_weights_path: SoVITS_weights/voice1_e8_s192.pth
|
||||||
|
default:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||||
|
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
470
api_v3.py
Normal file
470
api_v3.py
Normal file
@ -0,0 +1,470 @@
|
|||||||
|
"""
|
||||||
|
# WebAPI文档 (3.0) - 使用了缓存技术,初始化时使用LRU Cache TTS 实例,缓存加载模型的世界,达到减少切换不同语音时的推理时间
|
||||||
|
|
||||||
|
` python api_v2.py -a 127.0.0.1 -p 9880 -c GPT_SoVITS/configs/tts_infer.yaml `
|
||||||
|
|
||||||
|
## 执行参数:
|
||||||
|
`-a` - `绑定地址, 默认"127.0.0.1"`
|
||||||
|
`-p` - `绑定端口, 默认9880`
|
||||||
|
`-c` - `TTS配置文件路径, 默认"GPT_SoVITS/configs/tts_infer.yaml"`
|
||||||
|
|
||||||
|
## 调用:
|
||||||
|
|
||||||
|
### 推理
|
||||||
|
|
||||||
|
endpoint: `/tts`
|
||||||
|
GET:
|
||||||
|
```
|
||||||
|
http://127.0.0.1:9880/tts?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_lang=zh&ref_audio_path=archive_jingyuan_1.wav&prompt_lang=zh&prompt_text=我是「罗浮」云骑将军景元。不必拘谨,「将军」只是一时的身份,你称呼我景元便可&text_split_method=cut5&batch_size=1&media_type=wav&streaming_mode=true
|
||||||
|
```
|
||||||
|
|
||||||
|
POST:
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"text": "", # str.(required) text to be synthesized
|
||||||
|
"text_lang": "", # str.(required) language of the text to be synthesized
|
||||||
|
"ref_audio_path": "", # str.(required) reference audio path.
|
||||||
|
"prompt_text": "", # str.(optional) prompt text for the reference audio
|
||||||
|
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio
|
||||||
|
"top_k": 5, # int.(optional) top k sampling
|
||||||
|
"top_p": 1, # float.(optional) top p sampling
|
||||||
|
"temperature": 1, # float.(optional) temperature for sampling
|
||||||
|
"text_split_method": "cut5", # str.(optional) text split method, see text_segmentation_method.py for details.
|
||||||
|
"batch_size": 1, # int.(optional) batch size for inference
|
||||||
|
"batch_threshold": 0.75, # float.(optional) threshold for batch splitting.
|
||||||
|
"split_bucket": true, # bool.(optional) whether to split the batch into multiple buckets.
|
||||||
|
"speed_factor":1.0, # float.(optional) control the speed of the synthesized audio.
|
||||||
|
"fragment_interval":0.3, # float.(optional) to control the interval of the audio fragment.
|
||||||
|
"seed": -1, # int.(optional) random seed for reproducibility.
|
||||||
|
"media_type": "wav", # str.(optional) media type of the output audio, support "wav", "raw", "ogg", "aac".
|
||||||
|
"streaming_mode": false, # bool.(optional) whether to return a streaming response.
|
||||||
|
"parallel_infer": True, # bool.(optional) whether to use parallel inference.
|
||||||
|
"repetition_penalty": 1.35, # float.(optional) repetition penalty for T2S model.
|
||||||
|
"tts_infer_yaml_path": “GPT_SoVITS/configs/tts_infer.yaml” # str.(optional) tts infer yaml path
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
RESP:
|
||||||
|
成功: 直接返回 wav 音频流, http code 200
|
||||||
|
失败: 返回包含错误信息的 json, http code 400
|
||||||
|
|
||||||
|
### 命令控制
|
||||||
|
|
||||||
|
endpoint: `/control`
|
||||||
|
|
||||||
|
command:
|
||||||
|
"restart": 重新运行
|
||||||
|
"exit": 结束运行
|
||||||
|
|
||||||
|
GET:
|
||||||
|
```
|
||||||
|
http://127.0.0.1:9880/control?command=restart
|
||||||
|
```
|
||||||
|
POST:
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"command": "restart"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
RESP: 无
|
||||||
|
|
||||||
|
|
||||||
|
### 切换GPT模型
|
||||||
|
|
||||||
|
endpoint: `/set_gpt_weights`
|
||||||
|
|
||||||
|
GET:
|
||||||
|
```
|
||||||
|
http://127.0.0.1:9880/set_gpt_weights?weights_path=GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||||
|
```
|
||||||
|
RESP:
|
||||||
|
成功: 返回"success", http code 200
|
||||||
|
失败: 返回包含错误信息的 json, http code 400
|
||||||
|
|
||||||
|
|
||||||
|
### 切换Sovits模型
|
||||||
|
|
||||||
|
endpoint: `/set_sovits_weights`
|
||||||
|
|
||||||
|
GET:
|
||||||
|
```
|
||||||
|
http://127.0.0.1:9880/set_sovits_weights?weights_path=GPT_SoVITS/pretrained_models/s2G488k.pth
|
||||||
|
```
|
||||||
|
|
||||||
|
RESP:
|
||||||
|
成功: 返回"success", http code 200
|
||||||
|
失败: 返回包含错误信息的 json, http code 400
|
||||||
|
|
||||||
|
"""
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
from typing import Generator
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
now_dir = os.getcwd()
|
||||||
|
sys.path.append(now_dir)
|
||||||
|
sys.path.append("%s/GPT_SoVITS" % (now_dir))
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import subprocess
|
||||||
|
import wave
|
||||||
|
import signal
|
||||||
|
import numpy as np
|
||||||
|
import soundfile as sf
|
||||||
|
from fastapi import Response
|
||||||
|
from fastapi.responses import JSONResponse
|
||||||
|
from fastapi import FastAPI
|
||||||
|
import uvicorn
|
||||||
|
from io import BytesIO
|
||||||
|
from GPT_SoVITS.TTS_infer_pack.TTS import TTS, TTS_Config
|
||||||
|
from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import get_method_names as get_cut_method_names
|
||||||
|
from fastapi.responses import StreamingResponse
|
||||||
|
from pydantic import BaseModel
|
||||||
|
from functools import lru_cache
|
||||||
|
|
||||||
|
cut_method_names = get_cut_method_names()
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="GPT-SoVITS api")
|
||||||
|
parser.add_argument("-a", "--bind_addr", type=str, default="0.0.0.0", help="default: 0.0.0.0")
|
||||||
|
parser.add_argument("-p", "--port", type=int, default="9880", help="default: 9880")
|
||||||
|
args = parser.parse_args()
|
||||||
|
port = args.port
|
||||||
|
host = args.bind_addr
|
||||||
|
argv = sys.argv
|
||||||
|
|
||||||
|
default_tts_config = TTS_Config()
|
||||||
|
TTS.init_base_models(default_tts_config)
|
||||||
|
|
||||||
|
APP = FastAPI()
|
||||||
|
|
||||||
|
|
||||||
|
class TTS_Request(BaseModel):
|
||||||
|
text: str = None
|
||||||
|
text_lang: str = None
|
||||||
|
ref_audio_path: str = None
|
||||||
|
prompt_lang: str = None
|
||||||
|
prompt_text: str = ""
|
||||||
|
top_k: int = 5
|
||||||
|
top_p: float = 1
|
||||||
|
temperature: float = 1
|
||||||
|
text_split_method: str = "cut5"
|
||||||
|
batch_size: int = 1
|
||||||
|
batch_threshold: float = 0.75
|
||||||
|
split_bucket: bool = True
|
||||||
|
speed_factor: float = 1.0
|
||||||
|
fragment_interval: float = 0.3
|
||||||
|
seed: int = -1
|
||||||
|
media_type: str = "wav"
|
||||||
|
streaming_mode: bool = False
|
||||||
|
parallel_infer: bool = True
|
||||||
|
repetition_penalty: float = 1.35
|
||||||
|
tts_infer_yaml_path: str = None
|
||||||
|
"""推理时需要加载的声音模型的yaml配置文件路径,如:GPT_SoVITS/configs/tts_infer.yaml"""
|
||||||
|
|
||||||
|
|
||||||
|
@lru_cache(maxsize=10)
|
||||||
|
def get_tts_instance(tts_config: TTS_Config) -> TTS:
|
||||||
|
print(f"load tts config from {tts_config.configs_path}")
|
||||||
|
return TTS(tts_config)
|
||||||
|
|
||||||
|
|
||||||
|
def pack_ogg(io_buffer: BytesIO, data: np.ndarray, rate: int):
|
||||||
|
"""modify from https://github.com/RVC-Boss/GPT-SoVITS/pull/894/files"""
|
||||||
|
with sf.SoundFile(io_buffer, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file:
|
||||||
|
audio_file.write(data)
|
||||||
|
return io_buffer
|
||||||
|
|
||||||
|
|
||||||
|
def pack_raw(io_buffer: BytesIO, data: np.ndarray, rate: int):
|
||||||
|
io_buffer.write(data.tobytes())
|
||||||
|
return io_buffer
|
||||||
|
|
||||||
|
|
||||||
|
def pack_wav(io_buffer: BytesIO, data: np.ndarray, rate: int):
|
||||||
|
io_buffer = BytesIO()
|
||||||
|
sf.write(io_buffer, data, rate, format='wav')
|
||||||
|
return io_buffer
|
||||||
|
|
||||||
|
|
||||||
|
def pack_aac(io_buffer: BytesIO, data: np.ndarray, rate: int):
|
||||||
|
process = subprocess.Popen([
|
||||||
|
'ffmpeg',
|
||||||
|
'-f', 's16le', # 输入16位有符号小端整数PCM
|
||||||
|
'-ar', str(rate), # 设置采样率
|
||||||
|
'-ac', '1', # 单声道
|
||||||
|
'-i', 'pipe:0', # 从管道读取输入
|
||||||
|
'-c:a', 'aac', # 音频编码器为AAC
|
||||||
|
'-b:a', '192k', # 比特率
|
||||||
|
'-vn', # 不包含视频
|
||||||
|
'-f', 'adts', # 输出AAC数据流格式
|
||||||
|
'pipe:1' # 将输出写入管道
|
||||||
|
], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||||
|
out, _ = process.communicate(input=data.tobytes())
|
||||||
|
io_buffer.write(out)
|
||||||
|
return io_buffer
|
||||||
|
|
||||||
|
|
||||||
|
def pack_audio(io_buffer: BytesIO, data: np.ndarray, rate: int, media_type: str):
|
||||||
|
if media_type == "ogg":
|
||||||
|
io_buffer = pack_ogg(io_buffer, data, rate)
|
||||||
|
elif media_type == "aac":
|
||||||
|
io_buffer = pack_aac(io_buffer, data, rate)
|
||||||
|
elif media_type == "wav":
|
||||||
|
io_buffer = pack_wav(io_buffer, data, rate)
|
||||||
|
else:
|
||||||
|
io_buffer = pack_raw(io_buffer, data, rate)
|
||||||
|
io_buffer.seek(0)
|
||||||
|
return io_buffer
|
||||||
|
|
||||||
|
|
||||||
|
# from https://huggingface.co/spaces/coqui/voice-chat-with-mistral/blob/main/app.py
|
||||||
|
def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=32000):
|
||||||
|
# This will create a wave header then append the frame input
|
||||||
|
# It should be first on a streaming wav file
|
||||||
|
# Other frames better should not have it (else you will hear some artifacts each chunk start)
|
||||||
|
wav_buf = BytesIO()
|
||||||
|
with wave.open(wav_buf, "wb") as vfout:
|
||||||
|
vfout.setnchannels(channels)
|
||||||
|
vfout.setsampwidth(sample_width)
|
||||||
|
vfout.setframerate(sample_rate)
|
||||||
|
vfout.writeframes(frame_input)
|
||||||
|
|
||||||
|
wav_buf.seek(0)
|
||||||
|
return wav_buf.read()
|
||||||
|
|
||||||
|
|
||||||
|
def handle_control(command: str):
|
||||||
|
if command == "restart":
|
||||||
|
os.execl(sys.executable, sys.executable, *argv)
|
||||||
|
elif command == "exit":
|
||||||
|
os.kill(os.getpid(), signal.SIGTERM)
|
||||||
|
exit(0)
|
||||||
|
|
||||||
|
|
||||||
|
def check_params(req: dict, tts_config: TTS_Config):
|
||||||
|
text: str = req.get("text", "")
|
||||||
|
text_lang: str = req.get("text_lang", "")
|
||||||
|
ref_audio_path: str = req.get("ref_audio_path", "")
|
||||||
|
streaming_mode: bool = req.get("streaming_mode", False)
|
||||||
|
media_type: str = req.get("media_type", "wav")
|
||||||
|
prompt_lang: str = req.get("prompt_lang", "")
|
||||||
|
text_split_method: str = req.get("text_split_method", "cut5")
|
||||||
|
|
||||||
|
if ref_audio_path in [None, ""]:
|
||||||
|
return JSONResponse(status_code=400, content={"message": "ref_audio_path is required"})
|
||||||
|
if text in [None, ""]:
|
||||||
|
return JSONResponse(status_code=400, content={"message": "text is required"})
|
||||||
|
if (text_lang in [None, ""]):
|
||||||
|
return JSONResponse(status_code=400, content={"message": "text_lang is required"})
|
||||||
|
elif text_lang.lower() not in tts_config.languages:
|
||||||
|
return JSONResponse(status_code=400, content={"message": "text_lang is not supported"})
|
||||||
|
if (prompt_lang in [None, ""]):
|
||||||
|
return JSONResponse(status_code=400, content={"message": "prompt_lang is required"})
|
||||||
|
elif prompt_lang.lower() not in tts_config.languages:
|
||||||
|
return JSONResponse(status_code=400, content={"message": "prompt_lang is not supported"})
|
||||||
|
if media_type not in ["wav", "raw", "ogg", "aac"]:
|
||||||
|
return JSONResponse(status_code=400, content={"message": "media_type is not supported"})
|
||||||
|
elif media_type == "ogg" and not streaming_mode:
|
||||||
|
return JSONResponse(status_code=400, content={"message": "ogg format is not supported in non-streaming mode"})
|
||||||
|
|
||||||
|
if text_split_method not in cut_method_names:
|
||||||
|
return JSONResponse(status_code=400,
|
||||||
|
content={"message": f"text_split_method:{text_split_method} is not supported"})
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
async def tts_handle(req: dict):
|
||||||
|
"""
|
||||||
|
Text to speech handler.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
req (dict):
|
||||||
|
{
|
||||||
|
"text": "", # str.(required) text to be synthesized
|
||||||
|
"text_lang: "", # str.(required) language of the text to be synthesized
|
||||||
|
"ref_audio_path": "", # str.(required) reference audio path
|
||||||
|
"prompt_text": "", # str.(optional) prompt text for the reference audio
|
||||||
|
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio
|
||||||
|
"top_k": 5, # int. top k sampling
|
||||||
|
"top_p": 1, # float. top p sampling
|
||||||
|
"temperature": 1, # float. temperature for sampling
|
||||||
|
"text_split_method": "cut5", # str. text split method, see text_segmentation_method.py for details.
|
||||||
|
"batch_size": 1, # int. batch size for inference
|
||||||
|
"batch_threshold": 0.75, # float. threshold for batch splitting.
|
||||||
|
"split_bucket: True, # bool. whether to split the batch into multiple buckets.
|
||||||
|
"speed_factor":1.0, # float. control the speed of the synthesized audio.
|
||||||
|
"fragment_interval":0.3, # float. to control the interval of the audio fragment.
|
||||||
|
"seed": -1, # int. random seed for reproducibility.
|
||||||
|
"media_type": "wav", # str. media type of the output audio, support "wav", "raw", "ogg", "aac".
|
||||||
|
"streaming_mode": False, # bool. whether to return a streaming response.
|
||||||
|
"parallel_infer": True, # bool.(optional) whether to use parallel inference.
|
||||||
|
"repetition_penalty": 1.35 # float.(optional) repetition penalty for T2S model.
|
||||||
|
}
|
||||||
|
returns:
|
||||||
|
StreamingResponse: audio stream response.
|
||||||
|
"""
|
||||||
|
|
||||||
|
streaming_mode = req.get("streaming_mode", False)
|
||||||
|
media_type = req.get("media_type", "wav")
|
||||||
|
tts_infer_yaml_path = req.get("tts_infer_yaml_path", "GPT_SoVITS/configs/tts_infer.yaml")
|
||||||
|
|
||||||
|
tts_config = TTS_Config(tts_infer_yaml_path)
|
||||||
|
check_res = check_params(req, tts_config)
|
||||||
|
if check_res is not None:
|
||||||
|
return check_res
|
||||||
|
|
||||||
|
if streaming_mode:
|
||||||
|
req["return_fragment"] = True
|
||||||
|
|
||||||
|
try:
|
||||||
|
tts_instance = get_tts_instance(tts_config)
|
||||||
|
|
||||||
|
move_to_gpu(tts_instance, tts_config)
|
||||||
|
|
||||||
|
tts_generator = tts_instance.run(req)
|
||||||
|
|
||||||
|
if streaming_mode:
|
||||||
|
def streaming_generator(tts_generator: Generator, media_type: str):
|
||||||
|
if media_type == "wav":
|
||||||
|
yield wave_header_chunk()
|
||||||
|
media_type = "raw"
|
||||||
|
for sr, chunk in tts_generator:
|
||||||
|
yield pack_audio(BytesIO(), chunk, sr, media_type).getvalue()
|
||||||
|
move_to_cpu(tts_instance)
|
||||||
|
|
||||||
|
# _media_type = f"audio/{media_type}" if not (streaming_mode and media_type in ["wav", "raw"]) else f"audio/x-{media_type}"
|
||||||
|
return StreamingResponse(streaming_generator(tts_generator, media_type, ), media_type=f"audio/{media_type}")
|
||||||
|
|
||||||
|
else:
|
||||||
|
sr, audio_data = next(tts_generator)
|
||||||
|
audio_data = pack_audio(BytesIO(), audio_data, sr, media_type).getvalue()
|
||||||
|
move_to_cpu(tts_instance)
|
||||||
|
return Response(audio_data, media_type=f"audio/{media_type}")
|
||||||
|
except Exception as e:
|
||||||
|
return JSONResponse(status_code=400, content={"message": f"tts failed", "Exception": str(e)})
|
||||||
|
|
||||||
|
|
||||||
|
def move_to_cpu(tts):
|
||||||
|
cpu_device = torch.device('cpu')
|
||||||
|
tts.set_device(cpu_device)
|
||||||
|
print("Moved TTS models to CPU to save GPU memory.")
|
||||||
|
|
||||||
|
|
||||||
|
def move_to_gpu(tts: TTS, tts_config: TTS_Config):
|
||||||
|
tts.set_device(tts_config.device)
|
||||||
|
print("Moved TTS models back to GPU for performance.")
|
||||||
|
|
||||||
|
|
||||||
|
@APP.get("/control")
|
||||||
|
async def control(command: str = None):
|
||||||
|
if command is None:
|
||||||
|
return JSONResponse(status_code=400, content={"message": "command is required"})
|
||||||
|
handle_control(command)
|
||||||
|
|
||||||
|
|
||||||
|
@APP.get("/tts")
|
||||||
|
async def tts_get_endpoint(
|
||||||
|
text: str = None,
|
||||||
|
text_lang: str = None,
|
||||||
|
ref_audio_path: str = None,
|
||||||
|
prompt_lang: str = None,
|
||||||
|
prompt_text: str = "",
|
||||||
|
top_k: int = 5,
|
||||||
|
top_p: float = 1,
|
||||||
|
temperature: float = 1,
|
||||||
|
text_split_method: str = "cut0",
|
||||||
|
batch_size: int = 1,
|
||||||
|
batch_threshold: float = 0.75,
|
||||||
|
split_bucket: bool = True,
|
||||||
|
speed_factor: float = 1.0,
|
||||||
|
fragment_interval: float = 0.3,
|
||||||
|
seed: int = -1,
|
||||||
|
media_type: str = "wav",
|
||||||
|
streaming_mode: bool = False,
|
||||||
|
parallel_infer: bool = True,
|
||||||
|
repetition_penalty: float = 1.35,
|
||||||
|
tts_infer_yaml_path: str = "GPT_SoVITS/configs/tts_infer.yaml"
|
||||||
|
):
|
||||||
|
req = {
|
||||||
|
"text": text,
|
||||||
|
"text_lang": text_lang.lower(),
|
||||||
|
"ref_audio_path": ref_audio_path,
|
||||||
|
"prompt_text": prompt_text,
|
||||||
|
"prompt_lang": prompt_lang.lower(),
|
||||||
|
"top_k": top_k,
|
||||||
|
"top_p": top_p,
|
||||||
|
"temperature": temperature,
|
||||||
|
"text_split_method": text_split_method,
|
||||||
|
"batch_size": int(batch_size),
|
||||||
|
"batch_threshold": float(batch_threshold),
|
||||||
|
"speed_factor": float(speed_factor),
|
||||||
|
"split_bucket": split_bucket,
|
||||||
|
"fragment_interval": fragment_interval,
|
||||||
|
"seed": seed,
|
||||||
|
"media_type": media_type,
|
||||||
|
"streaming_mode": streaming_mode,
|
||||||
|
"parallel_infer": parallel_infer,
|
||||||
|
"repetition_penalty": float(repetition_penalty),
|
||||||
|
"tts_infer_yaml_path": tts_infer_yaml_path
|
||||||
|
}
|
||||||
|
|
||||||
|
return await tts_handle(req)
|
||||||
|
|
||||||
|
|
||||||
|
@APP.post("/tts")
|
||||||
|
async def tts_post_endpoint(request: TTS_Request):
|
||||||
|
req = request.dict()
|
||||||
|
return await tts_handle(req)
|
||||||
|
|
||||||
|
|
||||||
|
@APP.get("/set_refer_audio")
|
||||||
|
async def set_refer_audio(refer_audio_path: str = None, tts_infer_yaml_path: str = "GPT_SoVITS/configs/tts_infer.yaml"):
|
||||||
|
try:
|
||||||
|
tts_config = TTS_Config(tts_infer_yaml_path)
|
||||||
|
tts_instance = get_tts_instance(tts_config)
|
||||||
|
tts_instance.set_ref_audio(refer_audio_path)
|
||||||
|
except Exception as e:
|
||||||
|
return JSONResponse(status_code=400, content={"message": f"set refer audio failed", "Exception": str(e)})
|
||||||
|
return JSONResponse(status_code=200, content={"message": "success"})
|
||||||
|
|
||||||
|
|
||||||
|
@APP.get("/set_gpt_weights")
|
||||||
|
async def set_gpt_weights(weights_path: str = None, tts_infer_yaml_path: str = "GPT_SoVITS/configs/tts_infer.yaml"):
|
||||||
|
try:
|
||||||
|
if weights_path in ["", None]:
|
||||||
|
return JSONResponse(status_code=400, content={"message": "gpt weight path is required"})
|
||||||
|
|
||||||
|
tts_config = TTS_Config(tts_infer_yaml_path)
|
||||||
|
tts_instance = get_tts_instance(tts_config)
|
||||||
|
tts_instance.init_t2s_weights(weights_path)
|
||||||
|
except Exception as e:
|
||||||
|
return JSONResponse(status_code=400, content={"message": f"change gpt weight failed", "Exception": str(e)})
|
||||||
|
|
||||||
|
return JSONResponse(status_code=200, content={"message": "success"})
|
||||||
|
|
||||||
|
|
||||||
|
@APP.get("/set_sovits_weights")
|
||||||
|
async def set_sovits_weights(weights_path: str = None, tts_infer_yaml_path: str = "GPT_SoVITS/configs/tts_infer.yaml"):
|
||||||
|
try:
|
||||||
|
if weights_path in ["", None]:
|
||||||
|
return JSONResponse(status_code=400, content={"message": "sovits weight path is required"})
|
||||||
|
|
||||||
|
tts_config = TTS_Config(tts_infer_yaml_path)
|
||||||
|
tts_instance = get_tts_instance(tts_config)
|
||||||
|
tts_instance.init_vits_weights(weights_path)
|
||||||
|
except Exception as e:
|
||||||
|
return JSONResponse(status_code=400, content={"message": f"change sovits weight failed", "Exception": str(e)})
|
||||||
|
return JSONResponse(status_code=200, content={"message": "success"})
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
try:
|
||||||
|
uvicorn.run(APP, host=host, port=port, workers=1)
|
||||||
|
except Exception as e:
|
||||||
|
traceback.print_exc()
|
||||||
|
os.kill(os.getpid(), signal.SIGTERM)
|
||||||
|
exit(0)
|
Loading…
x
Reference in New Issue
Block a user